You are on page 1of 12

LAN Switching and Wireless - Chapter 6

1

Refer to the exhibit. Which three statements describe the network design shown in the exhibit?
(Choose three.)

1 This design will not scale easily.
2 The router merges the VLANs into a single broadcast domain.
3 This design uses more switch and router ports than are necessary.
4 This design exceeds the maximum number of VLANs that can be attached to a switch.
5 This design requires the use of the ISL or 802.1q protocol on the links between the switch and
the router.
6 If the physical interfaces between the switch and router are operational, the devices on the
different VLANs can communicate through the router.

Observable Description Max Value
1 correctness of response Option 1, Option 3, and Option 6 are correct.
* 6.1.2 Interfaces and Subinterfaces

2 A router has two FastEthernet interfaces and needs to connect to four VLANs in the local
network. How can this be accomplished using the fewest number of physical interfaces without
unnecessarily decreasing network performance?

1 Implement a router-on-a-stick configuration.
2 Add a second router to handle the inter-VLAN traffic.
3 Use a hub to connect the four VLANS with a FastEthernet interface on the router.
4 Interconnect the VLANs via the two additional FastEthernet interfaces.

Observable Description Max Value
1 correctness of response 2 points for Option 1
* 6.1.1 Introducing Inter-VLAN Routing

3. 3 S1 interface F0/8 is in the wrong VLAN. Observable Description Max Value 1 correctness of response 2 points for Option 3 * 6. PC2 can successfully ping the F0/0 interface on R1. PC2 cannot ping PC1. 2 S1 interface F0/6 needs to be configured for operation in VLAN10.3 Refer to the exhibit. What might be the reason for this failure? 1 R1 interface F0/1 has not been configured for subinterface operation. 4 S1 port F0/6 is not in VLAN10. All devices are configured as shown in the exhibit.1 Switch Configuration Issues .

2 tagged for VLAN 60. A packet is received from IP address 192. Observable Description Max Value 1 correctness of response 2 points for Option 2 * 6.168.4 Refer to the exhibit.120. Router-on-a- stick does not provide multiple connections and therefore eliminates the need for STP. Router-on-a-stick only needs to route directly connected networks. 2 Traditional routing requires a routing protocol. 3 Traditional routing uses one port per logical network. What will the router do with this packet? 1 The router will forward the packet out interface FastEthernet 0/1. 2 The router will forward the packet out interface FastEthernet 0/1.1. 4 Traditional routing uses multiple paths to the router and therefore requires STP. The packet destination address is 192. Router-on-a-stick uses subinterfaces to connect multiple logical networks to a single router port.2. Router-on-a-stick can use multiple switch interfaces. The commands for a router to connect to a trunked uplink are shown in the exhibit. 5 The router will drop the packet since no network that includes the source address is attached to the router.54.3 tagged for VLAN 120.1 tagged for VLAN 10.1 Introducing Inter-VLAN Routing .1. Observable Description Max Value 1 correctness of response 2 points for Option 3 * 6.168. 3 The router will forward the packet out interface FastEthernet 0/1.2 Configure Router-on-a-Stick Inter-VLAN Routing 5 What distinguishes traditional routing from router-on-a-stick? 1 Traditional routing is only able to use a single switch interface. 4 The router will not process the packet since the source and destination are on the same subnet.1.

1. the switch responds to ARP requests with the MAC address of the port to which the PC is connected. * 6.) 1 one subinterface per VLAN 2 one physical interface for each subinterface 3 one IP network or subnetwork for each subinterface 4 one trunked link per VLAN 5 a management domain for each subinterface 6 a compatible trunking protocol encapsulation for each subinterface Observable Description Max Value 1 correctness of response Option 1. * 6.2.6 Which statement is true about ARP when inter-VLAN routing is being used on the network? 1 When router-on-a-stick inter-VLAN routing is in use. each subinterface has a separate MAC address to send in response to ARP requests. Option 3. devices on all VLANs use the same physical router interface as their source of proxy ARP responses. 3 When router-on-a-stick inter-VLAN routing is in use. the router returns the MAC address of the physical interface in response to ARP requests. and Option 6 are correct.2 Configure Router-on-a-Stick Inter-VLAN Routing 8 Which three elements must be used when configuring a router interface for VLAN trunking? (Choose three.2.) 1 subinterfaces have no contention for bandwidth 2 more switch ports required than in traditional inter-VLAN routing 3 fewer router ports required than in traditional inter-VLAN routing 4 simpler Layer 3 troubleshooting than with traditional inter-VLAN routing 5 less complex physical connection than in traditional inter-VLAN routing Observable Description Max Value 1 correctness of response Option 3 and Option 5 are correct. 4 When traditional inter-VLAN routing is in use.2 Interfaces and Subinterfaces 7 What two statements are true regarding the use of subinterfaces for inter-VLAN routing? (Choose two.2 Configure Router-on-a-Stick Inter-VLAN Routing . 2 When VLANs are in use. Observable Description Max Value 1 correctness of response 2 points for Option 3 * 6.

6 Both subinterfaces remain up with line protocol up. * 6.2. Observable Description Max Value 1 correctness of response Option 1 and Option 4 are correct. depending on the VLAN from which the traffic originated. 5 Reliability of both subinterfaces is poor because ARP is timing out.1Q VLAN ID to the hardware address.3.2 Router Configuration Issues . 4 Traffic inbound on this router is processed by different subinterfaces. 2 Incoming traffic with VLAN ID 0 is processed by interface fa0/0.9 Refer to the exhibit. even if fa0/0 line protocol is down. 3 Subinterfaces use unique MAC addresses by adding the 802.) 1 Incoming traffic that has a VLAN ID of 2 is processed by subinterface fa0/0. Which two statements are true about the operation of the subinterfaces? (Choose two.

Observable Description Max Value 1 correctness of response 2 points for Option 1 * 6. the network administrator determines that the devices on VLAN 2 are unable to ping the devices on VLAN 1. What is the likely problem? 1 R1 is configured for router-on-a-stick. 2 R1 does not have the VLANs entered in the VLAN database. but S1 is not configured for trunking. After the commands shown are entered on both devices.10 Refer to the exhibit. 3 Spanning Tree Protocol is blocking port Fa0/0 on R1.1 Configure Inter-VLAN Routing . Port Fa0/0 on router R1 is connected to port Fa0/1 on switch S1. 4 The subinterfaces on R1 have not been brought up with the no shutdown command yet.2.

3 An IP address has not been assigned to the R1 physical interface. 4 The encapsulation command on the R1 F0/0. 2 The encapsulation is missing on the R1 interface F0/0.2 Router Configuration Issues . What could account for this failure? 1 PC1 and R1 interface F0/0.11 Refer to the exhibit. Observable Description Max Value 1 correctness of response 2 points for Option 4 * 6. PC1 has attempted to ping PC2 but has been unsuccessful.3 interface is incorrect.3.1 are on different subnets.

Observable Description Max Value 1 correctness of response 2 points for Option 2 * 6. and ports 0/9 to 0/12 are assigned to VLAN 30. 4 The F0/0 and F0/1 interfaces on R1 must be configured as trunks. Which solution allows all VLANs to communicate between each other while minimizing the number of ports necessary to connect the VLANs? 1 Configure ports 0/13 to 0/16 with the appropriate IP addresses to perform routing between VLANs. 2 The PC3 network address configuration is incorrect.168. Ports 0/5 to 0/8 are assigned to VLAN 20.3. What is causing this failure? 1 PC1 and PC3 are not in the same VLAN. but cannot ping PC3. thereby allowing communication between VLANs. 4 Obtain a Layer 3 switch and configure a trunk link between the switch and router.10. Observable Description Max Value 1 correctness of response 2 points for Option 2 * 6.1 Introducing Inter-VLAN Routing .0/28 and 192. 20. and configure the router physical interface with an IP address on the native VLAN. R1 is routing between networks 192.12 Refer to the exhibit. 10. Switch ports 0/2 to 0/4 are assigned to VLAN 10.168. 3 The S1 interface F0/11 should be assigned to VLAN30. PC1 can ping R1 interface F0/1. 3 Obtain a router with multiple LAN interfaces and configure each interface for a separate subnet.30. 2 Add a router to the topology and configure one FastEthernet interface on the router with multiple subinterfaces for VLANs 1.1.0/28. All other ports are assigned to the default VLAN.1 Switch Configuration Issues 13 Devices on the network are connected to a 24-port Layer 2 switch that is configured with VLANs. and 30.

3 The command configures a subinterface.1 Configure Inter-VLAN Routing .10 command? (Choose two. 5 Hosts in this network must be configured with the IP address that is assigned to the router physical interface as their default gateway. * 6.0/24 and 172. 2 The command is used in the configuration of router-on-a-stick inter-VLAN routing. 5 Because the IP address is applied to the physical interface. 2 Both of the directly connected routes that are shown will share the same physical interface of the router.0/24 networks is successful on this network.) 1 The no shutdown command has not been issued on the FastEthernet 0/0 interface. 4 The command configures interface fa0/0 as a trunk link.30.17. the command does not include an IP address.17. * 6. What two conclusions can be drawn from the output that is shown? (Choose two. Observable Description Max Value 1 correctness of response Option 2 and Option 4 are correct. 4 Inter-VLAN routing between hosts on the 172.14 Which two statements are true about the interface fa0/0.1 Configure Inter-VLAN Routing 15 Refer to the exhibit.) 1 The command applies VLAN 10 to router interface fa0/0.2.10. Observable Description Max Value 1 correctness of response Option 2 and Option 3 are correct. 3 A routing protocol must be configured on the network in order for the inter-VLAN routing to be successful.2.

3 Port 0/4 is configured in access mode. 4 Create the VLANs on the switch to include port membership assignment and configure subinterfaces on the router matching the VLANs. The network administrator correctly configures RTA to perform inter-VLAN routing. The administrator connects RTA to port 0/4 on SW2.3. 4 Port 0/4 is using the wrong trunking protocol. but inter-VLAN routing does not work.2. 2 Port 0/4 is not a member of VLAN1.16 What are the steps which must be completed in order to enable inter-VLAN routing using router-on-a-stick? 1 Configure the physical interfaces on the router and enable a routing protocol.1 Switch Configuration Issues . 3 Create the VLANs on the switch to include port membership assignment and enable a routing protocol on the router. Observable Description Max Value 1 correctness of response 2 points for Option 4 * 6. Observable Description Max Value 1 correctness of response 2 points for Option 3 * 6. What could be the possible cause of the problem with the SW2 configuration? 1 Port 0/4 is not active. 2 Create the VLANs on the router and define the port membership assignments on the switch.2 Configure Router-on-a-Stick Inter-VLAN Routing 17 Refer to the exhibit.

instead of a router-on-a-stick configuration? 1 a network with more than 100 subnetworks 2 a network with a limited number of VLANs 3 a network with experienced support personnel 4 a network using a router with one LAN interface Observable Description Max Value 1 correctness of response 2 points for Option 2 * 6.2 Interfaces and Subinterfaces 19 In which situation could individual router physical interfaces be used for InterVLAN routing.2 Interfaces and Subinterfaces . 2 The subinterface numbers must match the VLAN ID number.18 What is important to consider while configuring the subinterfaces of a router when implementing inter-VLAN routing? 1 The physical interface must have an IP address configured. Observable Description Max Value 1 correctness of response 2 points for Option 4 * 6.1. 4 The IP address of each subinterface must be the default gateway address for each VLAN subnet.1. 3 The no shutdown command must be given on each subinterface.

20 Refer to the exhibit. 5 The physical interface. The configuration that is shown was applied to RTA to allow for interVLAN connectivity between hosts attached to Switch1. Why are hosts connected to Fa0/1 through Fa0/5 unable to communicate with hosts in different VLANs? 1 The router interface is shut down. 3 All of the subinterface addresses on the router are in the same subnet. FastEthernet0/0. the administrator logged the following report: Hosts within each VLAN can communicate with each other. was not configured with an IP address. Hosts in VLAN5 and VLAN33 are able to communicate with each other. 2 The VLAN IDs do not match the subinterface numbers. 4 The router was not configured to forward traffic for VLAN2. Hosts connected to Fa0/1 through Fa0/5 do not have connectivity to host in other VLANs. After testing the network. Observable Description Max Value 1 correctness of response 2 points for Option 4 . Switch1 is correctly configured for the VLANs that are displayed in the graphic.