You are on page 1of 10

DOC ID © Chevron 2005

Reliability Modeling
Application
September 2006
DOC ID © Chevron 2005

2
Establishing Equipment Reliability
Centrifugal
Pump
Input
Conditions
Output
Conditions
Determine conditions
 Process
 Ambient
Gather run time data
Analyze data, typically
using Weibull
techniques
Data may be difficult to
obtain

F
i
e
l
d

U
s
a
g
e

T
e
s
t

P
r
o
t
o
c
o
l

Determine conditions
 Process
 Ambient
Test equipment
 Life test
 Actual conditions
Difficult and time
consuming

DOC ID © Chevron 2005

3
Equipment Reliability Approach
Equipment
Life Data
Analysis
Reliability Block
Diagram
FMEA
Weibull++ BlockSim XFMEA
Equipment Criticality Analysis
Maintenance
Strategy
Engineering
Design
Improvement
Spare Part
Strategy
R
e
l
i
a
b
i
l
i
t
y

M
o
d
e
l
i
n
g

DOC ID © Chevron 2005

4
Output
• Failure analysis and prediction
• Maintenance strategy for repair
 Run to failure
 Predictive maintenance
 PM or overhaul
• Spare part/Inventory strategy
• Continues improvement and monitoring the result
• Embedded to CPDEP phase in project development
DOC ID © Chevron 2005

5
Study Case on HPS pump
High Pressure
Shipping (HPS)
pump CGS-1
Electrical Mechanical
Motor MCC & Control Mechanical Seal Bearing Wear Ring Impeller Shaft
DOC ID © Chevron 2005

6

Reliability Block Diagram of HPS Pumps
DOC ID © Chevron 2005

7
Reliability Multi Plot of HPS Pump
ReliaSof t Weibull++ 7 - www. ReliaSof t . com
Probabi l i ty - Wei bul l
Wear Ring\Dat a 1: |=2 .9 0 5 3 , q=4 2 8 .9 2 8 6 , µ=0 .9 7 0 4
Shaf t \Dat a 1: |=4 .8 4 2 1 , q=4 3 7 .0 8 9 1 , µ=0 .9 7 0 4
Seal\Dat a 1: |=2 .2 4 1 3 , q=4 8 2 .6 2 5 6 , µ=1 .0 0 0 0
Mot or\Dat a 1: |=5 .6 4 2 6 , q=2 2 1 2 .1 6 6 0 , µ=0 .9 7 0 2
MCC\Dat a 1: |=2 .3 8 7 5 , q=9 4 .0 3 3 7 , µ=0 .9 9 3 9
Impeller\Dat a 1: |=4 .8 4 2 1 , q=6 5 5 .6 3 3 7 , µ=0 .9 7 0 4
Bearing\Dat a 1: |=2 .0 4 8 6 , q=3 5 4 .2 7 6 6 , µ=1 .0 0 0 0
Time, (t)
U
n
r
e
l
i
a
b
i
l
i
t
y
,

F
(
t
)
10. 000 10000. 000 100. 000 1000. 000
0. 100
0. 500
1. 000
5. 000
10. 000
50. 000
90. 000
99. 900
0. 100
Probabilit y-Weibull
Bearing\Dat a 1
Weibull-2P
RRX RRM MED FM
F=2/S=2
Dat a Point s
Probabilit y Line
Impeller\Dat a 1
Weibull-2P
RRX SRM MED FM
F=10/S=0
Dat a Point s
Probabilit y Line
MCC\Dat a 1
Weibull-2P
RRX SRM MED FM
F=100/S=0
Dat a Point s
Probabilit y Line
Mot or\Dat a 1
Weibull-2P
RRX SRM MED FM
F=4/S=1
Dat a Point s
Probabilit y Line
Seal\Dat a 1
Weibull-2P
RRX RRM MED FM
F=2/S=5
Dat a Point s
Probabilit y Line
Shaf t \Dat a 1
Weibull-2P
RRX SRM MED FM
<(2112. 220,50.144) <(82.282, 50. 144)
DOC ID © Chevron 2005

8
Overall Unreliability Plot of HPS Pump
ReliaSof t Weibull++ 7 - www. ReliaSof t . com
Unrel i abi l i ty vs Ti me Pl ot
Time, (t)
U
n
r
e
l
i
a
b
i
l
i
t
y
,

F
(
t
)
=
1
-
R
(
t
)
0. 000 200. 000 40. 000 80. 000 120. 000 160. 000
0. 000
1. 000
0. 200
0. 400
0. 600
0. 800
Unreliabilit y
Func Line
Puji Nugroho
PT Chevron Pacif ic Indonesia
9/27/2006
2:51:45 PM
<(77.966, 0. 502)
DOC ID © Chevron 2005

9
Maintenance strategy – Mechanical Seal
10
20
30
40
50
60
70
80
50 100 150 200 250 300 350 400 450
PM Time
Cost Per Unit Time vs. Replacement Time
Time Units Cost/Unit Time
50 70.09683
70 50.21442
90 39.27722
110 32.44137
130 27.84519
150 24.61995
170 22.30463
190 20.63019
210 19.42695
230 18.58029
250 18.00768
270 17.64604
290 17.44468
310 17.36139
330 17.36043
350 17.41170
370 17.49068
390 17.57846
410 17.66183
430 17.73291
450 17.78837
The Cost per unit constant over the time (no
optimum cost of replacement), Do we want to let the
seal run to failure? Cost? Part Delivery? Manpower?
DOC ID © Chevron 2005

10
Forward Plan
 Deploy the equipment reliability process approach
to critical equipment 1 in HO OU
 Develop reliability modeling on each critical
equipment 1 in Production, CGS and SS.
 Develop maintenance strategy for equipment
critical 1
 Apply the reliability growth process to improve
reliability of critical equipment 1 through failure
analysis cycle improvement.