Vrijednosti sinusa i kosinusa Tablica derivacija

π π π π
ϕ 0 6 √4 √3 2 f (x) f 0 (x) f (x) f 0 (x)
sin ϕ 0 1 2 3
1 1
√2 √2 2 xa axa−1 ln x
cos ϕ 1 3 2 1
0 x
2 2 2 1
sin x cos x loga x
Adicijski teoremi x ln a
cos x − sin x sh x ch x
sin(x ± y) = sin x cos y ± cos x sin y 1
cos(x ± y) = cos x cos y ∓ sin x sin y tg x ch x sh x
cos2 x
tg x±tg y 1 1
tg(x ± y) = 1∓tg x tg y ctg x − 2 thx
sin x ch2 x
ctg(x ± y) = ctg x ctg y∓1 1 1
ctg y±ctg x arcsin x √ cthx − 2
1 − x2 sh x
Funkcije višestrukih argumenata 1 1
arccos x − √ arshx √
1 − x2 1 + x2
sin 2x = 2 sin x cos x 1 1
arctgx archx √
cos 2x = cos2 x − sin2 x 1 + x2 x2 − 1
2 tg x 1 1
tg 2x = 1−tg2 x
arcctgx − arthx
1 + x2 1 − x2
ctg2 x−1 1
ctg 2x = 2 ctg x ex ex arcthx
1 − x2
Formule pretvorbe ax ax ln a

Tablica integrala
sin x cos y = 12 (sin(x + y) + sin(x − y))
R dx
cos x cos y = 12 (cos(x + y) + cos(x − y)) x = ln |x| + C
R xα+1
sin x sin y = 21 (cos(x − y) − cos(x + y)) xα dx = α+1 + C, α ∈ R \ {−1}
R x
sin x + sin y = 2 sin x+y x−y
2 cos 2 ax dx = a
ln a +C
x+y x−y
R
sin x − sin y = 2 cos 2 sin 2 ex dx = ex + C
R
cos x + cos y = 2 cos x+y x−y
2 cos 2
sin xdx = − cos x + C
R
cos x − cos y = −2 sin x+y x−y
2 sin 2
cos xdx = sin x + C
R dx
Funkcije polovičnih argumenata sin2 x
= − ctg x + C
R dx
cos2 x = tg x + C
sin2 x
2 = 1−cos x
2 R dx 1
= arctg( xa ) + C, a > 0
cos2 x2 = 1+cos x x2 +a2 a
2
R ¯ ¯
dx 1 ¯ ¯
x2 −a2 = 2a ln ¯ x−a
x+a ¯ + C, a > 0
Neke važne formule
R
√ dx = arcsin( xa ) + C, a > 0
2 a2 −x2
tg x √
sin2 x = R
1+tg2 x √ dx = ln |x + x2 + A| + C, A 6= 0
2 1 x2 +A
cos x = 1+tg2 x R
2 tg x sh xdx = ch x + C
sin x = 2
1+tg2 x R
2
1−tg2 x ch xdx = sh x + C
cos x = 1+tg2 x
2
R
2
dx
sh2 x
= − cth x + C
R dx
ch2 x
= th x + C
R dx
sin x = ln |tg x2 | + C
R dx
cos x = ln |tg( x2 + π4 )| + C.