You are on page 1of 410

ZXR10 M6000-S

Carrier-Class Router

Configuration Guide (MPLS)
Version: 3.00.10

ZTE CORPORATION
No. 55, Hi-tech Road South, ShenZhen, P.R.China
Postcode: 518057
Tel: +86-755-26771900
Fax: +86-755-26770801
URL: http://support.zte.com.cn
E-mail: support@zte.com.cn

LEGAL INFORMATION
Copyright © 2014 ZTE CORPORATION.
The contents of this document are protected by copyright laws and international treaties. Any reproduction or
distribution of this document or any portion of this document, in any form by any means, without the prior written
consent of ZTE CORPORATION is prohibited.

Additionally, the contents of this document are protected by

contractual confidentiality obligations.
All company, brand and product names are trade or service marks, or registered trade or service marks, of ZTE
CORPORATION or of their respective owners.
This document is provided “as is”, and all express, implied, or statutory warranties, representations or conditions
are disclaimed, including without limitation any implied warranty of merchantability, fitness for a particular purpose,
title or non-infringement. ZTE CORPORATION and its licensors shall not be liable for damages resulting from the
use of or reliance on the information contained herein.
ZTE CORPORATION or its licensors may have current or pending intellectual property rights or applications
covering the subject matter of this document. Except as expressly provided in any written license between ZTE
CORPORATION and its licensee, the user of this document shall not acquire any license to the subject matter
herein.
ZTE CORPORATION reserves the right to upgrade or make technical change to this product without further notice.
Users may visit the ZTE technical support website http://support.zte.com.cn to inquire for related information.
The ultimate right to interpret this product resides in ZTE CORPORATION.

Revision History
Revision No.

Revision Date

Revision Reason

R1.0

2014-10-20

First edition.

Serial Number: SJ-20140731105308-012
Publishing Date: 2014-10-20 (R1.0)

SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Contents
About This Manual ......................................................................................... I
Chapter 1 MPLS Configuration ................................................................. 1-1
1.1 MPLS Overview ................................................................................................. 1-1
1.2 MPLS Term........................................................................................................ 1-5
1.3 LSP Establishment ............................................................................................. 1-8
1.4 Label Distribution and Management................................................................... 1-12
1.5 MPLS Configuration ......................................................................................... 1-20
1.6 MPLS Configuration Instance............................................................................ 1-30
1.6.1 Establishing a Basic LDP Neighbour Session .......................................... 1-30
1.6.2 Establishing an LDP Target Session ........................................................ 1-33
1.6.3 Configuring a Label Distribution Policy..................................................... 1-36
1.6.4 Configuring an LDP Multi-Instance ......................................................... 1-39
1.6.5 Establishing an LDP FRR ....................................................................... 1-42
1.6.6 LDP Graceful Restart Configuration Instance ........................................... 1-49
1.6.7 LSP Load-Sharing Configuration Example ............................................... 1-56
1.6.8 LDP BFD Configuration Example ............................................................ 1-60
1.6.9 Peer BFD Configuration Example ............................................................ 1-64
1.6.10 GTSM Configuration Example ............................................................... 1-67
1.6.11 LDP IGP Synchronization Configuration Example (OSPF) ....................... 1-71
1.6.12 LDP IGP Synchronization Configuration Example (IS-IS) ........................ 1-75
1.6.13 Instance with LDPIGP Synchronization Integrated with FRR ................... 1-79
1.6.14 Packet Filtration Configuration Example................................................. 1-85
1.6.15 Label-Distribution Configuration Example............................................... 1-88
1.6.16 Label-Retention Configuration Example ................................................. 1-90
1.6.17 Label-Advertise Configuration Example ................................................. 1-93
1.6.18 Label-Request Configuration Example ................................................... 1-96
1.6.19 LSP-Control Configuration Example ...................................................... 1-99
1.6.20 Longest-Match Configuration Example..................................................1-103

Chapter 2 MPLS TE Configuration............................................................ 2-1
2.1 RSVP Configuration ........................................................................................... 2-1
2.1.1 RSVP Overview ....................................................................................... 2-1
2.1.2 Configuring RSVP .................................................................................... 2-5
2.1.3 RSVP Configuration Instance.................................................................... 2-8

I
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

2.2 TE Summary Refresh Introduction..................................................................... 2-24
2.2.1 TE Summary Refresh Introduction........................................................... 2-24
2.2.2 Configuring TE Summary Refresh ........................................................... 2-25
2.2.3 TE Summary Refresh Configuration Example .......................................... 2-26
2.3 TE Message Acknowledgement and Retransmission .......................................... 2-29
2.3.1 Introduction to TE Message Acknowledgement and Retransmission.......... 2-29
2.3.2 Configuring TE Message Acknowledgement and Retransmission .............. 2-30
2.3.3 TE Message Acknowledgement and Retransmission Configuration
Example ............................................................................................... 2-31
2.4 TE Authentication Configuration ........................................................................ 2-34
2.4.1 TE Authentication Overview .................................................................... 2-34
2.4.2 Configuring TE Authentication ................................................................. 2-35
2.4.3 TE Authentication Configuration Instance................................................. 2-37
2.5 Confiugration of MPLS TE Crossing Several AS Domains................................... 2-40
2.5.1 MPLS TE Crossing Several AS Domains Overview .................................. 2-40
2.5.2 Configuring the MPLS TE Crossing Several AS Domains.......................... 2-42
2.5.3 MPLS TE Crossing Several AS Domains Configuration Instance............... 2-43
2.6 TE-FRR Configuration ...................................................................................... 2-58
2.6.1 TE-FRR Overview .................................................................................. 2-58
2.6.2 Configuring TE-FRR ............................................................................... 2-61
2.6.3 TE-FRR Configuration Instance............................................................... 2-63
2.7 FRR Promotion Introduction.............................................................................2-103
2.7.1 FRR Promotion Introduction...................................................................2-103
2.7.2 Configuring FRR Promotion ...................................................................2-104
2.7.3 FRR Promotion Configuration Examples .................................................2-105
2.8 FRR-Hello Configuration.................................................................................. 2-114
2.8.1 FRR Hello Introduction .......................................................................... 2-114
2.8.2 Configuring FRR Hello........................................................................... 2-114
2.8.3 FRR Hello Configuration Example .......................................................... 2-116
2.9 MPLS TE End-to-End Protection Path Configuration..........................................2-121
2.9.1 MPLS TE End-to-End Path Protection Overview......................................2-121
2.9.2 Path Configuration for MPLS TE End-to-End Protection...........................2-121
2.9.3 Establishing an MPLS TE End-to-End Path Protection.............................2-122
2.10 Loose Node Re-optimization ..........................................................................2-128
2.10.1 Loose Node Re-optimization Introduction ..............................................2-128
2.10.2 Configuring Loose Node Re-optimization ..............................................2-128
2.10.3 Loose Node Re-optimization Configuration Instance ..............................2-129
2.11 Automatic Bandwidth Regulation on an MPLS TE ...........................................2-135
II
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

2.11.1 Introduction to Automatic Bandwidth Regulation Function of the MPLS
TE.......................................................................................................2-135
2.11.2 Configuring Automatic MPLS TE Bandwidth Regulation .........................2-135
2.11.3 Instances of Automatic Bandwidth Regulation Configuration for the
MPLS TE.............................................................................................2-137
2.12 TE GR Configuration .....................................................................................2-140
2.12.1 GR Introduction ...................................................................................2-140
2.12.2 Configuring GR ...................................................................................2-143
2.12.3 GR Configuration Example...................................................................2-144
2.13 TE Tunnel FA Configuration ...........................................................................2-148
2.13.1 TE Tunnel FA Introduction....................................................................2-148
2.13.2 Configuring TE Tunnel FA ....................................................................2-148
2.13.3 TE Tunnel FA Configuration Example ...................................................2-149
2.14 TE Tunnel AR Configuration...........................................................................2-152
2.14.1 TE Tunnel AR Introduction ...................................................................2-152
2.14.2 Configuring TE Tunnel AR ...................................................................2-153
2.14.3 TE Tunnel AR Configuration Example...................................................2-154
2.15 TE Metric Configuration .................................................................................2-157
2.15.1 TE Metric Introduction..........................................................................2-157
2.15.2 Configuring TE Metric .........................................................................2-157
2.15.3 TE Metric Configuration Example .........................................................2-158
2.16 TE SRLG Configuration .................................................................................2-162
2.16.1 TE SRLG Introduction..........................................................................2-162
2.16.2 Configuring TE SRLG ..........................................................................2-163
2.16.3 TE SRLG Configuration Example .........................................................2-163
2.17 TE Tunnel Reoptimization Configuration .........................................................2-168
2.17.1 Introduction to TE Tunnel Reoptimization ..............................................2-168
2.17.2 Configuring TE Tunnel Re-optimization .................................................2-168
2.17.3 TE Tunnel Reoptimization Configuration Example .................................2-170
2.18 TE HOTSTANDBY Configuration....................................................................2-173
2.18.1 Tunnel Establishment With Only TE HOTSTANDBY ..............................2-173
2.18.2 Configuring the TE HOTSTANDBY Function .........................................2-174
2.18.3 TE HOTSTANDBY Function Configuration Instance...............................2-174
2.19 WTR Configuration for a TE Tunnel ................................................................2-179
2.19.1 Introduction to TE Tunnel WTR ............................................................2-179
2.19.2 Configuring the WTR Function of a TE Tunnel.......................................2-179
2.19.3 TE Tunnel WTR Configuration Instance ................................................2-180
2.20 TE Tunnels Supporting Soft Preemption .........................................................2-185
III
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

2.20.1 TE Tunnels Supporting Soft-Preemption ..............................................2-185
2.20.2 Configuring a TE Tunnel Supporting Priorities and Soft Preemption ........2-187
2.20.3 Instance of TE Tunnels Supporting Soft Preemption ..............................2-188
2.21 Equal Load Sharing on the TE-ECMP .............................................................2-198
2.21.1 Equal Load Sharing on the TE-ECMP ...................................................2-198
2.21.2 Configuring Equal Load Sharing on the TE-ECMP .................................2-198
2.21.3 Instance of Equal Load Sharing Configuration on the TE-ECMP .............2-199
2.22 TE Affinity .....................................................................................................2-202
2.22.1 TE Affinity Introduction.........................................................................2-202
2.22.2 Configuring the TE Affinity....................................................................2-202
2.22.3 TE Affinity Configuration Instance .........................................................2-203
2.23 Binding Interfaces Supporting TE Bandwidth Reservation ................................2-214
2.23.1 Binding Interfaces Supporting TE Bandwidth Reservation ......................2-214
2.23.2 Configuring Binding Interfaces Supporting TE Bandwidth
Reservation .........................................................................................2-214
2.23.3 Configuration Instance for Binding Interfaces Supporting TE Bandwidth
Reservation .........................................................................................2-215
2.24 RSVP-TEs Supporting Resource Reservation .................................................2-220
2.24.1 Resource Reservation in FF Mode on the RSVP-TE ..............................2-220
2.24.2 Configuring RSVP-TE Supporting Resource Reservation .......................2-220
2.24.3 Instance for Resource Reservation in FF Mode on the RSVP-TE............2-221

Chapter 3 MPLS OAM Configuration ........................................................ 3-1
3.1 MPLS OAM Overview......................................................................................... 3-1
3.2 Configuring MPLS OAM...................................................................................... 3-1
3.3 MPLS OAM Configuration Example ..................................................................... 3-4

Chapter 4 Static Tunnel Configuration ..................................................... 4-1
4.1 Static Tunnel Overview ....................................................................................... 4-1
4.1.1 Associated Bidirectional Tunnels for a Static TE Tunnel ............................. 4-1
4.1.2 Static TE Tunnels Supporting DS-TE ......................................................... 4-2
4.1.3 Reserved Bandwidth Sharing on Static TE Tunnels .................................... 4-3
4.2 Configuring a Static Tunnel ................................................................................. 4-4
4.2.1 Configuring Bidirectional BFD for a Static Tunnel........................................ 4-5
4.2.2 Configuring the FA Function on a Static Tunnel .......................................... 4-6
4.2.3 Configuring the AR Function for a Static Tunnel ......................................... 4-7
4.2.4 Configuring an Associated Bidirectional Tunnel for a Static TE Tunnel ......... 4-7
4.2.5 Configuring a Static TE Tunnel Supporting DS-TE ...................................... 4-8
4.2.6 Configuring Reserved Bandwidth Sharing on Static TE Tunnels .................4-11

IV
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 5 Tunnel Protection Group Configuration ................................. 5-1
5.1 Tunnel Protection Group Overview ...................................................................... 5-1
5.2 Configuring a Tunnel Protection Group ................................................................ 5-6
5.3 Tunnel Protection Group Configuration Example .................................................. 5-9

Chapter 6 APS Configuration .................................................................... 6-1
6.1 APS Overview.................................................................................................... 6-1
6.2 Configuring APS ................................................................................................ 6-5
6.2.1 Configuring APS for a Tunnel Protection Group.......................................... 6-6
6.2.2 Configuring APS for a PW Protection Group .............................................. 6-8
6.3 APS Configuration Example................................................................................ 6-9
6.3.1 APS Configuration Example (Tunnel Protection Group) .............................. 6-9
6.3.2 APS Configuration Example (PW Protection Group) ................................. 6-15

Figures............................................................................................................. I
Glossary .........................................................................................................V

V
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

This page intentionally left blank.

VI
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

filenames. drop-down lists. Tunnel Protection Describes the principles for tunnel protection group. function names. configuration Group Configuration commands and configuration examples. Chapter 2.0) ZTE Proprietary and Confidential . Static Tunnel Describes the Static Tunnel principle. and commands. configuration commands and configuration examples that are related to MPLS services of the ZXR10 M6000-S system. MPLS Describes the MPLS principle.About This Manual Purpose This manual describes the principles. directory names. I SJ-20140731105308-012|2014-10-20 (R1. MPLS OAM Describes the MPLS OAM principles. configuration commands Configuration and configuration examples. {} Mandatory parameters. Chapter 4. Intended Audience This manual is intended for: l l l Network planning engineers Commissioning engineers Maintaining engineers What Is in This Manual This manual contains the following chapters. configuration commands and Configuration configuration examples. Chapter 3. Conventions This manual uses the following conventions: Italics Variables in commands. input fields. configuration commands and configuration examples. configuration commands and Configuration configuration examples. Chapter 1. configuration commands and Configuration configuration examples. Chapter 5. width [] Optional parameters. Constant Text that you type. parameters. dialog box names. It may also refer to other related manuals and documents. check boxes. program codes. MPLS TE Describes the MPLS TE-related principle. menu options. option button names. Chapter 6. Bold Menus. and function names. APS Configuration Describes the APS principles. window names.

Failure to comply can result in death or serious injury. or interruption of minor services. Failure to comply can result in moderate injury. or interruption of major services. Warning: indicates a potentially hazardous situation. equipment damage. Caution: indicates a potentially hazardous situation.0) ZTE Proprietary and Confidential . equipment damage. or site breakdown. Failure to comply can result in serious injury.| Separates individual parameter in series of parameters. Danger: indicates an imminently hazardous situation. II SJ-20140731105308-012|2014-10-20 (R1. Note: provides additional information about a certain topic. equipment damage.

...0) ZTE Proprietary and Confidential ......................1-1 MPLS Term ........... it is difficult to provide enough throughputs and time delay that meet the requirements......................... Asynchronous Transfer Mode (ATM) has a lot of advantages....... As the Internet Protocol (IP) protocol is a connectionless protocol and there is no quality of service in the Internet.................. It integrates the advantages of switching technology in network core and IP routing technology in network edge.... so routers only need to judge the labels before they forward packets........ Among existing network technologies.................. 1-1 SJ-20140731105308-012|2014-10-20 (R1............ and people would establish a pure ATM network that people could reach through the core network....1-8 Label Distribution and Management . services that take ATM cells to desktop develop very slowly...........................Chapter 1 MPLS Configuration Table of Contents MPLS Overview .......................... practice proves that the thought is wrong................. For IP protocol............. MPLS protocol uses label switching....... Multi-Protocol Label Switching (MPLS) technology comes into being.... as a rapid packet switching technology that is developed after IP............. Therefore.............................. There is inevitability to combine the two technologies........... and they need each other to have further development.......1-12 MPLS Configuration ..... ATM was considered as a technology that could be used everywhere.............. although ATM switches are widely used as backbone nodes in networks...... Therefore..... Corresponding services do not catch the ATM network development.................1 MPLS Overview MPLS Introduction With the rapid development of network scale of the Internet and user number.............. in terms of Quality of Service (QoS)......................................... which leads to hard development of ATM now.......................................1-30 1............ The pure ATM network is too complicated and expensive for people to establish................................ In addition....... MPLS supports any protocol at the network layer (such as IPv6.......................................1-5 LSP Establishment .... it just uses best-effort mechanism to satisfy the users............... it is impossible to develop new services in large scale...... people pay more and more attention to the problem that how to extend service further on the network and how to improve the quality of services............................................. Without other measures to improve the current network conditions..... IP and ATM technologies meet difficulties in their own fields...... However....1-20 MPLS Configuration Instance ..

the router decides the interface to forward the packet and the next hop device according to the routing information in the routing table. Whether the packet can be forwarded to the destination correctly depends on whether there is correct routing information on all routers along the path. IP and so on) and data link layer (such as ATM. ATM Forwarding Characteristic ATM switches forward data through Virtual Path Identifier (VPI)/Virtual Channel Identifier (VCI). IP Forwarding Characteristic Routing devices collect network segment information in the network through different routing protocols to establish routing tables. The switches do not judge routing information when forwarding ATM cells. it looks up VPI/VCI table and then forwards the message by switching.0) ZTE Proprietary and Confidential . 1-2 SJ-20140731105308-012|2014-10-20 (R1. The procedure of traditional IP forwarding is shown in Figure 1-1. VPI/VCI is valid on local devices. IP network is connectionless.ZXR10 M6000-S Configuration Guide (MPLS) Internetwork Packet Exchange protocol (IPX). Figure 1-1 IP Forwarding Traditional IP forwarding has the following characteristics: l l Routers search routing tables according to the longest matching principle. Frame Relay (FR). When an ATM switch receives a message. so QoS cannot be ensured. Point to Point Protocol (PPP) and so on). as shown in Figure 1-2. The longest matching means to use the route with the longest subnet mask that matches the destination in the routing table. it is not controlled by the router. When a packet reaches a router. Once the packet is forwarded. so they cannot realize high speed forwarding.

The label decides the transmission path and priority of the IP packet. It is brought forward by the Internet Engineering Task Force (IETF). and encapsulates the label together with the packet to form a new MPLS packet.5 protocol. Before forwarding the IP packet. MPLS Forwarding Characteristic MPLS belongs to the third generation of network architecture.Chapter 1 MPLS Configuration Figure 1-2 ATM Forwarding The handling of messages on ATM switches is easier than that on routers. and MPLS is called a layer 2. IP communication distinguishes QoS data flow through quintuple groups (including source IP. Therefore. 1-3 SJ-20140731105308-012|2014-10-20 (R1. ATM forwarding has the following characteristics: l l l l ATM chooses the path on the base of data link layer. ATM network is connection-oriented. such as real-time service. It is a new switching standard of IP high-speed backbone network. ATM supports different kinds of services. ATM supports traffic control mechanism. the speed to forward packets is much faster. source port number and destination port number). VPI/VCI is valid on local switch. As the implementation of ATM is complicated and expensive and the development of services do not catch the step. MPLS uses simplified ATM switching technology to implement switching at Layer 2 and Layer 3. It provides a label for each IP packet. so the fast looking-up can be implemented through hardware. an MPLS router reads the top label in the packet instead of the IP address in each IP packet. as shown in Figure 1-3. ATM is developed slowly. While IP communication need to comply with the longest matching principle. destination IP.0) ZTE Proprietary and Confidential . It can implement QoS according to different VPIs/VCIs. protocol number.

MPLS task force has implemented standardization of identifiers used in FR.ZXR10 M6000-S Configuration Guide (MPLS) Figure 1-3 Position of MPLS MPLS can use different Layer 2 protocols. When providing IP services. MPLS Brief Principles MPLS uses a traditional IP forwarding mode outside the MPLS domain and uses label switching mode in the MPLS domain without looking up the IP information. Therefore. ATM. as shown in Figure 1-4.3 Local Area Networks (LANs). MPLS establishes Constraint-based Routing Label Switched Path (CR-LSP) through explicit routing function and signaling protocols with QoS parameters. MPLS has the following characteristics: l l l l l l MPLS provides connection-orientated services for IP network. The working mechanism of MPLS network is that it implements routing through IP outside the MPLS network and implements Layer 2 switching through looking up labels within the MPLS network. Figure 1-4 MPLS Working Principle 1-4 SJ-20140731105308-012|2014-10-20 (R1. and provides Internet services of high quality. MPLS uses accurate matching instead of the longest matching method to choose paths through the short and fixed labels. traffic engineering can be implemented effectively. An advantage to run MPLS in FR and ATM is that it carries free connectivity in IP network to these connection-orientated technologies. PPP link and IEEE802. which provides high speed IP forwarding.0) ZTE Proprietary and Confidential . MPLS also provides high reliability and QoS assurance. MPLS supports Virtual Private Network (VPN) through label nesting technology. By integrated technologies of data link layer (ATM and FR) and network layer. Till now. MPLS solves the problems about Internet extension and QoS.

It is a CoS. l S field 1-5 SJ-20140731105308-012|2014-10-20 (R1. When the egress LER receives the packet. l EXP field This field is 3-bit long. A label is used to identify a specific FEC. A label maps to a Forwarding Equivalence Class (FEC) through binding. The length is 32 bits.0) ZTE Proprietary and Confidential . The label usually exists between the Layer 2 encapsulation header and Layer 3 packet. an MPLS label is a fixed-length integer. Figure 1-5 MPLS Label Structure The MPLS label is encapsulated after the data link layer header and before network layer header. it searches its label forwarding table and replaces the label in the packet with an new outbound label. When the backbone Label Switched Router (LSR) receives the identified packet. all routers run MPLS label distribution protocol.Chapter 1 MPLS Configuration Within the MPLS domain. 3. containing the actual value of a label. it is mpls exp. The ingress Label Edge Router (LER) receives the IP packet. As shown in Figure 1-5. The procedure of forwarding an IP packet in the MPLS domain is described below. 1. It contains the following fields: l Label field This field is 20-bit long. and distributes a label to this packet for identification. used as MPLS QoS. At present. such as Label Distribution Protocol (LDP) and resource ReSerVation Protocol (RSVP). it removes the label and implements traditional IP forwarding on the third layer. Through these protocol.2 MPLS Term MPLS Label MPLS label is a fixed-length and locally valid identifier. 2. 1. devices in the MPLS domain will be distributed with corresponding labels.

the same service class and so on) into a class.0) ZTE Proprietary and Confidential . MPLS can be applied in different services. In fact. During the binding of LDP labels. tunnel or Class of Service (CoS). same forwarding path. Figure 1-6 MPLS Label Stack When a message is encapsulated with multiple labels. The S field of a label is shown in Figure 1-6. used for coding time to live. it means that this label is not the stack bottom label. 1-6 SJ-20140731105308-012|2014-10-20 (R1. l TTL Field This field is 8-bit long. The same labels are distributed to an FEC on a device. Different protocols define different protocol numbers for MPLS. LSRs just forward the message according to the top label rather than the inner labels. a message can be nested with multiple labels. a new Network Control Protocol (NCP). it means that this label is stack bottom label. MPLS supports different protocols at data link layer. In the MPLS network. the nodes identify the FEC to which the packets belong according to the labels. MPLSCP. is identified by value 0x8281. MPLS VPN and traffic engineering are realized based on the nesting of multiple layer labels. LSRs handle the message according to First In First Out principle. FEC FEC is a group of data performed by equivalence method during forwarding. that is. the FEC. that is. MPLS packets are identified by value 0x8847 (for unicast) and value 0x8848 (for multicast).ZXR10 M6000-S Configuration Guide (MPLS) When the value of this field is 1. It is created by address. In Ethernet networks. As MPLS providing label nesting technology. It classifies the packets with the same handling method (such as the same destination. That is. In an MPLS domain. Packets belonging to the same FEC are handled completely the same in the MPLS network. Two or more MPLS labels form a label stack. MPLS is a classification forwarding technology. MPLS label is encapsulated after data link layer information and before Layer 3 data. When the value of this field is 0. In PPP. different FECs correspond to different labels.

MPLS treats the groups in different ways (including paths resource reservations). l Label Switched Router (LSR) LSR is the core router in MPLS network. l Label Edge Router (LER) LER is the router at the MPLS edge. MPLS domain is the range in which nodes run MPLS. Data forwarding is implemented according to these labels.Chapter 1 MPLS Configuration When two groups of packets with the same source address but different destination addresses enter an MPLS domain. When finding that the packets belong to two FECs. l Label Switched Path (LSP) Data flow of an FEC traffic are distributed with different labels on different nodes. In traditional routing forwarding. the egress node pops out the labels. When the packets leave the MPLS domain. LSP is connection-oriented. MPLS domain contains LSR and LER. label mapping and label removing. and the path is established before data transmission. It distributes corresponding labels for the traffic to MPLS domain. MPLS judges the packets according to FEC. It provides the function of label switching and label distribution. LSP and LDP Terms in MPLS network are described below. It provides functions of traffic classification. As shown in Figure 1-7. l Label Distribution Protocol (LDP) Routers in MPLS domain run LDP to distribute labels for packets. In MPLS. FEC is defined for packets at the ingress of the network. 1-7 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential . The ingress node adds different labels for the two groups of packets and then transmit the packets to the MPLS domain. LER. The two groups of packets will be forwarded according to the requirements of networks that they go to. The nodes in the MPLS domain forward the packets according to labels. packets are in the same FEC (such as Layer 3 searching) on each router. LSR. The path that data flow passes through is the LSP.

1-8 SJ-20140731105308-012|2014-10-20 (R1.3 LSP Establishment LSP Introduction Label Switched Path (LSP) is a forwarding path established according to MPLS. Diff-Serv and so on. label distribution is finished in advance. 1. Therefore. the cost for label distribution is in direct proportion to the traffic. There are three drive modes to establish an LSP: flow-driven.0) ZTE Proprietary and Confidential . flow-driven mode should be used. l Flow-driven Packet flow triggers the label distribution. To distribute specific labels to specific network resources to support specific programs. The establishment of LSP is also the process of label distribution to each node along the path. LSR eis responsible for LSP establishment and label switching. the LSR modifies the entries in label forwarding table. An LSP is similar with a virtual circuit of ATM. It is composed of LSRs and links between the source LSR and the destination LSR.ZXR10 M6000-S Configuration Guide (MPLS) Figure 1-7 MPLS Special Terms MPLS consists of LER and LSR. meanwhile the LSR distributes labels for these entries. there is no time delay when LSR forwards packets. In this mode. IP packet forwarding. topology-driven and application-driven. label distribution is implemented according to normal routing protocols. l l LER is responsible for FEC classification. l Topology-driven In this mode. When an LSR handles route update of Open Shortest Path First (OSPF) or Border Gateway Protocol (BGP). traffic engineering and LSP establishment initiation. As long as there is a route. Time delay exists for label distribution.

According to the routing table. RB and RC learn the route 47. OSPF or Intermediate System-to-Intermediate System (IS-IS) to generate a routing table. so there is no time delay. The protocol used between LSRs to distribute labels is the signaling protocol.Chapter 1 MPLS Configuration l Application-driven In this mode. 3. intermediate LSRs and egress LSR are mapped to each other. so network cost is little.0. Compared with flow-driven. topology-driven has the following advantages: l l Label value assignment and distribution correspond to control message. Therefore. However. It also distributes labels for existed routes. meanwhile the LSR distributes labels for these entries. Routing table generation As shown in Figure 1-8. Common signaling protocols are described below. The detailed procedure is described below. An LSP is established after "out" labels and "in" labels on ingress LSR. LSR distributes labels on the base of normally requested control service traffic. each router runs a dynamic routing protocol such as OSPF to generate a routing table.0) ZTE Proprietary and Confidential . The corresponding protocol is RSVP. the LSR modifies the entries in the label forwarding table. This mode requires application programs to bring forward label requests and flow rules in advance to obtain labels. When an LSR handles RSVP. An LSP is established through the interactions of signaling protocol. topology-driven is usually used in networks to distribute labels. l l l l Label Distribution Protocol (LDP) (the most common signaling protocol) Constraint based Routing Label Distribution Protocol (CR-LDP) RSVP with Traffic Engineering extensions (RSVP-TE) (usually used in traffic engineering) Multiprotocol BGP (MP-BGP) (usually used in BGP/MPLS VPN to distribute inner layer labels) LSP Establishment The establishment of an LSP in MPLS network contains three steps: 1. Label is assigned and distributed before traffic arrives. 2. 1-9 SJ-20140731105308-012|2014-10-20 (R1. it is difficult to implement RSVP in the whole network. so this mode is seldom used. so there is no time delay. Each node runs a dynamic routing protocol such as BGP. RA. each node establishes a Label Information Base (LIB) under the control of LDP.1.0/16 to the network edge. 1.

0/16 and sends this information to neighbors except the neighbor connecting to the receiving interface.1. it keeps the label information and the receiving interface in LIB. When RA receives binding information.0. the routers run LDP to distribute labels.0/16 and label "40" from RC.1. RC distributes a label "40" and sends it to upstream neighbor RB. IntfIn 1 LabelIn 50 Dest 47.0.ZXR10 M6000-S Configuration Guide (MPLS) Figure 1-8 Routing Table Generation 2.0. When RB receives the binding information of 47.1.1. Suppose that RB sends a label "50" to RA.0 IntfOut 2 LabelOut 40 This information means when RB receives a message with label "50" from interface 1. LIB generation As shown in Figure 1-9.0/16. Therefore. This information is recorded in LIB.1. as shown below.0/16. When RC receives a message with label "40". there is such a piece of information in LIB of RB. it knows that this message is to 47. RB does not look up routing information in its routing table.0.0) ZTE Proprietary and Confidential . Figure 1-9 LIB Generation As an egress LSR to 47. it changes the label to "40" and sends the message from interface 2. RA acts in the same way as RB does. Meanwhile. 1-10 SJ-20140731105308-012|2014-10-20 (R1.0. RB distributes a label for 47.

LSR distributes a label for this route. It is only necessary to use penultimate hop popping mechanism for direct routes and aggregated routes. they forward them according to labels instead of looking up routing tables. RC pops out the label and sends the IP message. Therefore.1. a LSP is established. LSR does not distribute labels for BGP routes by default.1. it looks up its routing table first. 3. When RB receives the message with label "50" from interface 1.0) ZTE Proprietary and Confidential . and then it looks up label forwarding table.0/16 corresponds to the label "50". Figure 1-10 LSP Generation When RA receives a message with destination address 47. LER has to look up routing table to get next hop information before it forwards messages to destinations connecting to it directly. Once a new non-BGP route is generated in the routing table. 1-11 SJ-20140731105308-012|2014-10-20 (R1. RA adds the label to the header of the message and sends it from interface 2.1.1. When it finds that the FEC 47. This decreases the performance of the LER and increases forwarding complexity. and then RB changes the label to "40" and sends the message from interface 2. When LSRs forward messages. LSP generation After the interaction of labels finishes. Penultimate Hop Popping In an MPLS domain. it implements searching twice. When RC receives the message with label "40" from interface 1.0. it looks up the label forwarding table. it looks up the label forwarding table. For direct routes. Penultimate hop popping mechanism solves this problem. as shown in Figure 1-10. when the egress LER receives packets from its neighbor. The egress LER looks up label forwarding table first and removes the label.Chapter 1 MPLS Configuration LIB is always synchronous with IP routing tables. then it looks up routing table and forwards the IP message. RC finds that the destination of the message is a network segment connecting to itself directly.

The messages are switched directly. When RC receives the message without a label. As shown in Figure 1-11. RB finds that the "out" label is "3".0) ZTE Proprietary and Confidential . it looks up the label forwarding table. Layer 2 information of messages has been recorded in LFIB. RB knows that it is the penultimate hop popping LSR. independent label control mode and liberal label retention mode. when RB receives a message with a label "50" from RA.0.0/16.4 Label Distribution and Management MPLS has different modes of label distribution and management. l l Ordered label control mode Independent label control mode There are two label retention modes. so RC distributes a particular label "3" (means implicit-null) for messages to 47.ZXR10 M6000-S Configuration Guide (MPLS) For aggregated routes. When RB receives the label "3" distributed by RC. LER has to look up routing table for accurate routes.1. Figure 1-11 Penultimate Hop Popping During forwarding procedure.0. so it pops out the label in the message and sends the message to RC.0/16. so there is no need to look up routing table.1. RC is an egress LER to 47. l l Liberal mode Conservative mode By default. it looks up routing table directly and forwards the message. In other situations. 1. 1-12 SJ-20140731105308-012|2014-10-20 (R1. Label distribution modes are as follows: l l DoD DU There are two label control modes. ZXR10 M6000-S use DU label distribution mode.

Figure 1-12 Downstream on Demand (DoD) For a specific FEC. an LSR does not need to get request messages for labels from upstream neighbors before distributing labels. In the same way.0) ZTE Proprietary and Confidential . This is the DU label distribution.10. RC cannot send label binding information to upstream neighbor RB forwardly. RB does not need to wait for label request message from RA before sending binding information of the FEC and label to RC. Figure 1-13 illustrates that RC does not need to wait for label request message from upstream before sending binding information of the FEC and label to the downstream LSR.0/24. RC has to wait for the request messages from the upstream. an LSR distributes labels after receiving label requests. Figure 1-12 shows that RC is the egress LER to 171.Chapter 1 MPLS Configuration Label Distribution Mode There are two label distribution modes: DoD and DU. Figure 1-13 Downstream Unsolicited Label Control Mode There are two label control modes in an MPLS network: independent mode. l the ordered mode and Ordered mode 1-13 SJ-20140731105308-012|2014-10-20 (R1. This is the DoD label distribution. The upstream LSR and downstream LSR having neighbor relationship should agree on the label distribution mode in order to distribute the labels.68. For a specific FEC.

LSR3 and LSR4. In conservative label retention mode. If LSR1 discards these binding messages. For a specific FEC. LSR1 receives label binding messages from LSR2. A LSR maintains the label forwarding table through label distribution protocol dynamically. and then the LSR replaces the old label with the Outlabel and sends the message from the exiting interface. labels are distributed to the LSR and then the LSR sends label mapping messages to upstream LSR. if LSR1 saves these binding messages. or when the LSR is the egress of the FEC. LSR1 uses conservative label retention mode.0) ZTE Proprietary and Confidential . use conservative label retention mode. an LSR can adapt itself to route changes quickly. no matter whether the LSR receives label mapping messages from the downstream neighbor. When an LSR is required to save few labels. distributed by downstream LSR for local router Dest: destination network segment or host Pfxlen: prefix length Interface: egress interface NextHop: next hop When an LSR receives a message. Label Retention Mode There are two label retention modes: liberal and conservative. When LSR2 and LSR3 are not the next hop LSR1. This process is similar to the route packet forwarding of traditional routers. the label forwarding information base) is a database where binding information of FECs and labels is stored.ZXR10 M6000-S Configuration Guide (MPLS) Only when an LSR receives specific label mapping messages of a particular FEC. but it has weak ability to adapt itself to route changes. In liberal label retention mode. 1-14 SJ-20140731105308-012|2014-10-20 (R1. use liberal label retention mode. when an LSR is required to adapt itself to route changes quickly. The packets are transmitted correctly through routing protocol. it looks up the label forwarding table. an LSR can reduce the memory. Label Forwarding Table A label forwarding table (that is. LSR1 uses liberal label retention mode. distributed by local router for upstream LSR OutLabel: out label. l Independent mode Each LSR can bind labels to messages independently and send label mapping messages to the upstream neighbor when the LSR receives an FEC. Ordered mode is a strict mode which can be used in explicit route and multicast. Each router forwards packets independently based on its routing table. It searches for the OutLabel based on the InLabel of the message. Therefore. but this takes up more memory. A label forwarding table contains the following items: l l l l l l InLabel: in label.

usually used in traffic engineering MP-BGP. Session withdraw: When session hold-time expires. LDP peers need to establish an LDP session. Session establishment and maintenance: LSRs establish TCP connections and finish session initialization (negotiation of different parameters). Two LSRs that use LDP to switch FEC/label binding information are called LDP Peers. It is based on UDP and TCP. The protocol messages are routed hop by hop based on routing tables. the LSRs can agree on the label bindings. most widely used label distribution protocol CR-LDP RSVP-TE. Therefore. label release and error management.0) ZTE Proprietary and Confidential . LSP establishment and maintenance: LSRs distribute labels for FECs and establish LSPs. LDP advertises FEC (network prefix) and marks mapping relationship between LSRs. The ZXR10 M6000-S supports LDP regulations defined in RFC. usually used in BGP/MPLS VPN for inner layer label distribution LDP is a protocol that generates labels dynamically. 1-15 SJ-20140731105308-012|2014-10-20 (R1. The main function of LDP is to make LSR implement binding of FEC and labels and advertise the binding to LSR neighbor. label mapping. generates LSP at last. the session is interrupted. l l l l Neighbor discovery: LSR sends Hello messages to neighbors periodically to discover LDP peers automatically. including neighbor discovery. label request. Before switching labels. Figure 1-14 shows the LDP session establishment procedure. label withdraw. LDP Session Establishment and Maintenance LSR establishes and maintains an LIB based on label and binding information between FECs.Chapter 1 MPLS Configuration Label Distribution Protocol There are the following types of protocols that can implement label distribution function. l l l l LDP.

Meanwhile. 4. R2 sends an initialization message to establish the session. 6. 5. When R1 receives the message from R2. Before establishing the TCP connection. The establishment procedure of a session is to establish a TCP connection through port number 646. Parameters to be negotiated are included in the initialization message. R2 checks the message from R1. the session will be closed and the TCP connection is disconnected. it checks the parameters. The session is established after R1 and R2 receive keepalive messages. To 1-16 SJ-20140731105308-012|2014-10-20 (R1. and then they provide the services to users. After R1 and R2 receive Hello messages. Level 2 carriers rely on the services provided by Level 1 carriers. R1 and R2 elect a master based on transmission addresses. If a session has not been established. The master initiates the TCP connection. LDP Multi-Instance Market competition arouses the appearance of Level 2 carriers. R2 will send a keepalive message to R1. R2 sends TCP connection request. Here suppose that transmission address of R2 is larger. Therefore.ZXR10 M6000-S Configuration Guide (MPLS) Figure 1-14 LDP Session Establishment 1. if any error messages are received. If parameters pass the check. they judge whether a session has been established with the peer. 3. R1 will send an initialization message and a keepalive message to R2. If parameters pass the check. The messages are encapsulated by UDP and port number is 646. they prepare to establish a session. 2.0) ZTE Proprietary and Confidential . protocol interfaces on R1 and R2 detect Hello messages in real time to discover neighbors. The message contains parameters to be negotiated. The router with bigger IP address will acts as the master. During the procedure. R1 and R2 send multicast Hello messages to protocol interfaces before establishing the session.

between PE routers. and the label binding information of these sessions have been exchanged between PE routers. which causes VPN traffic to be interrupted for a long time.0) ZTE Proprietary and Confidential . This is the application of Carrier Of Carrier (COC). For example. and it binds and distributes labels for the FECs. the route is soon converged to the active path (PE1→P3→PE2). Each instance creates FECs for the addresses and routes in the VPN domain on its own. an MPLS path is required between PE routers to carry VPN traffic. In LDP multi-instance. several LDP instances can be configured on an LSR. Level 1 carriers need to differentiate the paths that are provided for a specific Level 2 carrier. and the VPN traffic is immediately switched back to the active LSP. Figure 1-15 shows the network topology for LDP IGP synchronization.Chapter 1 MPLS Configuration manage and control the service. in the L2VPN or L3VPN service scenario. If the P3→PE2 link is broken. and these services rely on end-to-end LSPs. LDP IGP Synchronization Some services may be deployed to pass the LDP-enabled network. and services related to MPLS forwarding are interrupted. It may take a long time to establish LDP sessions and distribute label binding information between P3 and PE2. ZXR10 M6000-S provides LDP multi-instance function to support the applications of COC. If the P3→PE2 link comes up again. and each link has the same cost. Figure 1-15 Network Topology for IGP Synchronization 1-17 SJ-20140731105308-012|2014-10-20 (R1. the resources used by all the instances should not be beyond the resources provided by LDP performance parameters. that is. a black hole is generated. This means that. If one of these links is not covered by LDP sessions. It provides the following functions: l l l All devices and links on the backbone network have the LDP function enabled. all of the links that the shortest IP path passes through should have operational LDP sessions. VPN traffic is switched over from the active LSP to the standby LSP. The resources used by all the instances are limited by LDP performance parameters. There are two LDP LSPs from PE1 to PE2 (active LSP: PE1→P3→PE2. standby LSP: PE1→P1→P2→PE2). Each instance belongs to a VPN domain and it is bound to VRF. The instances are independent of each other.

the GTSM policy-based matching is performed first. The LDP label binding information has been exchanged between LDP neighbors. Implementation of Longest Matching Routes in LSP In an MPLS Seamless network. which prevents routes converging to the link. If a match is found. The following illustrate the working principles of GTSM. and the longest matching rule rather than the traditional exact matching rule is used to match routes. The LDP sessions associated with the link have been established. For LDP packets: à If the device has the GTSM function enabled. the packets are directly sent to the control plane. The OSPF-advertised cost is 0xFFFF. When a link that has LDP enabled comes up. and the advertisement of loopback addresses of AN nodes within their associated IGP-running areas only. if the associated LDP sessions are not fully operational. This requires that the LDP can learn labels. the aggregated route mode should be used to advertise routes to reduce the loads caused by running the IGP on the core-domain or other access devices. the packets are discarded or forwarded based on the default policy. When a GR occurs. MPLS applications are required to be extended from the carrier's core backbone network to the subscriber side. If a match is not found. sessions are kept in the statuses before the GR occurs until the GR timeout is reached. à If the device has the GTSM function disabled. After attackers keeps on sending packets to a network device by simulating actual LDP packets. ensure that the following requirements are met: l l l LDP hello neighbors have been established. the device forwards or discards them based on the default processing policy. Supported IGP protocols include OSPF and IS-IS. GTSM The GTSM-based TTL hack can effectively reduce the loss caused by attacks (such as the DoS attack).0) ZTE Proprietary and Confidential . and the AN is directly connected to the subscriber side. If the IGP operates across areas. To make LDP sessions fully operational. the link cost advertised by IGP has the highest value. The GTSM mechanism prevents attacks by detecting the TTL field in IP packets. This results in a great amount of AN nodes on a network. the packets are considered to be attack packets and are discarded. If not. 1-18 SJ-20140731105308-012|2014-10-20 (R1. the forwarding plane of the device detects whether the received packets are LDP packets. and the IS-IS-advertised cost is 0xFFFFFE. the device then determines whether the TTL of the received packets is within the permitted range. and the device takes one of the following actions based on the detection result: l l For non-LDP packets.ZXR10 M6000-S Configuration Guide (MPLS) The ZXR10 M6000-S provides LDP IGP synchronization to achieve synchronization convergence between LDP LSPs and IGP routes.

A cross-domain LSP (PE1→ABR1→ABR2→PE2) is established. The solid lines in Figure 1-16 illustrate the label distribution procedure.1.0/24) to another domain. and advertises the label mapping information to ABR2.0/24 route.Chapter 1 MPLS Configuration Figure 1-16 shows that PE2 and PE3 (edge routers) advertise their loopback addresses (10.1.1.1.1.1.0/24) in its local routing module.1.1/32 and 10. Figure 1-16 Implementation of Longest Matching Routes in LSP This problem can be resolved by using the longest matching mode to establish LSPs.1.0/24) only. both ABR1 and PE1 learn the aggregated route (10. 3.1.2/32) to ABR2 (border router). ABR1 searches for the longest match (10. The flow is as follows: When an LSR receives the label mapping information of an FEC from a downstream LSR. and advertises the label mapping information related to the FEC (10. assign a label to the FEC. ABR1 is then used to forward the FEC (10. and ABR2 only advertises the aggregated route (10.0) ZTE Proprietary and Confidential . if the longest match corresponding to the FEC is found from local routes and the next-hop of the route is the LSR that sends the label mapping information.1.1.1/32).1/32).1.1. 2.1. Upon receipt of the label mapping information. All the nodes that the LSP passes through advertise the label mapping information of the 10.1/32 FEC to the upstream and the corresponding forwarding entries are generated.1. and finds that ABR2 is the next-hop of the 10.1/32) to the upstream.1.1. This results in that PE1 cannot obtain the exact routing information of PE2 and PE3.1. 1-19 SJ-20140731105308-012|2014-10-20 (R1. ABR2 assigns a label (16) to the FEC (10.1. Upon receipt of the label mapping information.1.1.0/24). The broken line refers to the route advertisement flow. and advertises the label mapping information to the upstream.1. and advertise the label mapping information. assign a label (17) to an FEC (10.1. 4. and cross-domain LSPs (from PE1 to PE2 or PE3 in the remote domain) cannot be established. Figure 1-16 shows the flow of matching a route and establishing an LSP: 1.1. In this scenario. PE2 assigns a label (3) to an FEC (10.1/32). the upstream LSR is then used to forward the FEC.

1.255. The <vrf-name>] instance-id parameter is in a range of 1 to 65535.ZXR10 M6000-S Configuration Guide (MPLS) The above flow is also applicable to the establishment of another cross-domain LSP (PE1→ABR1→ABR2→PE3). Enable MPLS LDP.1 255.255. Steps 1. Then the LDP sends Hello messages on the interfaces periodically.210.190.0) ZTE Proprietary and Confidential . 2 ZXR10(config-ldp-instance-id)#interface Adds interfaces in LDP <interface-name> configuration mode. A configuration example is shown below: ZXR10(config)#interface loopback1 ZXR10(config-if-loopback1)#ip address 210.191.255. This means that label switching should be implemented on these interfaces. Add interfaces in LDP configuration mode. When the device obtains the "out" label for the specific destination network segment on an interface.2 255.0 1-20 SJ-20140731105308-012|2014-10-20 (R1. Note that.255. Packet Filtration The ZXR10 M6000-S supports the filtration of LDP UDP/TCP packets that do not meet the ACL policy requirements for security concerns.255.5 MPLS Configuration This procedure describes how to enable MPLS to distribute labels between network nodes and then establish an LSP. the device adds the label to the packets to the destination and forwards the packets on this interface. label switching is implemented on the specified interface.2 255. Execute the mpls ldp instance command to enable the LDP function and enter the LDP configuration mode.190.0 ZXR10(config-if-gei-0/1/0/1)#exit ZXR10(config)#interface gei-0/1/0/2 ZXR10(config-if-gei-0/1/0/2)#no shutdown ZXR10(config-if-gei-0/1/0/2)#ip address 190.255 ZXR10(config-if-loopback1)#exit ZXR10(config)#interface gei-0/1/0/1 ZXR10(config-if-gei-0/1/0/1)#no shutdown ZXR10(config-if-gei-0/1/0/1)#ip address 190. after this command is executed. Step Command Function 1 ZXR10(config)#mpls ldp instance <instance-id>[vrf Enables MPLS LDP.190.255.210.

all labels are distributed to all neighbors.Chapter 1 MPLS Configuration ZXR10(config-if-gei-0/1/0/2)#exit ZXR10(config)#mpls ldp instance 1 ZXR10(config-ldp-1)#router-id loopback1 ZXR10(config-ldp-1)#interface gei-0/1/0/2 ZXR10(config-ldp-1-if-gei-0/1/0/2)#discovery transport-address interface ZXR10(config-ldp-1-if-gei-0/1/0/2)#exit ZXR10(config-ldp-1)#interface gei-0/1/0/1 ZXR10(config-ldp-1-if-gei-0/1/0/1)#discovery transport-address interface ZXR10(config-ldp-1-if-gei-0/1/0/1)#exit 2. Command Function ZXR10(config-ldp-instance-id)#mpls ldp Configures the LDP router-ID. Considering the stability of an LDP connection. This router-id <interface-name> command can be used to configure the address on a specific interface as the LDP router-ID in the VPN domain. label range and label distribution. Step Command Function 1 ZXR10(config)#mpls ldp instance <instance-id>[vrf Enables LDP to establish <vrf-name>] an LSP along common hop-by-hop routes and enters LDP configuration mode. 3. 1-21 SJ-20140731105308-012|2014-10-20 (R1. Configure label generation and distribution. 3 ZXR10(config-ldp-instance-id)#label-advertise Controls the labels generated {disable | old-style | for < prefix-access-list>[to < locally ("in" labels) to be prefix-access-list>]} distributed through LDP. Configure the LDP router-ID. Through the configuration. 2 ZXR10(config-ldp-instance-id)#access-fec { Controls generation of labels ip-prefix { for < prefix-access-list>| host-route-only}| bgp} for the specified network segment and creates an FEC. users can control label generation. This command can control the labels for the specified destination network segments to be advertised to the specified neighbors.0) ZTE Proprietary and Confidential . By default. it is recommended to use the loopback interface address as the router-ID of an LDP instance.

0) ZTE Proprietary and Confidential . LDP does not distribute labels for routes on the 200. range: 1–65535. For targeted-hello packets. Configure an LDP neighbor.200. 2 ZXR10(config-ldp-instance-id)#target-session Configures the session {<ip-address>| ipv6 < X:X::X:X >}[dod] address of non-directly connected remote target to establish a session. The default value is 5 seconds.201. A configuration example is shown below. 3 ZXR10(config-ldp-instance-id)#discovery hello { Configures the interval for holdtime <holdtime>| interval <interval>} sending Hello messages and the holdtime of an LDP neighbor.0/24 network segment. 4 ZXR10(config-ldp-instance-id)#discovery Configures the interval for targeted-hello {holdtime <holdtime>| interval <interval>} sending Hello messages and the time-out of LDP neighbor discovery between non-directly connected LSRs in an LDP instance. The interval range is 1–65535 and the unit is second. holdtime <holdtime>: This is the hold-time (in seconds) when an LDP instance finds that a neighbor cannot receive following Hello messages. default: 1. bgp means to create FECs for route network segments obtained through BGP.0 0. 1-22 SJ-20140731105308-012|2014-10-20 (R1. the default is 45.0. 4. Step Command Function 1 ZXR10(config)#mpls ldp instance <instance-id>[vrf Enables an LDP instance <vrf-name>] to establish an LSP along common hop-by-hop routes and enters LDP configuration mode.0.ZXR10 M6000-S Configuration Guide (MPLS) host-route-only means to create FECs for host addresses only. interval <interval>: This configures an LDP instance to send Hello messages periodically.200. The default value of targeted-hello is 15 seconds.255 ZXR10(config-ipv4-acl)#rule 20 permit any ZXR10(config-ipv4-acl)#exit ZXR10(config)#mpls ldp instance 1 ZXR10(config-ldp-1)#access-fec for 2 ZXR10(config-ldp-1)#exit Based on the configuration in the example. A configuration example is shown below. ZXR10(config)#ipv4-access-list 2 ZXR10(config-ipv4-acl)#rule 10 deny 200.201.

interval: 5 sec Discovery targeted hello: holdtime: 45 sec. interval: 15 sec LDP for targeted sessions Downstream on Demand max hop count: 255 LDP used lsp control mode: Independent LDP configred lsp control mode: Independent LDP used label retention mode: Liberal LDP configred label retention mode: Liberal LDP loop detection: off LDP IGP sync delay: 5 sec 5. keep alive interval: 60 sec Discovery hello: holdtime: 20 sec. implicit-null label is used. that is. in unit of second. Configure other LDP functions.Chapter 1 MPLS Configuration ZXR10(config)#mpls ldp instance 1 ZXR10(config-ldp-1)#discovery hello holdtime 20 ZXR10(config-ldp-1)#show mpls ldp parameters instance 1 Protocol version: 1 Session holdtime: 180 sec. 5 ZXR10(config-ldp-instance-id)#neighbor <ip-address Configures the MD5 password > password {sealed <sealed-password>|<password>} for TCP establishment between LDP peers. The default value is 180 seconds. By default.0) ZTE Proprietary and Confidential . 3 ZXR10(config-ldp-instance-id)#explicit-null [for Makes the LDP instance <prefix-acl>][to <peer-acl>] advertise explicit-null label when it should advertise implicit-null label. Step Command Function 1 ZXR10(config)#mpls ldp instance <instance-id>[vrf Enables LDP to establish <vrf-name>] an LSP along common hop-by-hop routes and enters LDP configuration mode. the egress control policy. 2 ZXR10(config-ldp-instance-id)#egress { for Controls LDP to distribute <prefix-access-list>| nexthop <nexthop-access-list>} popping labels for the specified non-directly connected destination network segment. It is in a range of 15 to 65535. 4 ZXR10(config-ldp-instance-id)#holdtime <seconds> Configures the hold-time when LDP session cannot receive following LDP messages. 1-23 SJ-20140731105308-012|2014-10-20 (R1.

It is optional. Configure LDP BFD. range: 1–31 characters.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 6 ZXR10(config-ldp-instance-id)#label-request for Configures the prefix and <prefix-access-list> downstream neighbor for request messages sent by LDP. range: 1–65535. ZXR10(config-ldp-instance-id)#igp sync delay Configures a delay time <para> for MPLS LDP and IGP synchronization. <prefix-acl>: It is to use explicit-null label to advertise the prefix that is advertised by implicit-null label. 10 ZXR10(config-ldp-instance-id)#label-retention Sets the retention mode of conservative all LDP labels associated with the LDP instance to conservative. <acl-name>: ACL name. <peer-acl>: It is to designate the neighbors to which explicit-null label is advertised. 11 ZXR10(config-ldp-instance-id)#longest-match {ipv4 Enables the use of the longest for <acl-name>|ipv6 for <acl-name>} matching rule to establish and remove LSPs. 6. 13 ZXR10(config-ldp-instance-id-if-ifname)#label- Enables the DoD mode on the distribution dod LDP interface.0) ZTE Proprietary and Confidential . <hop-num>: TTL value. range: 1–254. It is optional. <para>: delay time. <ip-address>: address of the peer LSR. 1-24 SJ-20140731105308-012|2014-10-20 (R1. 7 ZXR10(config-ldp-instance-id)#gtsm Enables the checking of target-neighbor < ip-address > hop-count <hop-num> the TTL value of LDP ZXR10(config-ldp-instance-id-if-ifname)#gtsm packets from the peer end (for directly-connected or non-directly-connected sessions) 8 9 ZXR10(config-ldp-instance-id)#filter packet for Configures a packet filtration <word> policy. 12 ZXR10(config-ldp-instance-id)#lsp-control ordered Sets the control mode of all LSPs associated with the LDP instance to ordered. range: 1–31 characters. <acl-name>: ACL name.

unit: seconds. <multiplier>: multiple of detection time-out. range: 10–990. establishment of a PeerBFD session with a specified neighbor is immediately triggered. <time>: delay duration after an LDP session gets up. 4 ZXR10(config-ldp-instance-id)#peer bfd If only the delay field is remote-routerid <ip-address>[delay [<time>]] configured. If a specific duration is set to the delay field. 2 ZXR10(config-ldp-instance-id)#bfd <FEC-addres Configures parameters of s><mask-length> interval <interval> min_rx <min_rx> LDP LSP BFD and triggers multiplier <multiplier> the establishment of LSP BFD session. <ip-address>: router-id of the LDP neighbor. 7. After an LDP session is up. 1-25 SJ-20140731105308-012|2014-10-20 (R1. delay: Delay duration after an LDP session is up. 3 ZXR10(config-ldp-instance-id)#peer bfd Configures parameters remote-routerid < ip-address > related to LDPPeerBFD. range: 0-720.Chapter 1 MPLS Configuration Step Command Function 1 ZXR10(config)#mpls ldp instance <instance-id>[vrf Enables LDP to establish <vrf-name>] an LSP along common hop-by-hop routes and enters LDP configuration mode. the BFD session establishment is delayed for the configured duration after the LDP session is up. <interval>: minimum interval (in milliseconds) for sending messages. range: 10–990. a BFD session establishment is delayed 60 seconds after a LDP session is up. Step Command Function 1 ZXR10(config)#mpls ldp instance <1-65535>[vrf Creates an LDP instance <vrf-name>] and enters LDP configuration mode.0) ZTE Proprietary and Confidential . Configure LDP GR. <min_rx>: minimum interval (in milliseconds) for receiving messages. range: 3–50.

Configure LSP Ping/LSP trace detection. an area of the OSFP instance. 2 Configures LDP IGP ZXR10(config-ospf-instance-id)#mpls ldp sync synchronization.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 2 ZXR10(config-ldp-instance-id)#graceful-restart Configures LDP GR. [timer {max-recovery <interval>| neighbor-liveness <interval>}] max-recovery <interval>: maximum time (in seconds) that the LSR waits for label recovery at the peer end. Different ZXR10(config-ospf-instance-id)#area configuration commands <0-4294967295> mpls ldp sync determine whether IGP ZXR10(config-ospf-instance-id-if-interfacename)#mpls ldp sync synchronization is valid for an entire OSPF instance. To ensure that the routers in the network can report the errors related to the MPLS LSP data plane or provide some exceptional information. Enable LDP IGP synchronization (OSPF-based): Step Command Function 1 ZXR10(config)#router ospf <1-65535>[vrf <vrf-name>] Creates an OSPF instance. It can detect and isolate some faults. or an OSPF interface.0) ZTE Proprietary and Confidential . default: 120 neighbor-liveness <interval>: maximum time (in seconds) that the LSR waits for LDP session recovery. which needs to be negotiated. range: 5–300. LSP Ping/LSP Trace is a simple and efficient method used to detect the fault of the MPLS LSP data plane. that are not found by some control planes in a short time. 1-26 SJ-20140731105308-012|2014-10-20 (R1. 9. Enable LDP IGP synchronization (IS-IS-based): Step Command Function 1 ZXR10(config)#router isis <1-65535>[vrf <vrf-name>] Creates an IS-IS instance. such as route black-hole and route loss. which needs to be negotiated. For the details about LSP Ping/LSP Trace. the LSP Ping/LSP Trace function is put forwarded. refer to the Network Layer Detection section in ZXR10 M6000-S Configuration Guide (System Management). and enters the OSPF configuration mode. default: 120 8. area<0–4294967295>: OSPF area ID. 10. range: 15–600. and enters the IS-IS configuration mode.

11. igp sync delay <1–65535>: delay time (in seconds) for LDP IGP synchronization. After disabling the automatic configuration function of the LDP interfaces. and the LDP Hello messages can be received and sent and LDP sessions can be created on all interfaces are determined by the LDP interface configuration. default: 5. 1-27 SJ-20140731105308-012|2014-10-20 (R1. 2 ZXR10(config-ldp-instance-id)#igp sync delay Configure a delay timer for <1-65535> LDP IGP synchronization. Different configuration commands name)#mpls ldp sync determine whether IGP synchronization is valid for an entire ISIS instance or an ISIS interface. 12. 2 ZXR10(config-ldp-instance-id)#auto-config interface Enables or disables the global { enable | disable } automatic configuration function on all LDP IPv4 interfaces of an LDP instance. Configure the automatic configuration function of the LDP interface. Configure a delay timer for LDP IGP synchronization. This is a global configuration command.0) ZTE Proprietary and Confidential . Step Command Function 1 ZXR10(config)#mpls ldp instance <1-65535>[vrf Creates an LDP instance and <vrf-name>] enters the LDP configuration mode. no LDP interface can be automatically created.Chapter 1 MPLS Configuration Step Command Function 2 ZXR10(config-isis-instance-id)#mpls ldp sync Configures LDP IGP ZXR10(config-isis-instance-id-if-interface- synchronization. Step Command Function 1 ZXR10(config)#mpls ldp instance <1-65535>[vrf Creates an LDP instance and <vrf-name>] enters the LDP configuration mode.

0) ZTE Proprietary and Confidential . If the automatic configuration function is globally disabled on an LDP instance. is enabled on an LDP instance. enable: Enables the global automatic IPv4 configuration function or the automatic configuration function on a specific LDP IPv4 interface of an LDP instance. <interface-name>: interface name 13. that is. If the automatic configuration function is not globally disabled. 3 ZXR10(config-ldp-instance-id)#auto-config interface Enables or disables the <interface-name>{enable | disable} automatic configuration function on specific LDP IPv4 interfaces of an LDP instance. 1-28 SJ-20140731105308-012|2014-10-20 (R1. this interface cannot be automatically created. If the function is disabled on any single interface.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function without being affected by the IGP status of the interfaces. disable: disables the global automatic IPv4 configuration function or the automatic configuration function on a specific LDP IPv4 interface of an LDP instance. Verify that the configurations are correct. Command Function ZXR10#show mpls ldp interface [<interface-name>] instance Displays the information about <instance id> the interfaces on which LDP is enabled in the VPN domain of an LDP instance. this configuration has the highest priority no matter whether the automatic configuration function is enabled or disabled on the interface. check whether the automatic configuration function is disabled on singe interface.

ZXR10#show mpls ldp igp sync [interface <interface-name>] Displays the status of LDP IGP instance <instance-id> synchronization. <label>[<label>]][remote-label <label>[<label>]][neighbor <ip-address>][detail] instance <instance-id> ZXR10#show mpls ldp bindings summary instance <instance-id> Displays the brief label binding information of an LDP instance. ZXR10#show mpls ldp neighbor [<neighbor>|<interface-name Displays the session information >][detail] instance <instance-id> of an LDP instance. ZXR10#debug ldp all [instance < instance-id>] Enables all debugging functions related to LDP. Run the no command to cancel the monitoring. Maintain MPLS.0) ZTE Proprietary and Confidential . 1-29 SJ-20140731105308-012|2014-10-20 (R1. ZXR10#show debug ldp instance <instance-id> Displays the debugging information of an LDP instance. ZXR10#show mpls ldp bindings [{( X:X::X:X <0-128> ) | (<ip- Displays label binding address>{<net-mask>|<length>}[longer-prefixes])}][local-label information of an LDP instance. Command Function ZXR10#debug ldp advertisements instance <instance-id> Monitors the addresses and labels advertised to LDP neighbors. ZXR10#show mpls ldp discovery [ detail ] instance Displays the discovery <instance-id> information of an LDP instance. 14. ZXR10#show mpls ldp graceful-restart instance <1-65535> Displays the current LDP GR configuration of the router. ZXR10#show mpls ldp neighbor [[<neighbor-ipaddress>][detai Displays GR neighbor l]|[graceful-restart]] instance <instance-id> information. ZXR10#show mpls ldp parameters instance <instance-id> Displays the current parameter information of an LDP instance. ZXR10#debug ldp bindings instance <instanc-id> Monitors the addresses and labels advertised by LDP neighbors.Chapter 1 MPLS Configuration Command Function ZXR10#show mpls ldp backoff instance <instance-id> Displays the configuration of session backoff parameters and the sessions in backoff state in an LDP instance.

6 MPLS Configuration Instance 1. <instance-id> ZXR10#debug ldp transport {connections | events} instance Monitors information discovered <instance-id> by LDP.1. an LDP neighbor is established between the R1 router and the R2 router to forward the MPLS label. 2. Set the IP address of the loopback interface as the router-ID of the LSR Configuration Commands The configuration of the R1 router is as follows: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.255. Enable the MPLS hop-by-hop forwarding between the R1 router and the R2 router.1 Establishing a Basic LDP Neighbour Session Configuration Descriptions As shown in Figure 1-17. Configure the LDP label distribution between the R1 router and the R2 router 3.0) ZTE Proprietary and Confidential .34 255. Figure 1-17 Establishing a Basic LDP Neighbour Session Configuration Flow The thought to establish a basic LDP neighbor session between the R1 router and the R2 router is described below: 1.ZXR10 M6000-S Configuration Guide (MPLS) Command Function ZXR10#debug ldp messages {received | sent} instance Monitors the messages sending <instance-id> to LDP neighbors or received from LDP neighbors.255 1-30 SJ-20140731105308-012|2014-10-20 (R1. ZXR10#debug ldp graceful-restart instance <1-65535> Monitors LDP GR debugging information. – End of Steps – 1.6.255.1. ZXR10#debug ldp session {io | state-machine} instance Monitors LSP sessions.

255.1.Chapter 1 MPLS Configuration R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.255.0) ZTE Proprietary and Confidential .100.0001 R1(config-isis-0)#system-id 0001.100.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-0)#area 00.1.2 255.0034 R1(config-isis-0)#interface gei-0/2/0/7 R1(config-isis-0-if-gei-0/2/0/7)#ip router isis R1(config-isis-0-if-gei-0/2/0/7)#exit R1(config-isis-0)#interface loopback1 R1(config-isis-0-if-loopback1)#ip router isis R1(config-isis-0-if-loopback1)#exit R1(config-isis-0)#exit R1(config)#mpls ldp instance 1 /*Configure the Router-ID and the interface for the LDP*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#exit The configuration of the R2 router is as follows: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.0002.100.255.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis R1(config-isis-0)#area 00.100.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.255.0002.35 255.0035 R2(config-isis-0)#interface gei-0/3/0/7 R2(config-isis-0-if-gei-0/3/0/7)#ip router isis R2(config-isis-0-if-gei-0/3/0/7)#exit R2(config-isis-0)#interface loopback1 R2(config-isis-0-if-loopbck1)#ip router isis R2(config-isis-0-if-loopbck1)#exit R2(config-isis-0)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 1-31 SJ-20140731105308-012|2014-10-20 (R1.1 255.255.0002 R2(config-isis-0)#system-id 0002.255.

it means that the parameters are negotiated correctly and the neighbor relationship between R2 and 1.646 .34:0.100.1. Local LDP Ident: 1.1.1. KA interval: 60000 ms LDP Peer BFD not register.1 Session holdtime: 180000 ms. the purpose of running the IS-IS protocol is to advertise the Router-IDs (that is.35.35:0 TCP connection: 1.1. Src IP addr: 100.100.1 holdtime: 15000 ms.1.26408 State: Oper.100. LDP dynamic capability enable: LDP send capability: LDP dynamic capability LDP Typed Wildcard FEC Cap LDP Unrecognized Noti Cap LDP received capability: LDP dynamic capability negotiate success LDP Typed Wildcard FEC Cap negotiate success LDP Unrecognized Noti Cap negotiate success If the session is in Oper status.1. hello interval: 5000 ms Addresses bound to peer LDP Ident: 1.1.100.1.0) ZTE Proprietary and Confidential .1. Using the loopback interface addresses as the router-IDs of LDP instances can ensure the stability of LDP ID on routers.1.34.ZXR10 M6000-S Configuration Guide (MPLS) R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#exit l l Note: In the above configuration. the route of the loopback interface addresses) of each LSR. Downstream Up Time: 00:24:57 LDP discovery sources: gei-0/3/0/7.1.1. 1-32 SJ-20140731105308-012|2014-10-20 (R1. because the state of loopback interface addresses will not change (unless users shut down the interfaces manually). Msgs sent/rcvd: 31/31.34 (R1) has been established.34 100. Configuration Verification Show the neighbor information on the R2 router: R2(config)#show mpls ldp neighbor detail instance 1 Peer LDP Ident: 1.1.

the R1 router.255.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#interface gei-0/2/0/8 R1(config-if-gei-0/2/0/8)#no shutdown R1(config-if-gei-0/2/0/8)#ip address 200. Direc-connected LDP sessions are established between the R1 router and the R2 router.200.0034 1-33 SJ-20140731105308-012|2014-10-20 (R1.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.0002. 2.200.0 R1(config-if-gei-0/2/0/8)#exit R1(config)#router isis R1(config-isis-0)#area 00. Establish the LDP target neighbor relationship between the R2 router and the R3 router.100. the R2 router and the R3 router support MPLS.255.255.255. Set the IP address of the loopback interface as the router-ID of the LSR Configuration Commands The configuration of the R1 router is as follows: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. and between the R1 router and the R3 router. Figure 1-18 Establishing an LDP Target Session Configuration Flow The thought to configure an LDP target session between the R2 router and the R3 router is described below: 1.0001 R1(config-isis-0)#system-id 0001. and between the R1 router and the R3 router. 3.1.1.1 255.6.Chapter 1 MPLS Configuration 1.255. The target LDP session is established between the R2 router and the R3 router.255.100. Establish the LDP neighbor relationships between the R1 router and the R2 router.2 Establishing an LDP Target Session Configuration Descriptions As shown in Figure 1-18.0) ZTE Proprietary and Confidential .34 255.1 255.

100.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-0)#area 00.2 255.255.0) ZTE Proprietary and Confidential .0002 R2(config-isis-0)#system-id 0002.1.255.0035 R2(config-isis-0)#interface gei-0/3/0/7 R2(config-isis-0-if-gei-0/3/0/7)#ip router isis R2(config-isis-0-if-gei-0/3/0/7)#exit R2(config-isis-0)#interface loopback1 R2(config-isis-0-if-loopback1)#ip router isis R2(config-isis-0-if-loopback1)#exit R2(config-isis-0)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#target-session 1.39 1-34 SJ-20140731105308-012|2014-10-20 (R1.1.ZXR10 M6000-S Configuration Guide (MPLS) R1(config-isis-0)#interface gei-0/2/0/7 R1(config-isis-0-if-gei-0/2/0/7)#ip router isis R1(config-isis-0-if-gei-0/2/0/7)#exit R1(config-isis-0)#interface gei-0/2/0/8 R1(config-isis-0-if-gei-0/2/0/8)#ip router isis R1(config-isis-0-if-gei-0/2/0/8)#exit R1(config-isis-0)#interface loopback1 R1(config-isis-0-if-loopback1)#ip router isis R1(config-isis-0-if-loopback1)#exit R1(config-isis-0)#exit R1(config)#mpls ldp instance 1 R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#interface gei-0/2/0/8 R1(config-ldp-1-if-gei-0/2/0/8)#exit R1(config-ldp-1)#exit /*Configure the Router ID and the interface for the LDP*/ The configuration of the R2 router is as follows: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.100.255.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.35 255.255.1.0002.1.

2.35.100.39:0 TCP connection: 1.0) ZTE Proprietary and Confidential .1.1.200.200.200.26412 .1.1.1.1.255.1.1.1.26406 .1 Addresses bound to peer LDP Ident: 1.646 State: Oper.1.100.200. Msgs sent/rcvd: 10/10.1.200.255.1.646 State: Oper.1.2.2 255.1.0003.35:0.1. Local LDP Ident: 1.1.1.1. Downstream Up Time: 00:01:38 LDP discovery sources: gei-0/3/0/7. Local LDP Ident: 1.1.1. R3(config)#show mpls ldp neighbor instance 1 Peer LDP Ident: 1.1.255 R3(config-if-loopback1)#exit R3(config)#interface gei-0/3/0/7 R3(config-if-gei-0/3/0/7)#no shutdown R3(config-if-gei-0/3/0/7)#ip address 200.35 R3(config-ldp-1)#exit Configuration Verification Use the show mpls ldp neighbor command to show the neighbor information on the R3 router.0 R3(config-if-gei-0/3/0/7)#exit R3(config)#router isis R3(config-isis-0)#area 00.1. Downstream 1-35 SJ-20140731105308-012|2014-10-20 (R1. Msgs sent/rcvd: 9/9.1.255.0003 R3(config-isis-0)#system-id 0003.0039 R3(config-isis-0)#interface gei-0/3/0/7 R3(config-isis-0-if-gei-0/3/0/7)#ip router isis R3(config-isis-0-if-gei-0/3/0/7)#exit R3(config-isis-0)#interface loopback1 R3(config-isis-0-if-loopback1)#ip router isis R3(config-isis-0-if-loopback1)#exit R3(config-isis-0)#exit R3(config)#mpls ldp instance 1 R3(config-ldp-1)#router-id loopback1 R3(config-ldp-1)#interface gei-0/3/0/7 R3(config-ldp-1-if-gei-0/3/0/7)#exit R3(config-ldp-1)#target-session 1.1.34 100.39:0 TCP connection: 1.Chapter 1 MPLS Configuration R2(config-ldp-1)#exit The configuration of the R3 router is as follows: R3(config)#interface loopback1 R3(config-if-loopback1)#ip address 1.34:0.39 255.200.1 Peer LDP Ident: 1.34.255.1 200. Src IP addr: 200.

1.6.1 255.100.35 (R2) has been established. a label distribution policy is configured on the R1 router.1.6 Addresses bound to peer LDP Ident: 1.3 Configuring a Label Distribution Policy Configuration Descriptions As shown in Figure 1-19.0.255.0/8 and 110. Figure 1-19 Configuring a Label Distribution Policy Configuration Flow The thought to configure a label distribution policy on the R1 router is described below.0001 1-36 SJ-20140731105308-012|2014-10-20 (R1.1.0/8 and 110. it means that the parameters are negotiated correctly and the neighbor relationship between R3 and 1.1.0/16. Src IP addr: 1.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100. No label is distributed to FECs in network segments 5.1.100.6).0.0.255.1.ZXR10 M6000-S Configuration Guide (MPLS) Up Time: 00:00:39 LDP discovery sources: Targeted Hello (1.255.0) ZTE Proprietary and Confidential .0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis R1(config-isis-0)#area 00. The R1 router will not distribute labels for FECs in network segments 5.1.0.1. Enable the MPLS hop-by-hop forwarding between the R1 router and the R2 router Configure the LDP label distribution between R1 and R2 Set the IP address on loopback interface as the router-ID of an LDP instance on LSR Configure the label distribution policy on the R1 router.1.34 255.100.2 If the session is in Oper status. 1.255.0.35 100. 4.1.0/16 Configuration Steps The configuration of the R1 router is as follows: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. 3.100.1. 2.1.0.1.

0.0002 R2(config-isis-0)#system-id 0002.0.0 0.0002.255 R1(config-ipv4-acl)#rule 30 permit any R1(config-ipv4-acl)#exit The configuration of the R2 router is as follows: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.0) ZTE Proprietary and Confidential .35 255.255 R1(config-ipv4-acl)#rule 20 deny 110.255.0/8 and the 110.1.0.0.255.1.255.Chapter 1 MPLS Configuration R1(config-isis-0)#system-id 0001. Do not allocate labels for FEC in the 5.0/16 network segment*/ R1(config)#ipv4-access-list zte R1(config-ipv4-acl)#rule 10 deny 5.100.255.0034 R1(config-isis-0)#interface gei-0/2/0/7 R1(config-isis-0-if-gei-0/2/0/7)#ip router isis R1(config-isis-0-if-gei-0/2/0/7)#exit R1(config-isis-0)#interface loopback1 R1(config-isis-0-if-loopback1)#ip router isis R1(config-isis-0-if-loopback1)#exit R1(config-isis-0)#exit R1(config)#mpls ldp instance 1 R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#access-fec ip-prefix for zte R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#exit /*Configure the label distribution policy.0.2 255.0 0.0002.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.1.0.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-0)#area 00.255.0035 R2(config-isis-0)#interface gei-0/3/0/7 R2(config-isis-0-if-gei-0/3/0/7)#ip router isis R2(config-isis-0-if-gei-0/3/0/7)#exit R2(config-isis-0)#interface loopback1 R2(config-isis-0-if-loopback1)#ip router isis R2(config-isis-0-if-loopback1)#exit R2(config-isis-0)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 1-37 SJ-20140731105308-012|2014-10-20 (R1.100.255.255.0.1.

1.1.1.1.1.0.35:0.0/24 local binding: label: 4108 remote binding: lsr: 1.35:0. label: UnTag 1.0/24 local binding: label: 4109 remote binding: lsr: 1.0/32 local binding: label: 4126 remote binding: lsr: 1.1.0) ZTE Proprietary and Confidential . label: 36 1.1.ZXR10 M6000-S Configuration Guide (MPLS) R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#exit Configuration Verification Show the result on the R1 router after the policy is applied.1.1.18/32 local binding: label: 4128 remote binding: lsr: 1. label: 60 The result shows that R1 does not distribute FECs for the 5.1.2.1.1. label: 54 1.1.1.1. label: 4143(inuse) remote binding: lsr: 1.39/32 local binding: label: 4119 remote binding: lsr: 1. label: 10164 remote binding: lsr: 1.1.31/32 (no route) remote binding: lsr: 1.1.1.1.1.0.1.35:0.35:0. label: 10175 remote binding: lsr: 1. label: imp-null(inuse) remote binding: lsr: 1.1.1.1.34/32 local binding: label: imp-null remote binding: lsr: 1.39:0.0.35:0.0/16 network segments.39:0.1.1. label: 49 1.1. label: imp-null 60. label: 6149(inuse) remote binding: lsr: 1.1.1.1.1.1.1.1.35/32 local binding: label: 4101 remote binding: lsr: 1. label: imp-null 60.1.39:0.1.39:0.1.35:0.39:0.1.1. label: 10167 remote binding: lsr: 1.35:0. R1(config)#show mpls ldp bindings instance 1 1.1.39:0.1.39:0.39:0. label: 51 1.1.3. label: imp-null(inuse) remote binding: lsr: 1.0.1. 1-38 SJ-20140731105308-012|2014-10-20 (R1.0.0/8 and 110.

. Configuration Commands The configuration of the R1 router is as follows: /*The following configuration is for the LDP public network*/ R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.1 255.4 Configuring an LDP Multi-Instance Configuration Descriptions The LDP session network is shown in Figure 1-20. 2.255. Figure 1-20 LDP Multi-Instance Topology Configuration Flow The thought to configure an LDP multi-instance between the R2 router and the R3 router is described below: 1.1 255.255.6. and establish a private network session between the R1 router and the R3 router. Establish an LDP private network neighbor between the R1 router and the R3 router.Chapter 1 MPLS Configuration 1.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 64.1.0034 R1(config-isis-0)#interface gei-0/2/0/7 R1(config-isis-0-if-gei-0/2/0/7)#ip router isis R1(config-isis-0-if-gei-0/2/0/7)#exit R1(config-isis-0)#interface loopback1 R1(config-isis-0-if-loopback1)#ip router isis R1(config-isis-0-if-loopback1)#exit R1(config-isis-0)#exit R1(config)#mpls ldp instance 1 1-39 SJ-20140731105308-012|2014-10-20 (R1.0002.2. The R1 router. the R2 router and the R3 router support the MPLS.0001 R1(config-isis-0)#system-id 0001. Establish a public network session between the R1 router and the R2 router.255.2.0) ZTE Proprietary and Confidential . Establish an LDP public network neighbor between the R1 router and the R2 router.2.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis R1(config-isis-0)#area 00.255.

255.255.255.0 R2(config-if-gei-0/2/0/9)#exit R2(config)#router isis R2(config-isis-0)#area 00.2.1 255.0001 R1(config-isis-1)#system-id 1111.2.255.2 255.255.255.1.0 R1(config-if-gei-0/2/0/2)#exit R1(config)#router isis 1 vrf a R1(config-isis-1)#area 00.0002 1-40 SJ-20140731105308-012|2014-10-20 (R1.0002.ZXR10 M6000-S Configuration Guide (MPLS) R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#exit /*The following configuration is for the LDP private network*/ R1(config)#ip vrf a R1(config-vrf-a)#rd 1:1 R1(config-vrf-a)#address-family ipv4 R1(config-vrf-a-af-ipv4)#exit R1(config-vrf-a)#exit R1(config)#interface loopback2 R1(config-if-loopback2)#ip vrf forwarding a R1(config-if-loopback2)#ip address 2.255 R1(config-if-loopback2)#exit R1(config)#interface gei-0/2/0/2 R1(config-if-gei-0/2/0/2)#no shutdown R1(config-if-gei-0/2/0/2)#ip vrf forwarding a R1(config-if-gei-0/2/0/2)#ip address 64.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/2/0/9 R2(config-if-gei-0/2/0/9)#no shutdown R2(config-if-gei-0/2/0/9)#ip address 64.0034 R1(config-isis-1)#interface gei-0/2/0/2 R1(config-isis-1-if-gei-0/2/0/2)#ip router isis R1(config-isis-1-if-gei-0/2/0/2)#exit R1(config-isis-1)#interface loopback2 R1(config-isis-1-if-loopback2)#ip router isis R1(config-isis-1-if-loopback2)#exit R1(config-isis-1)#exit R1(config)#mpls ldp instance 2 vrf a R1(config-ldp-2)#router-id loopback2 R1(config-ldp-2)#interface gei-0/2/0/2 R1(config-ldp-2-if-gei-0/2/0/2)#exit R1(config-ldp-2)#exit The configuration of the R2 router is as follows: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.2.2.13.2 255.255.255.2.5 255.0) ZTE Proprietary and Confidential .1.

0) ZTE Proprietary and Confidential .1.2.10 255.0003.255.255.1.1054 . Local LDP Ident 1.255.646 1-41 SJ-20140731105308-012|2014-10-20 (R1.Chapter 1 MPLS Configuration R2(config-isis-0)#system-id 0002.0039 R3(config-isis-0)#interface gei-0/2/0/6 R3(config-isis-0-if-gei-0/2/0/6)#ip router isis R3(config-isis-0-if-gei-0/2/0/6)#exit R3(config-isis-0)#interface loopback1 R3(config-isis-0-if-loopbck1)#ip router isis R3(config-isis-0-if-loopbck1)#exit R3(config-isis-0)#exit R3(config)#mpls ldp instance 1 R3(config-ldp-1)#router-id loopback1 R3(config-ldp-1)#interface gei-0/2/0/6 R3(config-ldp-1-if-gei-0/2/0/6)#exit R3(config-ldp-1)#exit Configuration Verification Show the neighbor establishment result of the public network and the private network on the R1 router: R1(config)#show mpls ldp neighbor instance 1 Peer LDP Ident: 1.2:0.2.255 R3(config-if-loopback1)#exit R3(config)#interface gei-0/2/0/6 R3(config-if-gei-0/2/0/6)#no shutdown R3(config-if-gei-0/2/0/6)#ip address 64.1.2.0 R3(config-if-gei-0/2/0/6)#exit R3(config)#router isis R3(config-isis-0)#area 00.1.1.2.0035 R2(config-isis-0)#interface gei-0/2/0/9 R2(config-isis-0-if-gei-0/2/0/9)#ip router isis R2(config-isis-0-if-gei-0/2/0/9)#exit R2(config-isis-0)#interface loopback1 R2(config-isis-0-if-loopbck1)#ip router isis R2(config-isis-0-if-loopbck1)#exit R2(config-isis-0)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/2/0/9 R2(config-ldp-1-if-gei-0/2/0/9)#exit R2(config-ldp-1)#exit The configuration of the R3 router is as follows: R3(config)#interface loopback1 R3(config-if-loopback1)#ip address 2.10.2.1.2.0002.2 255.2.1.1:0 TCP connection: 1.0003 R3(config-isis-0)#system-id 0003.255.

it means that the parameters are negotiated correctly and the public network neighbor relationship has been established with the R2 router.2 64.2.2. it means that the parameters are negotiated correctly and the private network neighbor relationship has been established with the R3.2.2.ZXR10 M6000-S Configuration Guide (MPLS) state: Oper.2.2.6. establish an MP-BGP neighbor between PEs and an MPLS LDP neighbor between the public networks. Src IP addr: 64.2.2.2:0. Msgs sent/rcvd: 47/48.2.5 If the session is in Oper status. based on the L3VPN environment and the LDP FRR networking mode for the public network.1.2.2. Src IP addr: 64.5 If the session is in Oper status. Local LDP Ident 1.2.1. Figure 1-21 Establishing an LDP FRR 1-42 SJ-20140731105308-012|2014-10-20 (R1. Downstream Up Time: 00:00:30 LDP discovery sources: gei-0/2/0/7.1:0 TCP connection: 1.2.2.2. router 1. Msgs sent/rcvd: 47/48.5 Addresses bound to peer LDP Ident: 1.1054 . Downstream Up Time: 00:00:30 LDP discovery sources: gei-0/2/0/7.1.1.5 Establishing an LDP FRR Configuration Descriptions As shown in Figure 1-21.2 64.0) ZTE Proprietary and Confidential .646 state: Oper.1.1.5 Addresses bound to peer LDP Ident: 1.1. R1(config)#show mpls ldp neighbor instance 1 Peer LDP Ident: 1.1.

2 255.1.255.255 CE1(config-if-loopback1)#exit CE1(config)#router ospf 1 CE1(config-ospf-1)#router-id 12.255. Configuration Commands Access the CE1 router through the OSPF protocol. the CE2 router through the IS-IS protocol and the middle IPG router through the IS-IS protocol. Configure the LDP neighbor.255 area 16 CE1(config-ospf-1)#network 12.2 255.Chapter 1 MPLS Configuration Configuration Flow 1.2.255. 3.1.255. The configuration is as follows: The configuration of the CE1 router is as follows: CE1(config)#interface gei-0/2/1/1 CE1(config-if-gei-0/2/1/1)#no shutdown CE1(config-if-gei-0/2/1/1)#ip address 40.0.2.0000.0.0.255.0.0001 CE2(config-isis-0)#interface loopback1 CE2(config-isis-0-if-loopback1)#ip router isis CE2(config-isis-0-if-loopback1)#exit CE2(config-isis-0)#interface gei-0/2/1/1 CE2(config-isis-0-if-gei-0/2/1/1)#ip router isis CE2(config-isis-0-if-gei-0/2/1/1)#exit CE2(config-isis-0)#exit 1-43 SJ-20140731105308-012|2014-10-20 (R1. Configure an IGP route between the PE1 router and the PE2 router for communication.255.1.5 255. 4.255.0 area 16 CE1(config-ospf-1)#exit The configuration of the CE2 router is as follows: CE2(config)#interface gei-0/2/1/1 CE2(config-if-gei-0/2/1/1)#no shutdown CE2(config-if-gei-0/2/1/1)#ip address 60. Configure the MP-BGP neighbor.1 0.0 CE1(config-if-gei-0/2/1/1)#exit CE1(config)#interface loopback1 CE1(config-if-loopback1)#ip address 12.0 0.255 CE2(config-if-loopback1)#exit CE2(config)#router isis CE2(config-isis-0)#area 10 CE2(config-isis-0)#system-id 0000.0 CE2(config-if-gei-0/2/1/1)#exit CE2(config)#interface loopback1 CE2(config-if-loopback1)#ip address 12.0.2.255.0.0.2.0.1 255.1 CE1(config-ospf-1)#network 40.0. 2.0.0) ZTE Proprietary and Confidential .1. Enable the FRR on the PE1 router.

255.0 PE1(config-if-gei-0/2/1/3)#exit PE1(config)#mpls ldp instance 1 PE1(config-ldp-1)#router-id loopback1 PE1(config-ldp-1)#interface gei-0/2/1/2 PE1(config-ldp-1-if-gei-0/2/1/2)#exit PE1(config-ldp-1)#interface gei-0/2/1/3 PE1(config-ldp-1-if-gei-0/2/1/3)#exit PE1(config-ldp-1)#exit PE1(config)#router bgp 100 PE1(config-bgp)#neighbor 1.1.1.255.255.255.1.2 255.ZXR10 M6000-S Configuration Guide (MPLS) The configuration of the PE1 router is as follows: PE1(config)#ip vrf zte1 PE1(config-vrf-zte1)#rd 100:1 PE1(config-vrf-zte1)#route-target import 100:1 PE1(config-vrf-zte1)#route-target export 100:1 PE1(config-vrf-zte1)#address-family ipv4 PE1(config-vrf-zte1-af-ipv4)#exit PE1(config-vrf-zte1)#exit PE1(config)#interface loopback1 PE1(config-if-loopback1)#ip address 1.0.1.0.0) ZTE Proprietary and Confidential .0.255.255.2 255.3 activate PE1(config-bgp-af-vpnv4)#exit PE1(config-bgp)#address-family ipv4 vrf zte1 PE1(config-bgp-af-ipv4-vrf)#redistribute ospf-int 1 PE1(config-bgp-af-ipv4-vrf)#exit PE1(config-bgp)#exit 1-44 SJ-20140731105308-012|2014-10-20 (R1.1.255.255 PE1(config-if-loopback1)#exit PE1(config)#interface gei-0/2/1/1 PE1(config-if-gei-0/2/1/1)#no shutdown PE1(config-if-gei-0/2/1/1)#ip vrf forwarding zte1 PE1(config-if-gei-0/2/1/1)#ip address 40.0.1.0.1.1.0 PE1(config-if-gei-0/2/1/2)#exit PE1(config)#interface gei-0/2/1/3 PE1(config-if-gei-0/2/1/3)#no shutdown PE1(config-if-gei-0/2/1/3)#ip address 11.0 PE1(config-if-gei-0/2/1/1)#exit PE1(config)#interface gei-0/2/1/2 PE1(config-if-gei-0/2/1/2)#no shutdown PE1(config-if-gei-0/2/1/2)#ip address 10.2 255.255.0.3 update-source loopback1 PE1(config-bgp)#address-family vpnv4 PE1(config-bgp-af-vpnv4)#neighbor 1.1 255.3 remote-as 100 PE1(config-bgp)#neighbor 1.

1.0.2 255.0.1 255.3 255.0.0.0 1-45 SJ-20140731105308-012|2014-10-20 (R1.0.0.255 PE2(config-if-loopback1)#exit PE2(config)#interface gei-0/2/1/1 PE2(config-if-gei-0/2/1/1)#no shutdown PE2(config-if-gei-0/2/1/1)#ip vrf forwarding zte1 PE2(config-if-gei-0/2/1/1)#ip address 60.255.0 PE2(config-if-gei-0/2/1/2)#exit PE2(config)#interface gei-0/2/1/3 PE2(config-if-gei-0/2/1/3)#no shutdown PE2(config-if-gei-0/2/1/3)#ip address 14.0.255.0) ZTE Proprietary and Confidential .255.255.0 0.0.255 area 16 PE1(config-ospf-1)#exit PE1(config)#router isis PE1(config-isis-0)#area 10 PE1(config-isis-0)#system-id 0000.255.255.255.0 PE2(config-if-gei-0/2/1/1)#exit PE2(config)#interface gei-0/2/1/2 PE2(config-if-gei-0/2/1/2)#no shutdown PE2(config-if-gei-0/2/1/2)#ip address 15.c200 PE1(config-isis-0)#interface gei-0/2/1/2 PE1(config-isis-0-if-gei-0/2/1/2)#ip router isis PE1(config-isis-0-if-gei-0/2/1/2)#exit PE1(config-isis-0)#interface gei-0/2/1/3 PE1(config-isis-0-if-gei-0/2/1/3)#ip router isis PE1(config-isis-0-if-gei-0/2/1/3)#metric 20 PE1(config-isis-0-if-gei-0/2/1/3)#exit PE1(config-isis-0)#fast-reroute enable PE1(config-isis-0)#interface loopback1 PE1(config-isis-0-if-loopback1)#ip router isis PE1(config-isis-0-if-loopback1)#exit PE1(config-isis-0)#exit The configuration of the PE2 router is as follows: PE2(config)#ip vrf zte1 PE2(config-vrf-zte1)#rd 100:1 PE2(config-vrf-zte1)#route-target import 100:1 PE2(config-vrf-zte1)#route-target export 100:1 PE2(config-vrf-zte1)#address-family ipv4 PE2(config-vrf-zte1-af-ipv4)#exit PE2(config-vrf-zte1)#exit PE2(config)#interface loopback1 PE2(config-if-loopback1)#ip address 1.0.255.0.70d0.2 255.1.Chapter 1 MPLS Configuration PE1(config)#router ospf 1 vrf zte1 PE1(config-ospf-1)#network 40.

1.0002 PE2(config-isis-1)#interface gei-0/2/1/1 PE2(config-isis-1-if-gei-0/2/1/1)#ip router isis PE2(config-isis-1-if-gei-0/2/1/1)#exit PE2(config-isis-1)#exit PE2(config)#router isis PE2(config-isis-0)#area 10 PE2(config-isis-0)#system-id 0000.0000.2 activate PE2(config-bgp-af-vpnv4)#exit PE2(config-bgp)#exit PE2(config)#router isis 1 vrf zte1 PE2(config-isis-1)#area 10 PE2(config-isis-1)#system-id 0000.2 update-source loopback1 PE2(config-bgp)#address-family ipv4 vrf zte1 PE2(config-bgp-af-ipv4-vrf)#redistribute isis-1-2 PE2(config-bgp-af-ipv4-vrf)#exit PE2(config-bgp)#address-family vpnv4 PE2(config-bgp-af-vpnv4)#neighbor 1.dd00.1.1.ZXR10 M6000-S Configuration Guide (MPLS) PE2(config-if-gei-0/2/1/3)#exit PE2(config)#mpls ldp instance 1 PE2(config-ldp-1)#router-id loopback1 PE2(config-ldp-1)#interface gei-0/2/1/2 PE2(config-ldp-1-if-gei-0/2/1/2)#exit PE2(config-ldp-1)#interface gei-0/2/1/3 PE2(config-ldp-1-if-gei-0/2/1/3)#exit PE2(config-ldp-1)#exit PE2(config)#router bgp 100 PE2(config-bgp)#neighbor 1.0) ZTE Proprietary and Confidential .0002 PE2(config-isis-0)#interface gei-0/2/1/2 PE2(config-isis-0-if-gei-0/2/1/2)#ip router isis PE2(config-isis-0-if-gei-0/2/1/2)#exit PE2(config-isis-0)#interface gei-0/2/1/3 PE2(config-isis-0-if-gei-0/2/1/3)#ip router isis PE2(config-isis-0-if-gei-0/2/1/3)#exit PE2(config-isis-0)#interface loopback1 PE2(config-isis-0-if-loopback1)#ip router isis PE2(config-isis-0-if-loopback1)#exit PE2(config-isis-0)#exit The configuration of the P1 router is as follows: P1(config)#interface loopback1 1-46 SJ-20140731105308-012|2014-10-20 (R1.1.1.1.2 remote-as 100 PE2(config-bgp)#neighbor 1.

255.255.0.1.0.255.0.0 P1(config-if-gei-0/2/1/2)#exit P1(config)#router isis P1(config-isis-0)#area 10 P1(config-isis-0)#system-id 0000.0 P2(config-if-gei-0/2/1/1)#exit P2(config)#interface gei-0/2/1/2 P2(config-if-gei-0/2/1/2)#no shutdown P2(config-if-gei-0/2/1/2)#ip address 15.1.5 255.0.0 P1(config-if-gei-0/2/1/1)#exit P1(config)#interface gei-0/2/1/2 P1(config-if-gei-0/2/1/2)#no shutdown P1(config-if-gei-0/2/1/2)#ip address 14.1.1 255.255.0) ZTE Proprietary and Confidential .255.1 255.dd00.1 255.0.255.Chapter 1 MPLS Configuration P1(config-if-loopback1)#ip address 1.255.255 P1(config-if-loopback1)#exit P1(config)#interface gei-0/2/1/1 P1(config-if-gei-0/2/1/1)#no shutdown P1(config-if-gei-0/2/1/1)#ip address 10.1.0 P2(config-if-gei-0/2/1/2)#exit 1-47 SJ-20140731105308-012|2014-10-20 (R1.4 255.255.0.1 255.255.255.0.255 P2(config-if-loopback1)#exit P2(config)#interface gei-0/2/1/1 P2(config-if-gei-0/2/1/1)#no shutdown P2(config-if-gei-0/2/1/1)#ip address 11.1000 P1(config-isis-0)#interface gei-0/2/1/1 P1(config-isis-0-if-gei-0/2/1/1)#ip router isis P1(config-isis-0-if-gei-0/2/1/1)#exit P1(config-isis-0)#interface gei-0/2/1/2 P1(config-isis-0-if-gei-0/2/1/2)#ip router isis P1(config-isis-0-if-gei-0/2/1/2)#exit P1(config-isis-0)#interface loopback1 P1(config-isis-0-if-loopback1)#ip router isis P1(config-isis-0-if-loopback1)#exit P1(config-isis-0)#exit P1(config)#mpls ldp instance 1 P1(config-ldp-1)#router-id loopback1 P1(config-ldp-1)#interface gei-0/2/1/1 P1(config-ldp-1-if-gei-0/2/1/1)#exit P1(config-ldp-1)#interface gei-0/2/1/2 P1(config-ldp-1-if-gei-0/2/1/2)#exit P1(config-ldp-1)#exit The configuration of the P2 router is as follows: P2(config)#interface loopback1 P2(config-if-loopback1)#ip address 1.255.0.255.

0.1.3000 P2(config-isis-0)#interface gei-0/2/1/1 P2(config-isis-0-if-gei-0/2/1/1)#ip router isis P2(config-isis-0-if-gei-0/2/1/1)#exit P2(config-isis-0)#interface gei-0/2/1/2 P2(config-isis-0-if-gei-0/2/1/2)#ip router isis P2(config-isis-0-if-gei-0/2/1/2)#exit P2(config-isis-0)#interface loopback1 P2(config-isis-0-if-loopback1)#ip router isis P2(config-isis-0-if-loopback1)#exit P2(config)#mpls ldp instance 1 P2(config-ldp-1)#router-id loopback1 P2(config-ldp-1)#interface gei-0/2/1/1 P2(config-ldp-1-if-gei-0/2/1/1)#exit P2(config-ldp-1)#interface gei-0/2/1/2 P2(config-ldp-1-if-gei-0/2/1/2)#exit P2(config-ldp-1)#exit Configuration Verification Show the configuration result to see whether the FRR configuration takes effect through the show ip forwarding backup route command.3/32 10.ZXR10 M6000-S Configuration Guide (MPLS) P2(config)#router isis P2(config-isis-0)#area 10 P2(config-isis-0)#system-id 0000.2 gei-0/2/1/2 ISIS_LEVEL1 115 40 M I 1.1. PE1(config)#show mpls ldp bindings 1. The FRR information on the PE1 through the IS-IS protocol is as follows: PE1#show isis fast-reroute-topology IS-IS ipfrr paths to Level-1 routers System id Interface Ipfrr interface Ipfrr type metric 0000.1.dd00.1.1.0002 gei-0/2/1/2 gei-0/2/1/3 node 30 IS-IS ipfrr paths to Level-2 routers System id Interface Ipfrr interface Ipfrr type metric 0000.dd00.1.dd00.1.3/32 11.3/32 1-48 SJ-20140731105308-012|2014-10-20 (R1. M:Master.0) ZTE Proprietary and Confidential .0.3 32 detail instance 1 1. S:Slave Dest Gw Interface Owner Pri Metric M/S Status 1.0002 gei-0/2/1/2 gei-0/2/1/3 node 30 PE1#show ip forwarding backup route IPv4 Backup Routing Table: status codes: *valid.0. >best.0.2 gei-0/2/1/3 ISIS_LEVEL1 115 40 S U Check the configuration result of the LDP FRR.1.

Enable the LDP GR capability for each node. and notify the network segment and the LSR ID main route connected to each interface and through the OSPF protocol. and the Loopback address for the LSR ID.0) ZTE Proprietary and Confidential .1.0. R2.1.0.1.1. 1-49 SJ-20140731105308-012|2014-10-20 (R1.5:0.0.1. Figure 1-22 Network Architecture of LDP Graceful Restart Configuration Instance Configuration Flow 1.1.1.1. three nodes R1. and then establish the LDP neighbor. label: 16394(inuse) remote binding: lsr: 1. R2. and R3. 4.1 S Check the IBGP connection between the PE1 router and the PE2 router. and R3 in the network are main control devices.1. Configure the IP address for each node. and the communication among them are implemented through OSPF .Chapter 1 MPLS Configuration local binding: label: 16399 advertised to: 1. 3. When the main board of R2 is faulty.4:0 1.3 Local Outgoing Prefix or Outgoing label label Tunnel Id interface Next Hop M/S 16399 16394 1.1 M 16399 16399 1. You need to establish a session among R1. 2.1.5:0 remote binding: lsr: 1.1.6.1. Configure the OSPF GR function on reach node.1.4:0.3/32 gei-0/2/1/3 11.1. you need to synchronize the neighbor node thorough the LP GR mechanism.0.6 LDP Graceful Restart Configuration Instance Configuration Description As shown in Figure 1-22.1. label: 16399(inuse_slv_ip) PE1(config)#show mpls forwarding-table 1. These three nodes provide GR mechanism.1. PE1#show ip bgp summary Neighbor Ver 1.3/32 gei-0/2/1/2 10. Configure MPLS LDP for each interface of the node.3 4 As 100 MsgRcvd 195 MsgSend 201 Up/Down(s) 01:37:23 State 2 1.

0 R2(config-if-gei-0/1/0/3)#exit R2(config)#interface gei-0/1/0/6 R2(config-if-gei-0/1/0/6)#no shutdown R2(config-if-gei-0/1/0/6)#ip address 106.0.0.0.0.1 255.0 R1(config-if-gei-0/1/0/6)#exit R1(config)#interface loopback10 R1(config-if-loopback10)#ip address 10.255.15.0.0 0.10.0 R2(config-ospf-2)#network 10.5 R2(config-ospf-2)#network 103.15.5 255.15.10.3.10.255 area 0.255.10.5 255.1 R1(config-ospf-2)#network 106.0.0.10.255 area 0.0.3.0 0.10.0 R2(config-ospf-2)#network 106.10.15.0.10.15.0.0.10.255.0) ZTE Proprietary and Confidential .0.1 255.0.0 R2(config-if-gei-0/1/0/6)#exit R2(config)#interface loopback10 R2(config-if-loopback10)#ip address 10.15.255.0 R1(config-ospf-2)#nsf R1(config-ospf-2)#exit R1(config)#mpls ldp instance 1 R1(config-ldp-1)#interface gei-0/1/0/6 R1(config-ldp-1-if-gei-0/1/0/6)#exit R1(config-ldp-1)#router-id loopback10 R1(config-ldp-1)#graceful-restart R1(config-ldp-1)#end Run the following commands on R2: R2(config)#interface gei-0/1/0/3 R2(config-if-gei-0/1/0/3)#no shutdown R2(config-if-gei-0/1/0/3)#ip address 103.255.255 R2(config-if-loopback10)#exit R2(config)#router ospf 2 R2(config-ospf-2)#router-id 10.0 area 0.10.1 0.255 R1(config-if-loopback10)#exit R1(config)#router ospf 2 R1(config-ospf-2)#router-id 10.15.255.10.10.0.2 255.3.0 R2(config-ospf-2)#nsf R2(config-ospf-2)#exit 1-50 SJ-20140731105308-012|2014-10-20 (R1.0.5 0.0.255.0.255.0.3.255.0 0.0.0 area 0.0 R1(config-ospf-2)#network 10.255 area 0.255.ZXR10 M6000-S Configuration Guide (MPLS) Configuration Commands Run the following commands on R1: R1(config)#interface gei-0/1/0/6 R1(config-if-gei-0/1/0/6)#no shutdown R1(config-if-gei-0/1/0/6)#ip address 106.15.0.

10.0 R3(config-ospf-2)#nsf R3(config-ospf-2)#exit R3(config)#mpls ldp instance 1 R3(config-ldp-1)#interface gei-0/1/0/3 R3(config-ldp-1-if-gei-0/1/0/3)#exit R3(config-ldp-1)#router-id loopback10 R3(config-ldp-1)#graceful-restart R3(config-ldp-1)#exit Configuration Verification Before the active/standby changeover on R2 or the LDP restart.2 Local Outgoing Prefix or Outgoing label label Tunnel Id interface 16395 16388 10.10.3.10.0.2 0.10.10.2 32 instance 1 10.0.0 R3(config-if-gei-0/1/0/3)#exit R3(config)#interface loopback10 R3(config-if-loopback10)#ip address 10.15. R2.2 255.255 area 0.2/32 gei-0/1/0/6 Next Hop M/S 106.0 R3(config-ospf-2)#network 10.10.0.255.10.10.Chapter 1 MPLS Configuration R2(config)#mpls ldp instance 1 R2(config-ldp-1)#interface gei-0/1/0/3 R2(config-ldp-1-if-gei-0/1/0/3)#exit R2(config-ldp-1)#interface gei-0/1/0/6 R2(config-ldp-1-if-gei-0/1/0/6)#exit R2(config-ldp-1)#router-id loopback10 R2(config-ldp-1)#graceful-restart R2(config-ldp-1)#end Run the following commands on R3: R3(config)#interface gei-0/1/0/3 R3(config-if-gei-0/1/0/3)#no shutdown R3(config-if-gei-0/1/0/3)#ip address 103.10.3.0.255.2 R3(config-ospf-2)#network 103.255. check the transferring table and binding information on R1.0.0 area 0.0.0 0.255 R3(config-if-loopback10)#exit R3(config)#router ospf 2 R3(config-ospf-2)#router-id 10.10.10. Run the following commands to check the information on R1: R1#show mpls forwarding-table 10.255.10.10.2/32 1-51 SJ-20140731105308-012|2014-10-20 (R1. and R3.3.0.2 255.0.3.5 M R1#show mpls ldp bindings 10.10.0) ZTE Proprietary and Confidential .15.

10.1:0.5.1:0 TCP connection: 10.5 29.15.29.2:0.47.49.5 50.28.9.6739 State: Oper.37.5 24.10.33.34.5 106.5.10.21.32.64 8.10.36.1.25.20. Local LDP Ident: 10.5 25.5 15.10.36.10.19.5.50.5:0 TCP connection: 10.49.39.47. Peer reconnect time (msecs): 120000 Run the following commands to check the information on R2: R2#show mpls ldp graceful-restart instance 1 LDP Graceful Restart is enabled Neighbor Liveness Timer: 120 seconds Max Recovery Timer: 120 seconds Graceful Restart enabled Sessions: Peer LDP Ident: 10.23.10.5 26.5 10.5 Graceful Restart enabled.44.10.16.40.5 42.13.48.40.10.5 27.5 40.10.48.5 47.5 44. Downstream Up Time: 00:02:15 1-52 SJ-20140731105308-012|2014-10-20 (R1.15.10.State:Oper Peer LDP Ident: 10.43.5 33.27.5 48.26.5 43.41.9.5 31.5.35.14. Downstream Up Time: 00:02:21 LDP discovery sources: gei-0/1/0/6.1.State:Oper R2#show mpls ldp neighbor graceful-restart instance 1 Peer LDP Ident: 10.19.1 32.5 9.15.10.13.29.5 46.14.31.44.5 41.10.10.43.16.5 20.20.10.37. Msgs sent/rcvd: 23/127.5 13.5 18.34.28.10.5 Addresses bound to peer LDP Ident: 5.23. Msgs sent/rcvd: 127/22.0) ZTE Proprietary and Confidential .38.5 45.3.3.5 34.646 .26.35.33.5 21.10.10.5 19.50.42.45.25.32.5 16.ZXR10 M6000-S Configuration Guide (MPLS) local binding: label: 16395 remote binding: lsr: 10.5 36.39.10. label: 16388(inuse) R1#show mpls ldp graceful-restart instance 1 LDP Graceful Restart is enabled Neighbor Liveness Timer: 120 seconds Max Recovery Timer: 120 seconds Graceful Restart enabled Sessions: Peer LDP Ident: 10.27.6739 .5 17.10.38. Local LDP Ident: 10.46.5 38.10.24.5 14.18.10.5.5:0.10.State:Oper R1#show mpls ldp neighbor graceful-restart instance 1 Peer LDP Ident: 10.45.5 49.5:0.42.10.10.15.18.8.24.5 37.46.15.5 23.5 35.5 39.41.5 103.10.31.5 28.5.8.1:0.21.10.5:0. Src IP addr: 106.15.10.646 State: Oper.

5 44.45.47.5 18.2 90.1 Graceful Restart enabled.18. Src IP addr: 103.5:0.3.10.5 20.10. Downstream Up Time: 00:03:11 LDP discovery sources: gei-0/1/0/3.5.5. Src IP addr: 106.28.31.6738 .5 10.5 Graceful Restart enabled.10.32.49.5 50.25.13.3.39.10.10.29.16.50.48.5 106.5 46.1 32.27.31. Peer reconnect time (msecs): 120000 Run the following commands to check the information on R3: R3#show mpls ldp graceful-restart instance 1 LDP Graceful Restart is enabled Neighbor Liveness Timer: 120 seconds Max Recovery Timer: 120 seconds Graceful Restart enabled Sessions: Peer LDP Ident: 10.5 29.5 13.38.3.41.3.23.43.10.2 Graceful Restart enabled.5 15.8.10.40. Downstream Up Time: 00:02:15 LDP discovery sources: gei-0/1/0/3.10.46.36.5 19.5 26.10.35.5 24.10.2.48.4.2:0 TCP connection: 10.20.5 Addresses bound to peer LDP Ident: 5.26.10.5.10.5 42.9.15.64 10.5 27.44.35.21.10.27.5 16. Msgs sent/rcvd: 127/87. Msgs sent/rcvd: 88/127.49.1 Addresses bound to peer LDP Ident: 1.646 State: Oper.15.5 40.State:Oper R3#show mpls ldp neighbor graceful-restart instance 1 Peer LDP Ident: 10.5:0.1.32.2 101.1.10.47.10.37.9.5.15.3.2 Addresses bound to peer LDP Ident: 2.6738 State: Oper.10.5 28.5 37.5 14.26.5 35.5 33.10.3.2.10.18.15.36.15.5 34.5 21.2.45.5 39.14.5 31.5 43.5.1.5 48.5 103.15.10.646 .37. Peer reconnect time (msecs): 120000 Peer LDP Ident: 10.50.33. Peer reconnect time (msecs): 120000 1-53 SJ-20140731105308-012|2014-10-20 (R1.20. Local LDP Ident: 10.14.0) ZTE Proprietary and Confidential .23. Local LDP Ident: 10.5 25.5 36.3.8.34.16.46.34.5 47.33.28.Chapter 1 MPLS Configuration LDP discovery sources: gei-0/1/0/6.19.5 9.24.5 23.42.10.2:0.10.29.5 38.10.64 10.41.3.21.5 45.38.5:0 TCP connection: 10.64 8.43.10.2.13.19.10.40.24.39.10.44.5.1.5 41.25.15.15.5 49.5 17.1 106.2 103.10. Src IP addr: 103.42.2.

R1 will restart the GR Reconnet timer. rcov 120) R1 MPU-0/20/0 2012-4-28 01:15:56 mpls_ldp_1:GR: Added FT Sess TLV (Rconn 120000.10.1:0 TCP connection: 10.10.5:0 R1 MPU-0/20/0 2012-4-28 01:15:59 mpls_ldp_1:GR: 10. Downstream Up Time: 00:01:58 LDP discovery sources: gei-0/1/0/6.10.10.8.5:0:: recovery timer started.5 15.14.8.5 16.5 14.5:0: lost R1 MPU-0/20/0 2012-4-28 01:15:36 mpls_ldp_1:GR: down neighbor 10.10.13.10.5/-1:: refreshing stale binding from 10.10.10.5:0:: bindings retained R1 MPU-0/20/0 2012-4-28 01:15:56 mpls_ldp_1:GR: Received FT Sess TLV from 10.10. and R1 acting as the Helper party perceives the operations of R2.5:0.10.10.15.10. and restart the GR Recovery timer.10.10.10. Msgs sent/rcvd: 22/126.10.10.10.15.2/-1:: refreshing stale binding from 10. If the LDP session between the Restarter party and the Helper party is established again before the GR Reconnect timer of the Helper party times out.5.15.5 1-54 SJ-20140731105308-012|2014-10-20 (R1.10.1/-1:: refreshing stale binding from 10.10.646 State: Oper.10. Local LDP Ident: 10.120 secs R1 MPU-0/20/0 2012-4-28 01:15:59 mpls_ldp_1:GR: 10.10.5:0:: state change (Reconnect-Wait -> Recovering) R1 MPU-0/20/0 2012-4-28 01:15:59 mpls_ldp_1:GR: ptcl_adj: 10.10.5:0 (rconn 120.9.6751 .10.10. Src IP addr: 106.the items of the forwarding table related to the Restarter party will be saved.13.5 13.5:0 R1 MPU-0/20/0 2012-4-28 01:15:59 mpls_ldp_1:GR: 10. Rcov 120000) to INIT msg to 10. the Helper party will delete the GR Reconnect timer.5:0:: reconnect timer stopped R1 MPU-0/20/0 2012-4-28 01:15:59 mpls_ldp_1:GR: GR session 10.16.5 Addresses bound to peer LDP Ident: 5.64 8.10.5:0:: wait for reconnecting R1 MPU-0/20/0 2012-4-28 01:15:36 mpls_ldp_1:GR: GR session 10.10.10.10.10.9.10.10.10.10.5 9.ZXR10 M6000-S Configuration Guide (MPLS) When R2 acting as the Restarter party performs the active/standby changeover or restarts the LDP protocol.5:0:: reconnect timer started [120 secs] R1 MPU-0/20/0 2012-4-28 01:15:36 mpls_ldp_1:GR: GR session 10.0) ZTE Proprietary and Confidential .5.10.10.5:0 Run the following commands to check the Graceful Restart instance on R1: R1#show mpls ldp neighbor graceful-restart instance 1 Peer LDP Ident: 10.10.10.16.5:0:: established R1 MPU-0/20/0 2012-4-28 01:15:59 mpls_ldp_1:GR: ptcl_adj: 10. Before the GR Reconnect timer times out.10.5.10.14.15.1.10.10. R1 MPU-0/20/0 2012-4-28 01:15:36 mpls_ldp_1:GR: down nbr 10.5:0 R1 MPU-0/20/0 2012-4-28 01:15:59 mpls_ldp_1:GR: GR session 10.5 10.10.

32.10.15.5.5:0.10. Msgs sent/rcvd: 23/126.5 Addresses bound to peer LDP Ident: 5.10.39.1 32.2/32 gei-0/1/0/6 Next Hop M/S 106.5 23.15.5 25.5 29.5 46.10.5 28.10.20.5 39.19.40.10.25.5 9.26.15.29.10.5 45.43.28.5 20.40.5 42.10.5 106.10.5 49.19.1:0 TCP connection: 10.31.15.47.49.5 18.35. R1#show mpls ldp neighbor graceful-restart instance 1 Peer LDP Ident: 10.10.5 34.18.2/32 local binding: label: 16395 advertised to: 10.37.23. Src IP addr: 106.8.45.3.26.10.34.0) ZTE Proprietary and Confidential .1.10.5 41.25.41.2 Local Outgoing Prefix or Outgoing label label Tunnel Id interface 16395 16388 10.10.10.10.5 36.10.33.48.39.5.5 Status: recovering (2 seconds left) Run the following commands to check the LDP label on R1: R1#show mpls forwarding-table 10.5 40. label: exp-null(inuse)(stale) The above output information indicates that the Helper party marks the forwarding table related to GR Restarter with stale.49.5.10.9.3.24.10.5 1-55 SJ-20140731105308-012|2014-10-20 (R1.23.34.5 44.44.5 24.5 M The above output indicates that the LDP label of Graceful Restart is not changed.36.38.28.36.5:0.5 50.5 38.42.5.Chapter 1 MPLS Configuration 17.646 State: Oper.37.5:0(deleting) remote binding: lsr: 10.35.5.10. Downstream Up Time: 00:01:59 LDP discovery sources: gei-0/1/0/6. label: 16388(inuse)(stale) 10.5 37.5 43.41.24.21.10.15.5 48.50.44.5 26. the Helper party associates the Restarter party to restore the items of the forwarding table.20.10.21. Run the following commands to check the information of the LDP label on R1: R1#show mpls ldp bindings detail instance 1 10.46.5 31.27.38.5 27.32.5 35.43.33.9.10. Before the GR Recovery timer of the Helper party times out.5 10.5:0(deleting) remote binding: lsr: 10. Local LDP Ident: 10.42.5 103.18.10.10.8.46.10.15.47.5:0.50.31.5 21.5 19.10.5 33.45.27.29.48.6751 .5/32 local binding: label: 16388 advertised to: 10. and the Restarter party also associates the Helper party to restore the items of the forwarding table.64 8.5 47.10.

18.255.15.36.15.5 17.5 40.5 33.5 103.5 25.49.1 32.33.5 Graceful Restart enabled.2 32 instance 1 10.5 47.24.7 LSP Load-Sharing Configuration Example Scenario Description Figure 1-23 shows that OSPF is enabled between R1 and R2. Figure 1-23 LSP Load-Sharing Configuration Example Configuration Flow 1. and the load-sharing function is enabled for OSPF routes.5 49.5 34.5 29.5 27.50.25.26.20.13.34.2/32 local binding: label: 16395 remote binding: lsr: 10.5 46.45.3.36.5 15.39. 2.46.31.37. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.5 28.46.34.255.42.1.13.24.44.5. Enable LDP on the interfaces between R1 and R2.35.5 44.39.43.0) ZTE Proprietary and Confidential .43.21.5 18.18.15.29.5:0.20.5 16.29.1.37.49.19.32.47.5 39.38.35.44.5 31.ZXR10 M6000-S Configuration Guide (MPLS) 13.21.10.5 20.27.1 255.10.32.14.5 23.5 38.47.5 36.5 42.45.50.14.10.5 21.38.3.5 19.5 106.27.23.19.33.48.15.23.5 41.5 45. Peer reconnect time (msecs): 120000 R1#show mpls ldp bindings 10.5 14.41.40. Enable the load-sharing function for the OSPF routes between R1 and R2.16.48.28.5 43.5.5 35.16.31.10.5 50.40.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/1/1/5 R1(config-if-gei-0/1/1/5)#no shutdown 1-56 SJ-20140731105308-012|2014-10-20 (R1.41.28.6.26. label: 16388(inuse) 1.5 37.42.25.5 24.10.10.5 26.5 48.

255.0.0 R1(config-if-gei-0/3/0/1)#exit R1(config)#router ospf 1 R1(config-ospf-1)#router-id 1.1.0.116.110.111.0 area 0.0.0.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/1/1/5 R2(config-if-gei-0/1/1/5)#no shutdown R2(config-if-gei-0/1/1/5)#ip address 104.115.0 0.2 255.110.115.1 255.115.1.2 255.116.255 area 0.0 0.0 R2(config-ospf-1)#maximum-paths 2 1-57 SJ-20140731105308-012|2014-10-20 (R1.0 R1(config-ospf-1)#maximum-paths 2 R1(config-ospf-1)#exit R1(config)#mpls ldp instance 1 R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/1/1/5 R1(config-ldp-1-if-gei-0/1/1/5)#exit R1(config-ldp-1)#interface gei-0/3/0/1 R1(config-ldp-1-if-gei-0/3/0/1)#exit R1(config-ldp-1)#end Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.0 R2(config-ospf-1)#network 104.0 0.1 255.0.0.0.255.0 R1(config-ospf-1)#network 104.255 area 0.1.1.255.2 0.1 R1(config-ospf-1)#network 1.255 area 0.0.0 R2(config-if-gei-0/3/0/1)#exit R2(config)#router ospf 1 R2(config-ospf-1)#router-id 1.0.1.0.0.255.255.1.255.110.0.255.0) ZTE Proprietary and Confidential .2 R2(config-ospf-1)#network 1.0 area 0.0.0 R1(config-if-gei-0/1/1/5)#exit R1(config)#interface gei-0/3/0/1 R1(config-if-gei-0/3/0/1)#no shutdown R1(config-if-gei-0/3/0/1)#ip address 104.0.255.0.0 0.111.0.Chapter 1 MPLS Configuration R1(config-if-gei-0/1/1/5)#ip address 104.0 R2(config-ospf-1)#network 104.0 R1(config-ospf-1)#network 104.0.255.116.0.0 R2(config-if-gei-0/1/1/5)#exit R2(config)#interface gei-0/3/0/1 R2(config-if-gei-0/3/0/1)#no shutdown R2(config-if-gei-0/3/0/1)#ip address 104.1.1 0.115.0.111.255.255 area 0.111.0.110.1.0.0.1.116.0.2 255.1.0.

0.1.2 1 00:00:36 104.0.ZXR10 M6000-S Configuration Guide (MPLS) R2(config-ospf-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/1/1/5 R2(config-ldp-1-if-gei-0/1/1/5)#exit R2(config-ldp-1)#interface gei-0/3/0/1 R2(config-ldp-1-if-gei-0/3/0/1)#exit R2(config-ldp-1)#end Configuration Verification Run the show running-config ospfv2 command to check the OSPF configuration and LDP configuration.110.1.255 area 0.111. Local LDP Ident: 1.1 0.115.1:0 1-58 SJ-20140731105308-012|2014-10-20 (R1.110.0 0. The execution results are displayed as follows: R1(config)#show running-config ospfv2 !<ospfv2> router ospf 1 maximum-paths 2 network 1.1) (Process ID 1) Neighbor ID Pri State DeadTime Address Interface 1.0.0.111.1.1.0.1.0) ZTE Proprietary and Confidential .116.255 area 0.1.0 0.0. The execution results are displayed as follows: R1(config)#show ip ospf neighbor OSPF Router with ID (1.1.2:0.0.1 $ !</ospfv2> R1(config)#show running-config ldp !<LDP> mpls ldp instance 1 interface gei-0/1/1/5 $ interface gei-0/3/0/1 $ router-id loopback1 $ !</LDP> Run the following commands on R1 to check the statuses of the OSPF neighbor and LDP neighbor.0 area 0.1.0.0 network 104.0 router-id 1.1.1.0.1.0.0 network 104.0.2 gei-0/1/1/5 FULL/DR R1(config)#show mpls ldp nei instance 1 Peer LDP Ident: 1.0.1.

2 Addresses bound to peer LDP Ident: 1. GW-FWD: PS-BUSI.110.2 gei-0/1/1/5.1.1. STAT-V: Static-VRF.111. DHCP-S: DHCP-static.1.1. label: 16386 1.116.1.2/32 104. Src IP addr: 104. label: imp-null 17.1.1/32 local binding: label: imp-null remote binding: lsr: 1.110.1.2 gei-0/1/1/5 ospf 110 1 *> 1.0/24 local binding: label: imp-null 104.0/24 1-59 SJ-20140731105308-012|2014-10-20 (R1. NAT64: Stateless-NAT64. LDP-A: LDP-area.2/32 local binding: label: 16384 remote binding: lsr: 1.26100 . Msgs sent/rcvd: 91/97.1.1.2.2 IPv4 Routing Table: Headers: Dest: Destination.1. TE: RSVP-TE. ASBR-V: ASBR-VPN. : BROADC: Broadcast.2:0.2:0.111.1.2 Run the following command on R1 to check the load-sharing condition of IGP routes.1. Pri: Priority. Src IP addr: 104.646 State: Oper. >best Dest Gw Interface Owner Pri Metric *> 1.1.1.1.1.1.1.115.2:0.1.2 104. Codes Gw: Gateway.2/32 gei-0/1/1/5 104.110.2/32 gei-0/3/0/1 104.1. P-VRF: Per-VRF-label. USER-I: User-ipaddr.116.1.2 M R1(config)#show mpls ldp binding instance 1 1.2 M 16384 Poptag 1.110.1.1.111. Downstream Up Time: 01:04:43 LDP discovery sources: gei-0/3/0/1.1.1.116.1.116.1.2/32 104.110. status codes: *valid. GW-UE: PS-USER.1. MULTIC: Multicast. The execution results are displayed as follows: R1(config)#show mpls forwarding-table Local Outgoing Prefix or Outgoing label label Tunnel Id interface Next Hop M/S 16384 Poptag 1.111.0) ZTE Proprietary and Confidential .1.2 gei-0/3/0/1 ospf 110 1 Run the following commands on R1 to check entries in the LSP load-sharing table.115.1.115.0/24 local binding: label: imp-null remote binding: lsr: 1.Chapter 1 MPLS Configuration TCP connection: 1.115.1. label: imp-null(inuse:2) 12. USER-N: User-network.111. USER-S: User-special. The execution results are displayed as follows: R1(config)#show ip forwarding route 1.1.2 104. DHCP-D: DHCP-DFT.

116.2:0.100. and enable LDP BFD on the two routers. 2.0/24 local binding: label: imp-null remote binding: lsr: 1. label: imp-null 1. Enable MPLS on the directly-connected interfaces of R1 and R2.1.2:0. Configure the IP addresses of loopback interfaces to be LSR router-IDs.255.34 255.ZXR10 M6000-S Configuration Guide (MPLS) local binding: label: imp-null remote binding: lsr: 1.1.1. and ensure that the loopback interfaces on R1 and R2 can ping each other over the route.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.8 LDP BFD Configuration Example Scenario Description Figure 1-24 shows that a sample network topology.100.255. 3.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit 1-60 SJ-20140731105308-012|2014-10-20 (R1. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. Figure 1-24 LDP BFD Configuration Example Configuration Flow 1.1.255. Enable the LDP BFD function on R1 and R2.1. It is required to establish a neighbor relationship between R1 and R2.0002.6.0) ZTE Proprietary and Confidential . Configure an IGP route. label: imp-null 104.0001 R1(config-isis-1)#system-id 0001. 4.1.1 255.115.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.255.

100.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis 1 R2(config-isis-1)#area 00.0035 R2(config-isis-1)#interface gei-0/3/0/7 R2(config-isis-1-if-gei-0/3/0/7)#ip router isis R2(config-isis-1-if-gei-0/3/0/7)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#bfd 1.255.1.1.1.1.35 32 interval 100 min-rx 20 multiplier 5 R1(config-ldp-1)#exit Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.0) ZTE Proprietary and Confidential .35 255.0002 R2(config-isis-1)#system-id 0002.Chapter 1 MPLS Configuration R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit R1(config)#mpls ldp instance 1 /*Configures the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#bfd 1.2 255.255.255.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.1.1.255.0002.34 32 interval 100 min-rx 20 multiplier 5 R2(config-ldp-1)#exit 1-61 SJ-20140731105308-012|2014-10-20 (R1.100.

35.1.1.1.1. Downstream Up Time: 00:00:30 LDP discovery sources: gei-0/3/0/7.0) ZTE Proprietary and Confidential .1.100.34) has been established. the route to the loopback interface). using loopback interface addresses as the router-ids of LDP instances is helpful for the stability of LDP operation.1. Local LDP Ident 1.1. Run the show bfd neighbor ldp brief command on R1 to check whether an LDP BFD neighbor has been established.1.1069 state: Oper.1. the goal of running the IS-IS protocol is to advertise the router-id of each LSR (that is.1 holdtime: 15000 ms.34 100.1.35 32 LD 2050 RD Hold State 2050 60 UP 1-62 SJ-20140731105308-012|2014-10-20 (R1.100. "state: Oper" indicates that the session status is Oper.34.34:0.ZXR10 M6000-S Configuration Guide (MPLS) Note: In the above configuration.100. Src IP addr: 100.1.1 Session holdtime: 180000 ms.1. which means that the parameter negotiation is correct. KA interval: 60000 ms LDP Peer BFD not register. Msgs sent/rcvd: 47/48.1.100.1. LDP dynamic capability enable: LDP send capability: LDP dynamic capability LDP Typed Wildcard FEC Cap LDP Unrecognized Noti Cap LDP received capability: LDP dynamic capability negotiate success LDP Typed Wildcard FEC Cap negotiate success LDP Unrecognized Noti Cap negotiate success In the sample output. The execution results are displayed as follows: R1(config)#show bfd neighbor ldp brief PeerAddr PrefixLen 1. and a neighbor relationship with R1 (1. Configuration Verification Run the show mpls ldp neighbor detail instance 1 command on R2 to check whether an LDP neighbor has been established.35:0 TCP connection: 1.646 . hello interval: 5000 ms Addresses bound to peer LDP Ident: 1. Because loopback interfaces are stable (unless you close interfaces manually). The execution results are displayed as follows: R2(config)#show mpls ldp neighbor detail instance 1 Peer LDP Ident: 1.1.

100.1.1.0) ZTE Proprietary and Confidential .100.2 Prefixlen:0 Local Discr:2049 Remote Discr:2049 State:UP Holdown(ms):500 Vpnid:0 VRF Name:-- BFD Type:LDP[Passive] Instance Name: ---------------------------------------------------------------------------Version:1 Dest UDP Port:3784 Final Bit:1 Local Diag:0 Demand Mode:0 Poll Bit:0 MinTxInt:10 MinRxInt:10 Multiplier:3 Received MinTxInt:100 Received MinRxInt:20 Received Multiplier:5 Length:24 Min Echo Interval:0 Rx Count:1983 Rx Interval (ms) min/max/avg:0 /78 /39 Tx Count:8586 Tx Interval (ms) min/max/avg:18 /18 /18 Registered Protocols:--Uptime:0 day(s).Chapter 1 MPLS Configuration 100.35 Prefixlen:32 Local Discr:2050 Remote Discr:2050 State:UP Holdown(ms):60 Vpnid:0 VRF Name:-- BFD Type:LDP[Active] Instance Name: ---------------------------------------------------------------------------Version:1 Dest UDP Port:3784 Final Bit:1 Local Diag:0 Demand Mode:0 Poll Bit:0 MinTxInt:100 MinRxInt:20 Multiplier:5 Received MinTxInt:10 Received MinRxInt:10 Received Multiplier:3 Length:24 Min Echo Interval:0 Rx Count:6393 Rx Interval (ms) min/max/avg:2 /18 /10 Tx Count:1457 Tx Interval (ms) min/max/avg:79 /79 /79 Registered Protocols:LDP LSP Uptime:0 day(s).2 minute(s) Control Plane Rcv Phy Interface Name:gei-0/2/0/7 1-63 SJ-20140731105308-012|2014-10-20 (R1.0 hour(s).100.2 0 2049 2049 500 UP R1(config)#show bfd neighbor ldp detail ---------------------------------------------------------------------------PeerAddr :1.100.2 minute(s) Control Plane Rcv Phy Interface Name:gei-0/2/0/7 ============================================================================ ---------------------------------------------------------------------------PeerAddr :100.0 hour(s).

It is required to enable the peer BFD function on the two routers. Figure 1-25 PEER BFD Configuration Example Configuration Flow 1.34 255.100.255.255.255. 4.1.0) ZTE Proprietary and Confidential .6.0001 R1(config-isis-1)#system-id 0001.9 Peer BFD Configuration Example Scenario Description Figure 1-25 shows that an LDP neighbor relationship is established between R1 and R2.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.1 255. Configure the IP addresses of loopback interfaces to be LSR router-IDs. and ensure that the loopback interfaces on R1 and R2 can ping each other. 3.1.ZXR10 M6000-S Configuration Guide (MPLS) ============================================================================ 1. Configure an IGP route.0002.100.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit 1-64 SJ-20140731105308-012|2014-10-20 (R1.255. Enable the PEER BFD function. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100. 2. Enable MPLS on the directly-connected interfaces of R1 and R2.

1.0) ZTE Proprietary and Confidential .0035 R2(config-isis-1)#interface gei-0/3/0/7 R2(config-isis-1-if-gei-0/3/0/7)#ip router isis R2(config-isis-1-if-gei-0/3/0/7)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#peer bfd remote-routerid 1.1.1.255.35 R1(config-ldp-1)#exit R1(config)#bfd R1(config-bfd)#session 1 peer-bfd ipv4 1.255.0002.1.34 R2(config-ldp-1)#exit R2(config)#bfd R2(config-bfd)#session 1 peer-bfd ipv4 1.0002 R2(config-isis-1)#system-id 0002.100.1.1.1.35 1.100.Chapter 1 MPLS Configuration R1(config)#mpls ldp instance 1 /*Configure the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#peer bfd remote-routerid 1.34 1.1.1.255.35 255.255.1.34 R2(config-bfd)#exit 1-65 SJ-20140731105308-012|2014-10-20 (R1.1.1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.1.35 R1(config-bfd)#exit Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.1.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis 1 R2(config-isis-1)#area 00.2 255.

35:0 TCP connection: 1.100.35 2087 2085 150 UP Interface -- 1-66 SJ-20140731105308-012|2014-10-20 (R1.1.1.1.1 Session holdtime: 180000 ms.1. Because loopback interfaces are stable (unless you close interfaces manually). The execution results are displayed as follows: R1(config-ldp-1)#show bfd neighbors ip brief LocalAddr PeerAddr LD RD Hold State 1. which means that the parameter negotiation is correct. The execution results are displayed as follows: R2(config)#show mpls ldp neighbor detail instance 1 Peer LDP Ident: 1. KA interval: 60000 ms LDP Peer BFD state up. LDP dynamic capability enable: LDP send capability: LDP dynamic capability LDP Typed Wildcard FEC Cap LDP Unrecognized Noti Cap LDP received capability: LDP dynamic capability negotiate success LDP Typed Wildcard FEC Cap negotiate success LDP Unrecognized Noti Cap negotiate success In the sample output.34:0. "state: Oper" indicates that the session status is Oper.34. Configuration Verification Run the show mpls ldp neighbor detail instance 1 command on R2 to check whether an LDP neighbor has been established.1069 state: Oper.1.1.34 1.1.0) ZTE Proprietary and Confidential .1. Msgs sent/rcvd: 47/48.1 holdtime: 15000 ms. using loopback interface addresses as the router-ids of LDP instances is helpful for the stability of LDP operation.35.1.100. Src IP addr: 100. the goal of running the IS-IS protocol is to advertise the router-id of each LSR (that is.1.646 . hello interval: 5000 ms Addresses bound to peer LDP Ident: 1.1. Run the show bfd neighbors ip brief command on R1 to check whether a PEER BFD neighbor has been established.ZXR10 M6000-S Configuration Guide (MPLS) Note: In the above configuration. Downstream Up Time: 00:00:30 LDP discovery sources: gei-0/3/0/7.1.1.34) has been established.1.100.1.34 100. and a neighbor relationship with R1 (1.1.1. Local LDP Ident 1.100. the route to the loopback interface).

1.6. l l In the GTSM-based non-directly-connected session configuration.1.0 hour(s).35 Local Discr:2087 Remote Discr:2085 Holdown(ms):150 Interface:--- Vpnid:0 VRF Name:--- State:UP BFD Type:MultiHop Instance Name:1 ---------------------------------------------------------------------------Version:1 Dest UDP Port:4784 Final Bit:1 Local Diag:0 Demand Mode:0 Poll Bit:0 MinTxInt:50 MinRxInt:50 Multiplier:3 Received MinTxInt:50 Received MinRxInt:50 Received Multiplier:3 Length:24 Min Echo Interval:0 Min BFD Length:24 Max BFD Length:24 Rx Count:8746 Rx Interval (ms) min/max/avg:0 /49 /24 Tx Count:9124 Tx Interval (ms) min/max/avg:46 /46 /46 Registered Protocols:LDPINSTANCE Uptime:0 day(s).34 PeerAddr :1. 1-67 SJ-20140731105308-012|2014-10-20 (R1.1. In the GTSM-based directly-connected session configuration.10 GTSM Configuration Example Scenario Description Figure 1-26 shows a sample network topology for the GTSM configuration.7 minute(s) Control Plane Rcv Phy Interface Name:gei-0/2/0/7 ============================================================================ 1. it is required to set the hop count of the session to 1 on R2. This can prevent a target session being established between R2 and R3.0) ZTE Proprietary and Confidential .Chapter 1 MPLS Configuration R1(config-ldp-1)#show bfd neighbors ip detail ---------------------------------------------------------------------------LocalAddr:1. it is required to respectively configure a GTSM-based directly-connected session on R1 and R2 to negotiate the session between the two ends.1.

3.ZXR10 M6000-S Configuration Guide (MPLS) Figure 1-26 GTSM Configuration Example Configuration Flow 1.0001 R1(config-isis-0)#system-id 0001.0) ZTE Proprietary and Confidential . On R2.255. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.255.255.1. Establish a directly-connected session between R1 and R3.200. configure a GTSM-based directly-connected session with R2. On R1.1.100. 4.200.0002. 6. set the hop count for the GTSM-based non-directly-connected session to 1. 2.100.255.255.1 255.34 255. Establish a target session between R2 and R3.1 255.0034 R1(config-isis-0)#interface gei-0/2/0/7 R1(config-isis-0-if-gei-0/2/0/7)#ip router isis R1(config-isis-0-if-gei-0/2/0/7)#exit R1(config-isis-0)#interface gei-0/2/0/8 R1(config-isis-0-if-gei-0/2/0/8)#ip router isis R1(config-isis-0-if-gei-0/2/0/8)#exit R1(config-isis-0)#interface loopback1 R1(config-isis-0-if-loopback1)#ip router isis R1(config-isis-0-if-loopback1)#exit R1(config-isis-0)#exit 1-68 SJ-20140731105308-012|2014-10-20 (R1. 5.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#interface gei-0/2/0/8 R1(config-if-gei-0/2/0/8)#no shutdown R1(config-if-gei-0/2/0/8)#ip address 200. configure a GTSM-based directly-connected session with R1.0 R1(config-if-gei-0/2/0/8)#exit R1(config)#router isis R1(config-isis-0)#area 00. On R2. Establish a directly-connected session between R1 and R2.255.

35 255.100.0035 R2(config-isis-0)#interface gei-0/3/0/7 R2(config-isis-0-if-gei-0/3/0/7)#ip router isis R2(config-isis-0-if-gei-0/3/0/7)#exit R2(config-isis-0)#interface loopback1 R2(config-isis-0-if-loopback1)#ip router isis R2(config-isis-0-if-loopback1)#exit R2(config-isis-0)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp)#interface gei-0/3/0/7 /*Run the following command to configure a GTSM-based directly-connected session: */ R2(config-ldp-1-if-gei-0/3/0/7)#gtsm R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#target-session 1.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-0)#area 00.1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.255.*/ /*set the GTSM hop count to 1.1.0002 R2(config-isis-0)#system-id 0002.255.2 255.255.1.39 /*After the target session between R2 and R3 goes up. and configure the neighbor*/ /*address to the router-id of R3*/ R2(config-ldp-1)#gtsm target-neighbor 1.1.255.1.0) ZTE Proprietary and Confidential .1.39 hop-count 1 R2(config-ldp-1)#exit 1-69 SJ-20140731105308-012|2014-10-20 (R1.0002.Chapter 1 MPLS Configuration R1(config)#mpls ldp instance 1 R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 /*Run the following command to configure a GTSM-based directly-connected session: */ R1(config-ldp-1-if-gei-0/2/0/7)#gtsm R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#interface gei-0/2/0/8 R1(config-ldp-1-if-gei-0/2/0/8)#exit R1(config-ldp-1)#exit Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.100.

0) ZTE Proprietary and Confidential .39 Addresses bound to peer LDP Ident: 1.255 R3(config-if-loopback1)#exit R3(config)#interface gei-0/3/0/7 R3(config-if-gei-0/3/0/7)#no shutdown R3(config-if-gei-0/3/0/7)#ip address 200.39.646 state: Oper.100.1072 .1.0003 R3(config-isis-0)#system-id 0003.1.255.1.1.1.1.39 100.200.39). R2 cannot received the packets from R3.0003.1. Local LDP Ident 1.1. Src IP addr: 1. and the hop count between R2 and R3 is 2.1.1.255.200.35:0 TCP connection: 1.39:0.1.0 R3(config-if-gei-0/3/0/7)#exit R3(config)#router isis R3(config-isis-0)#area 00.39.1.1.35 R3(config-ldp-1)#exit Configuration Verification Run the show mpls ldp neighbor command on R2 to check whether a neighbor has been established (performed after the GTSM configuration and before the session times out): R2(config)#show mpls ldp neighbor instance 1 Peer LDP Ident: 1.39 255.100.ZXR10 M6000-S Configuration Guide (MPLS) Run the following commands on R3: R3(config)#interface loopback1 R3(config-if-loopback1)#ip address 1.200. Downstream Up Time: 00:00:02 LDP discovery sources: Targeted Hello (1.255.2 LDP neighbor may be up to 1 hops away Because the hop count for the GTSM-based non-directly-connected session is set to 1.1.2 255.1.1.2 200.1.0039 R3(config-isis-0)#interface gei-0/3/0/7 R3(config-isis-0-if-gei-0/3/0/7)#ip router isis R3(config-isis-0-if-gei-0/3/0/7)#exit R3(config-isis-0)#interface loopback1 R3(config-isis-0-if-loopback1)#ip router isis R3(config-isis-0-if-loopback1)#exit R3(config-isis-0)#exit R3(config)#mpls ldp instance 1 R3(config-ldp-1)#router-id loopback1 R3(config-ldp-1)#interface gei-0/3/0/7 R3(config-ldp-1-if-gei-0/3/0/7)#exit R3(config-ldp-1)#target-session 1.1. 1-70 SJ-20140731105308-012|2014-10-20 (R1.1.200.255. Msgs sent/rcvd: 50/46.

Configure an OSPF instance on R1.1. Figure 1-27 LDP IGP Synchronization Configuration Example (OSPF) Configuration Flow 1.646 .1072 state: Oper.111.255. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 111.0) ZTE Proprietary and Confidential .1.1. Establish a directly-connected session between R1 and R2.34.1.34:0 TCP connection: 1. set the timeout of the delay timer for LDP IGP synchronization to 10 seconds.100.255 R1(config-if-loopback1)#exit 1-71 SJ-20140731105308-012|2014-10-20 (R1. and enable LDP IGP synchronization for the OSPF instance. Src IP addr: 100.Chapter 1 MPLS Configuration which causes the session to go down.2 LDP neighbor may be up to 1 hops away It can be seen that the negotiation for the GTSM-based directly-connected session between R1 and R2 is successful.6.11 LDP IGP Synchronization Configuration Example (OSPF) Scenario Description Figure 1-27 shows a sample network topology. 2. the session comes up again.255.1. R1(config)#show mpls ldp neighbor instance 1 Peer LDP Ident: 1. Local LDP Ident 1.35.2 Addresses bound to peer LDP Ident: 1. 1.1. Run the show mpls ldp neighbor command on R1 to check whether a neighbor has been established.35:0.1.35 100.111 255. On R1.1.100.1.1. After the GTSM configuration is deleted.1. 3.100.111.100. Downstream Up Time: 00:00:02 LDP discovery sources: gei-0/2/0/7. Msgs sent/rcvd: 46/50. It is required to enable LDP IGP synchronization on the two OSPF interfaces of R1.

100 255.20.0.0 R2(config-if-gei-0/1/0/3)#no shutdown R2(config-if-gei-0/1/0/3)#exit R2(config)#interface gei-0/1/0/4 R2(config-if-gei-0/1/0/4)#ip address 40.255.255 area 0.255.20.121 255.255.0 255.0 R1(config-ospf-1)#exit R1(config)#mpls ldp instance 1 R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/1/0/3 R1(config-ldp-1)#interface gei-0/1/0/4 R1(config-ldp-1)#igp sync delay 10 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 121.255.255.20.255.100 255.40.0 R1(config-if-gei-0/1/0/4)#no shutdown R1(config-if-gei-0/1/0/4)#exit R1(config)#router ospf 1 R1(config-ospf-1)#mpls ldp sync R1(config-ospf-1)#network 0.255.255.255 area 0.255.0 255.ZXR10 M6000-S Configuration Guide (MPLS) R1(config)#interface gei-0/1/0/3 R1(config-if-gei-0/1/0/3)#ip address 20.40.255.121.121.0.0 R2(config-if-gei-0/1/0/4)#no shutdown R2(config-if-gei-0/1/0/4)#exit R2(config)#router ospf 1 R2(config-ospf-1)#network 0.0.0.0.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/1/0/3 R2(config-if-gei-0/1/0/3)#ip address 20.20.200 255.0 R2(config-ospf-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/1/0/3 R2(config-ldp-1)#interface gei-0/1/0/4 1-72 SJ-20140731105308-012|2014-10-20 (R1.255.0 R1(config-if-gei-0/1/0/3)#no shutdown R1(config-if-gei-0/1/0/3)#exit R1(config)#interface gei-0/1/0/4 R1(config-if-gei-0/1/0/4)#ip address 40.200 255.0.0.255.40.255.40.0) ZTE Proprietary and Confidential .255.0.

121.121.121:0.100 255.40. Downstream Up Time: 00:29:46 LDP discovery sources: gei-0/1/0/3.111:0 TCP connection: 121. Src IP addr: 40.111.Chapter 1 MPLS Configuration Configuration Verification Run the show mpls ldp neighbor command to check whether a neighbor has been established.111.646 State: Oper.100) (Process ID 1) gei-0/1/0/4 is up Track State is unknown Internet Address 40. Authentication Type null TTL security disabled LDP sync enabled LDP sync state achieved Sending max metric 1-73 SJ-20140731105308-012|2014-10-20 (R1.121.40.20.0 enable Up for 01:00:28 In the area 0.0. Local LDP Ident: 111.255.20.121.0. Msgs sent/rcvd: 47/64.121.111.255.121 It can be seen that the session is maintained by sending hello messages from the two interfaces. Run the show mpls ldp igp sync ins 1 command on R1 to check the information and status of LDP IGP synchronization. Sync status: Ready Peers: 121.121.200 gei-0/1/0/4.121:0 (Fully Operational) Run the show ip ospf interface command on R1 to check the information and status of LDP IGP synchronization for OSPF interfaces.40. Network Type broadcast Transmit Delay(sec) 1.26459 .20.20. Sync status: Ready Peers: 121.121.121:0 (Fully Operational) gei-0/1/0/4: LDP configured.121.40. The execution results are displayed as follows: Peer LDP Ident: 121.121.0) ZTE Proprietary and Confidential .20.121.111.40.20.200 Addresses bound to peer LDP Ident: 20.121. OSPF Router with ID (20.111. LDP-IGP Synchronization enabled. gei-0/1/0/3: LDP configured.111. LDP-IGP Synchronization enabled.200 40.0 DR Cost 1.200 121. Src IP addr: 20. Priority 1.40.

Authentication Type null TTL security disabled LDP sync enabled LDP sync state unachieved Sending max metric Timer intervals(sec) : Hello 10.22. It can be seen that the status of LDP IGP synchronization for the gei-0/1/0/4 interface changes to Not ready.100.40. Run the show mpls ldp igp sync ins 1 command on R1 to check the information and status of LDP IGP synchronization. Priority 1.20. LDP-IGP Synchronization enabled.40.20. Interface address 40.100. Interface address 40.22.22.22 BDR 1-74 SJ-20140731105308-012|2014-10-20 (R1.0 enable Up for 01:37:22 In the area 0. gei-0/1/0/3: LDP configured.20.0 DR Cost 1.100 255.0.40.100) (Process ID 1) gei-0/1/0/4 is up Track State is unknown Internet Address 40.ZXR10 M6000-S Configuration Guide (MPLS) Timer intervals(sec) : Hello 10.121.121.22.22 BDR Run the shutdown command on the gei-0/1/0/4 interface of R2. Dead 40.22. Number of Adjacent neighbors 1 22.40.40. Interface address 40.22. Retransmit 5 Designated Router (ID) 20. Dead 40.40.100 Backup Designated router (ID) 22. Network Type broadcast Transmit Delay(sec) 1. Sync status: Ready Peers: 121. It can be seen that the status of LDP IGP synchronization for the gei-0/1/0/4 interface is not achieved.40.20.255.40.20.40. Sync status: Not ready Peers: Run the show ip ospf interface command on R1 to check the information and status of LDP IGP synchronization for the OSPF interfaces. Interface address 40. Retransmit 5 Designated Router (ID) 20.22.40.200 Number of Neighbors 1.121:0 (Fully Operational) gei-0/1/0/4: LDP configured.22.100 Backup Designated router (ID) 22.22.20.22.255.0. and check the status of OSPF IGP synchronization and metric of the OSPF route.0) ZTE Proprietary and Confidential .200 Number of Neighbors 1. LDP-IGP Synchronization enabled. OSPF Router with ID (20. Number of Adjacent neighbors 1 22.

Chapter 1 MPLS Configuration 1.12 LDP IGP Synchronization Configuration Example (IS-IS) Scenario Description Figure 1-28 shows a sample network topology.255.255.255. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 111.255.255.20.111. set the timeout of the delay timer for LDP IGP synchronization to 10 seconds.0034 R1(config-isis-0)#mpls ldp sync R1(config-isis-0)#interface gei-0/1/0/3 R1(config-isis-0-if-gei-0/1/0/3)#ip router isis R1(config-isis-0-if-gei-0/1/0/3)#exit R1(config-isis-0)#interface gei-0/1/0/4 R1(config-isis-0-if-gei-0/1/0/4)#ip router isis 1-75 SJ-20140731105308-012|2014-10-20 (R1.111. It is required to enable LDP IGP Figure 1-28 LDP IGP Synchronization Configuration Example (IS-IS) Configuration Flow 1. Configure an IS-IS instance on R1.111 255.0002.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/1/0/3 R1(config-if-gei-0/1/0/3)# ip address 20.255.40. 3.0) ZTE Proprietary and Confidential . 2. and enable LDP IGP synchronization for the IS-IS instance.100 255. Establish a directly-connected session between R1 and R2.40.20.100 255.0001 R1(config-isis-0)#system-id 0001.0 R1(config-if-gei-0/1/0/3)# no shutdown R1(config-if-gei-0/1/0/3)#exit R1(config)#interface gei-0/1/0/4 R1(config-if-gei-0/1/0/4)# ip address 40.0 R1(config-if-gei-0/1/0/4)# no shutdown R1(config-if-gei-0/1/0/4)#exit R1(config)#router isis R1(config-isis-0)#area 00. synchronization on the two IS-IS interfaces of R1. On R1.6.

20.0035 R2(config-isis-0)#mpls ldp sync R2(config-isis-0)#interface gei-0/1/0/3 R2(config-isis-0-if-gei-0/1/0/3)#ip router isis R2(config-isis-0-if-gei-0/1/0/3)#exit R2(config-isis-0)#interface gei-0/1/0/4 R2(config-isis-0-if-gei-0/1/0/4)#ip router isis R2(config-isis-0-if-gei-0/1/0/4)#exit R2(config-isis-0)#interface loopback1 R2(config-isis-0-if-loopbck1)#ip router isis R2(config-isis-0-if-loopbck1)#exit R2(config-isis-0)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/1/0/3 R2(config-ldp-1)#interface gei-0/1/0/4 1-76 SJ-20140731105308-012|2014-10-20 (R1.40.0002 R2(config-isis-0)#system-id 0002.255.0002.255.121.200 255.121 255.255.255.20.121.255.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/1/0/3 R2(config-if-gei-0/1/0/3)# ip address 20.ZXR10 M6000-S Configuration Guide (MPLS) R1(config-isis-0-if-gei-0/1/0/4)#exit R1(config-isis-0)#interface loopback1 R1(config-isis-0-if-loopback1)#ip router isis R1(config-isis-0-if-loopback1)#exit R1(config-isis-0)#exit R1(config)#mpls ldp instance 1 R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/1/0/3 R1(config-ldp-1)#interface gei-0/1/0/4 R1(config-ldp-1)#igp sync delay 10 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 121.40.0 R2(config-if-gei-0/1/0/4)# no shutdown R2(config-if-gei-0/1/0/4)#exit R2(config)#router isis R2(config-isis-0)#area 00.0 R2(config-if-gei-0/1/0/3)# no shutdown R2(config-if-gei-0/1/0/3)#exit R2(config)#interface gei-0/1/0/4 R2(config-if-gei-0/1/0/4)# ip address 40.200 255.255.0) ZTE Proprietary and Confidential .

Sync Status(L1/L2): Achieved/Achieved Level-1 Metric:10 Priority:64 LAN ID:no found Number of active adjacencies:0 Next hello in seconds:3 Level-2 Metric:10 Priority:64 LAN ID:ZXR10. Src IP addr: 40.26469 .111.200 40.02 1-77 SJ-20140731105308-012|2014-10-20 (R1.121.121:0 (Fully Operational) gei-0/1/0/4: LDP configured.200 121. Run the show mpls ldp igp sync ins 1 command on R1 to check the information and status of LDP IGP synchronization. Src IP addr: 20.121. The execution results are displayed as follows: Peer LDP Ident: 121.111. Sync status: Ready Peers: 121.111. Downstream Up Time: 00:14:03 LDP discovery sources: gei-0/1/0/3.121.121.121.121. Local LDP Ident: 111.Chapter 1 MPLS Configuration Configuration Verification Run the show mpls ldp neighbor command to check whether a neighbor has been established.111.20. Msgs sent/rcvd: 22/21. ZXR10(config-isis-0)#show isis circuits detail Process ID: 0 Interface:gei-0/1/0/3 Status:Up Track Status:Unknown Encapsulation:SAP Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable.40. Sync status: Ready Peers: 121.121 It can be seen that the session is maintained by sending hello messages from the two interfaces. It can be seen that the status has changed to "Achieved".20.121:0 (Fully Operational) Run the show isis circuits detail command to check the information and status of LDP IGP synchronization for the IS-IS interfaces of R1.0) ZTE Proprietary and Confidential .40.111:0 TCP connection: 121.121.121:0. LDP-IGP Synchronization enabled. gei-0/1/0/3: LDP configured.121.121.121.111.200 Addresses bound to peer LDP Ident: 20.20. LDP-IGP Synchronization enabled.646 State: Oper.111.200 gei-0/1/0/4.40.121.20.40.

LDP-IGP Synchronization enabled.0) ZTE Proprietary and Confidential . It can be seen that the status of LDP IGP synchronization for the gei-0/1/0/4 interface changes to "Not ready". Run the show mpls ldp igp sync ins 1 command on R1 to check the information and status of LDP IGP synchronization.ZXR10 M6000-S Configuration Guide (MPLS) Number of active adjacencies:1 Next hello in seconds:3 Interface:gei-0/1/0/4 Status:Up Track Status:Unknown Encapsulation:SAP Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable.121. It can be seen that the status of LDP IGP synchronization for the gei-0/1/0/4 interface is "unachieved". Sync status: Not ready Peers: Run the show isis circuits detail command on R1 to check the information and status of LDP IGP synchronization for the IS-IS interfaces of R1.00 Active Adj state:No adjacency Next hello in seconds:0 Run the shutdown command on the gei-0/1/0/4 interface of R2. and check the status of IS-IS IGP synchronization and the metric of the IS-IS route.121. LDP-IGP Synchronization enabled. Sync Status(L1/L2): Unknown/Unknown Level-1 Metric:10 Level-2 Metric:10 Circuit ID:ZXR10. Sync Status(L1/L2): Achieved/Achieved Level-1 Metric:10 Priority:64 LAN ID:no found Number of active adjacencies:0 Next hello in seconds:8 Level-2 Metric:10 Priority:64 LAN ID:ZXR10.121:0 (Fully Operational) gei-0/1/0/4: LDP configured.03 Number of active adjacencies:1 Next hello in seconds:8 Interface:loopback11 Status:Up Track Status:Unknown Encapsulation:SAP Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable. Sync status: Ready Peers: 121. gei-0/1/0/3: LDP configured. 1-78 SJ-20140731105308-012|2014-10-20 (R1.

Chapter 1 MPLS Configuration Process ID: 0 Interface:gei-0/1/0/3 Status:Up Track Status:Unknown Encapsulation:SAP Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable.02 Number of active adjacencies:1 Next hello in seconds:7 Interface:gei-0/1/0/4 Status:Up Track Status:Unknown Encapsulation:SAP Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable.0) ZTE Proprietary and Confidential .You can check the LDPIGP synchronization and FRR operation result on R1 through a serieas of operations.00 Active Adj state:No adjacency Next hello in seconds:0 1. 1-79 SJ-20140731105308-012|2014-10-20 (R1.6.13 Instance with LDPIGP Synchronization Integrated with FRR Scenario Description Configure LDPIGP synchronization and the FRR on R1 and LDPIGP synchronization on R2. Sync Status(L1/L2): Achieved/Achieved Level-1 Metric:10 Priority:64 LAN ID:no found Number of active adjacencies:0 Next hello in seconds:7 Level-2 Metric:10 Priority:64 LAN ID:ZXR10. Sync Status(L1/L2): UnAchieved/UnAchieved Level-1 Metric:63 Priority:64 LAN ID:no found Number of active adjacencies:0 Next hello in seconds:2 Level-2 Metric:63 Priority:64 LAN ID:no found Number of active adjacencies:0 Next hello in seconds:2 Interface:loopback11 Status:Up Track Status:Unknown Encapsulation:SAP Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable. Sync Status(L1/L2): Unknown/Unknown Level-1 Metric:10 Level-2 Metric:10 Circuit ID:ZXR10.

2.2.2.73 255. Configuration Commands Run the following commands on R1: R1(config)#interface xgei-0/2/0/3 R1(config-if-xgei-0/2/0/3)#ip address 103.73 255.3.73 255. 4.0) ZTE Proprietary and Confidential . Configure the MPLS LDP protocol on R1.255.0 R1(config-if-xgei-0/2/0/4)#exit R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 3.255.0.255.255.0 R1(config-if-xgei-0/2/0/3)#exit R1(config)#interface xgei-0/2/0/4 R1(config-if-xgei-0/2/0/4)#ip address 104.255. 3. Configure the IS-IS routing protocol on R2 and enable the LDPIGP synchronization function.255.73.ZXR10 M6000-S Configuration Guide (MPLS) Figure 1-29 Network Diagram for LDPIGP Synchronization Integrated with FRR Configuration Flow 1. Configure the MPLS LDP protocol on R2.0.255 R1(config-if-loopback1)#exit R1(config)#router isis R1(config-isis-0)#interface xgei-0/2/0/3 R1(config-isis-0-if-xgei-0/2/0/3)#ip router isis R1(config-isis-0-if-xgei-0/2/0/3)#metric 30 R1(config-isis-0-if-xgei-0/2/0/3)#exit R1(config-isis-0)#interface xgei-0/2/0/4 R1(config-isis-0-if-xgei-0/2/0/4)#ip router isis R1(config-isis-0-if-xgei-0/2/0/4)#metric 20 R1(config-isis-0-if-xgei-0/2/0/4)#exit R1(config-isis-0)#fast-reroute enable R1(config-isis-0)#mpls ldp sync R1(config-isis-0)#exit R1(config)#mpls ldp instance 1 R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface xgei-0/2/0/3 1-80 SJ-20140731105308-012|2014-10-20 (R1. Configure the IS-IS routing protocol on R1 and enable the FRR and LDPIGP synchronization function.

255.72 255.72.255.255.255. DHCP-D: DHCP-DFT.72 255. Sta: Status.2. Gw: Gateway.2. USER-N: User-network. P-VRF: Per-VRF-label.72 255. NAT64: Stateless-NAT64.255 R2(config-if-loopback1)#exit R2(config)#router isis R2(config-isis-0)#interface xgei-0/3/0/3 R2(config-isis-0-if-xgei-0/3/0/3)#ip router isis R2(config-isis-0-if-xgei-0/3/0/3)#exit R2(config-isis-0)#interface xgei-0/2/0/17 R2(config-isis-0-if-xgei-0/2/0/17)#ip router isis R2(config-isis-0-if-xgei-0/2/0/17)#exit R2(config-isis-0)#mpls ldp sync R2(config-isis-0)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface xgei-0/3/0/3 R2(config-ldp-1-if-xgei-0/3/0/3)#exit R2(config-ldp-1)#interface xgei-0/2/0/17 R2(config-ldp-1-if-xgei-0/2/0/17)#exit R2(config-ldp-1)#exit Configuration Verification 1.0.0 R2(config-if-xgei-0/2/0/17)#exit R2(config-if-loopback1)#ip address 3.255.255. Run the show ip forwarding backup route command to check the LDP FRR table items on R1. The execution result is displayed as follows: R1#show ip forwarding backup route IPv4 Routing Table: Headers: Dest: Destination. M/S: Master/Slave. TE: RSVP-TE.3. STAT-V: Static-VRF. GW-UE: PS-USER. USER-S: User-special. 1-81 SJ-20140731105308-012|2014-10-20 (R1.Chapter 1 MPLS Configuration R1(config-ldp-1-if-xgei-0/2/0/3)#exit R1(config-ldp-1)#interface xgei-0/2/0/4 R1(config-ldp-1-if-xgei-0/2/0/4)#exit R1(config-ldp-1)#exit Run the following commands on R2: R2(config)#interface xgei-0/3/0/3 R2(config-if-xgei-0/3/0/3)#ip address 103. USER-I: User-ipaddr.0 R2(config-if-xgei-0/3/0/3)#exit R2(config)#interface xgei-0/2/0/17 R2(config-if-xgei-0/2/0/17)# ip address 104. Pri: Priority. GW-FWD: PS-BUSI. LDP-A: LDP-area. MULTIC: Multicast. Codes : BROADC: Broadcast. DHCP-S: DHCP-static.0.0) ZTE Proprietary and Confidential . ASBR-V: ASBR-VPN.

0. I: Inuse.73. Sync Status(L1/L2): Achieved/Achieved Level-1 Metric:30 Priority:64 LAN ID:3. The execution result is displayed as follows: R1#show ip forwarding backup route IPv4 Routing Table: Headers: Dest: Destination. Gw: Gateway.2. S: Slave. run the show ip forwardi ng backup route command to check the LDP FRR table items.1. DHCP-D: DHCP-DFT. >best.0/24 149. MULTIC: Multicast.0. Codes : BROADC: Broadcast.0.2.0.2.ZXR10 M6000-S Configuration Guide (MPLS) Status codes: *valid.72 xgei-0/2/0/4 ISIS-L2 115 20 M I * 103. M/S: Master/Slave. Status codes: *valid.72/32 103.72 xgei-0/2/0/3 ISIS-L2 115 30 S U *> 149. TE: RSVP-TE. USER-N: User-network. LDP-A: LDP-area. Dest Gw Interface Owner Pri Metric M/S Sta This item is null. U: Unuse.72 xgei-0/2/0/4 ISIS-L1 115 30 M I * 3.72 xgei-0/2/0/3 ISIS-L1 115 40 S U *> 110. >best.0) ZTE Proprietary and Confidential .2.72 xgei-0/2/0/3 ISIS-L2 115 30 S U 110.3. I: Inuse.02 Number of active adjacencies:1 Level-2 Metric:30 Priority:64 LAN ID:3. P-VRF: Per-VRF-label.02 Number of active adjacencies:1 1-82 SJ-20140731105308-012|2014-10-20 (R1.0/24 Pri Metric M/S Sta 2. GW-FWD: PS-BUSI. 3. U: Unuse. Sta: Status. After the active link interface xgei-0/2/0/4 is shutdown on R1.2. ASBR-V: ASBR-VPN. STAT-V: Static-VRF.3. The execution result is displayed as follows: R1#show isis circuits detail Process ID: 0 Interface:xgei-0/2/0/3 Status:Up Track Status:Unknown Encapsulation:SAP ISIS MTU:1583 Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable. the active link is restored but the LDP concentration is not completed.72.0.0/24 104. USER-S: User-special. After the no shutdown command is performed on the active link interface xgei-0/2/0/4 on R1.73.2. M: Master.3.72. USER-I: User-ipaddr.1. DHCP-S: DHCP-static.72/32 104. M: Master. S: Slave. Pri: Priority. GW-UE: PS-USER.0.0.72.3.72. NAT64: Stateless-NAT64.0/24 104. Dest Gw Interface Owner *> 3. set the IGP metric to the maximum number.0.72 xgei-0/2/0/4 ISIS-L2 115 20 M I * 103.

0372.1000 5.0372. The execution result is displayed as follows: R1(config)#show isis topology Process ID: 0 IS-IS paths to Level-1 routers System id Metric Next-Hop Interface SNPA R2 30 R2 xgei-0/2/0/3 00D0.0) ZTE Proprietary and Confidential .73. Run the show isis topology command to check the route topology on R1. The execution result is displayed as follows: R1#show isis circuits detail Process ID: 0 Interface:xgei-0/2/0/3 Status:Up Track Status:Unknown Encapsulation:SAP ISIS MTU:1583 Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable. Sync Status(L1/L2): Achieved/Achieved Level-1 Metric:30 Priority:64 LAN ID:3. when concentration of LDP and IGP is completed.73.02 Number of active adjacencies:1 1-83 SJ-20140731105308-012|2014-10-20 (R1. Sync Status(L1/L2): UnAchieved/UnAchieved Level-1 Metric:16777214 Priority:64 LAN ID:3.04 Number of active adjacencies:1 Level-2 Metric:16777214 Priority:64 LAN ID:3.Chapter 1 MPLS Configuration Interface:xgei-0/2/0/4 Status:Up Track Status:Unknown Encapsulation:SAP ISIS MTU:1583 Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable.1000 IS-IS paths to Level-2 routers System id Metric Next-Hop Interface SNPA R2 30 R2 xgei-0/2/0/3 00D0. After the LDP concentration is completed.73.1000 R1 -- R3 60 R2 xgei-0/2/0/3 00D0.04 Number of active adjacencies:1 4.1000 R1 -- R3 60 R2 xgei-0/2/0/3 00D0. the IGP metric on R1 becomes a normal value.73.02 Number of active adjacencies:1 Level-2 Metric:30 Priority:64 LAN ID:3.0372.0372.

3. STAT-V: Static-VRF.72 xgei-0/2/0/4 ISIS-L1 115 30 M I * 3. M/S: Master/Slave. DHCP-S: DHCP-static.2. Run the show ip forwarding backup route command to check the route forwarding table on R1.72.73. TE: RSVP-TE. MULTIC: Multicast.1000 R1 -- R3 50 R2 xgei-0/2/0/4 00D0.0.1000 7. USER-I: User-ipaddr. Sync Status(L1/L2): Achieved/Achieved Level-1 Metric:20 Priority:64 LAN ID:3. The execution result is displayed as follows: R1(config)#show ip forwarding backup route IPv4 Routing Table: Headers: Dest: Destination. GW-FWD: PS-BUSI. Run the show isis topology command on R1 to check the route topology.2.1000 R1 -- R3 50 R2 xgei-0/2/0/4 00D0.04 Number of active adjacencies:1 6.0372.0372. USER-S: User-special. Sta: Status. ASBR-V: ASBR-VPN. >best.0/24 104. U: Unuse. Dest Gw Interface Owner Pri Metric M/S Sta *> 3.1000 IS-IS paths to Level-2 routers System id Metric Next-Hop Interface SNPA R2 20 R2 xgei-0/2/0/4 00D0.0372. The execution result is displayed as follows: R1#show isis topology Process ID: 0 IS-IS paths to Level-1 routers System id Metric Next-Hop Interface SNPA R2 20 R2 xgei-0/2/0/4 00D0. I: Inuse.3. Pri: Priority.2.0372.72/32 103. Gw: Gateway. USER-N: User-network. P-VRF: Per-VRF-label.72 xgei-0/2/0/3 ISIS-L1 115 40 S U *> 110. S: Slave. DHCP-D: DHCP-DFT.0. Codes : BROADC: Broadcast.73.0) ZTE Proprietary and Confidential . M: Master.72.72/32 104.04 Number of active adjacencies:1 Level-2 Metric:20 Priority:64 LAN ID:3. LDP-A: LDP-area.3.72 xgei-0/2/0/4 ISIS-L2 115 20 M I 1-84 SJ-20140731105308-012|2014-10-20 (R1.1.ZXR10 M6000-S Configuration Guide (MPLS) Interface:xgei-0/2/0/4 Status:Up Track Status:Unknown Encapsulation:SAP ISIS MTU:1583 Circuit Type:Level-1-2 MPLS LDP Sync(L1/L2): Enable/Enable. Status codes: *valid. NAT64: Stateless-NAT64. GW-UE: PS-USER.0.

0/24 1.255.0.2.255. and ensure that the loopback interfaces on R1 and R2 can ping each other.1 255. Set the IP addresses of loopback interfaces to LSR router-IDs.1.0) ZTE Proprietary and Confidential .100.6. Enable packet filtration on R1.72 xgei-0/2/0/3 ISIS-L2 115 30 S U 149.100. Configure an IGP route.0.72 xgei-0/2/0/3 ISIS-L2 115 30 S U *> 149.34 255. It is required to establish an LDP neighbor between R1 and R2 and enable packet filtration on R1.3.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.1.1.255.0/24 104.255.0. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. Figure 1-30 Packet Filtration Configuration Example Configuration Flow 1.72.0034 1-85 SJ-20140731105308-012|2014-10-20 (R1.0. Enable MPLS on the directly-connected interfaces of R1 and R2. 5.72 xgei-0/2/0/4 ISIS-L2 115 20 M I * 103.2.2.0002. 3. Configure an ACL on R1.0/24 103.14 Packet Filtration Configuration Example Scenario Description Figure 1-30 shows a sample network topology. 2.72.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.0001 R1(config-isis-1)#system-id 0001.Chapter 1 MPLS Configuration * 110.0. 4.

0002 R2(config-isis-1)#system-id 0002.0 any R1(config-ipv4-acl)#rule 3 permit any R1(config)#mpls ldp instance 1 R1(config-ldp-1)#filter packet for 1 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.100.0002.1.1.0.255.2 0.1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.ZXR10 M6000-S Configuration Guide (MPLS) R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit R1(config)#mpls ldp instance 1 /*Run the following commands to configure the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#exit R1(config)#ipv4-access-list 1 R1(config-ipv4-acl)#rule 1 deny tcp 1.2 255.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-1)#area 00.100.0.100.35 255.35 0.0) ZTE Proprietary and Confidential .0035 R2(config-isis-1)#interface gei-0/3/0/7 R2(config-isis-1-if-gei-0/3/0/7)#ip router isis R2(config-isis-1-if-gei-0/3/0/7)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 1-86 SJ-20140731105308-012|2014-10-20 (R1.0.100.255.1.255.255.0.0 any R1(config-ipv4-acl)#rule 2 deny udp 100.

“state: Sent” indicates that the session status is Sent. This means that the local end discards the received UDP and TCP packets that meet filtration conditions. R1(config)#show mpls ldp neighbor detail instance 1 It can be seen that no output information is returned.1.1.646 .1.1.Chapter 1 MPLS Configuration R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#exit l l Note: In the above configuration.1 holdtime: 15000 ms.1.100.1. Configuration Verification Run the show mpls ldp neighbor detail instance 1 command on R2 to check whether an LDP neighbor has been established. 1-87 SJ-20140731105308-012|2014-10-20 (R1. although the local end initiates a TCP connection and the connection has been established.34. Local LDP Ident 1. KA interval: 60000 ms LDP Peer BFD not register.1. hello interval: 5000 ms Addresses bound to peer LDP Ident: Session holdtime: 180000 ms.34:0. This means that.1.1.35:0 TCP connection: 1. the session still cannot enter the Oper status because packet filtration is enabled on the peer end (R1). Downstream Up Time: 00:00:30 LDP discovery sources: gei-0/3/0/7.35.0) ZTE Proprietary and Confidential . the route to the loopback interface). LDP dynamic capability disable: LDP send capability: LDP dynamic capability LDP Typed Wildcard FEC Cap LDP Unrecognized Noti Cap LDP received capability: In the sample output information.100. Msgs sent/rcvd: 1/0. Run the show mpls ldp neighbor detail instance 1 command on R1 to check whether an LDP neighbor has been established. Through the ACL rule. packet filtration can take effect for UDP or TCP packets only. Src IP addr: 100.1069 State: Sent. The execution results are displayed as follows: R2(config)#show mpls ldp neighbor detail instance 1 Peer LDP Ident: 1. the goal of running the IS-IS protocol is to advertise the router-id of each LSR (that is.

0001 R1(config-isis-1)#system-id 0001.255.100. Enable label-distribution DoD on the directly-connected interfaces of R1 and R2. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.15 Label-Distribution Configuration Example Scenario Description Figure 1-31 shows a sample network topology. and ensure that the loopback interfaces of R1 and R2 can ping each other.1 255.1. Figure 1-31 Label-Distribution Configuration Example Configuration Flow 1. and enable the label-distribution DoD function on the directly-connected interfaces of R1 and R2. 2.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.0) ZTE Proprietary and Confidential .0002.6. Enable MPLS on the directly-connected interfaces of R1 and R2. Reset the MPLS LDP instances operating on R1 and R2.255. Configure an IGP route.100.34 255.255.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.ZXR10 M6000-S Configuration Guide (MPLS) 1.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit 1-88 SJ-20140731105308-012|2014-10-20 (R1. 3. 4.255.1. It is required to establish an LDP neighbor relationship between R1 and R2.

34:0.1.1. The execution results are displayed as follows: R2(config)#show mpls ldp neighbor detail instance 1 Peer LDP Ident: 1.1.1069 state: Oper.255.Chapter 1 MPLS Configuration R1(config)#mpls ldp instance 1 /*Run the following commands to configure the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#label-distribution dod R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#exit R1(config)#reset mpls ldp instance 1 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.1.35:0 TCP connection: 1.255.1.0) ZTE Proprietary and Confidential .0002 R2(config-isis-1)#system-id 0002.255.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-1)#area 00.0002.1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.34. Msgs sent/rcvd: 47/48. Downstream on Demand 1-89 SJ-20140731105308-012|2014-10-20 (R1.100.2 255. Local LDP Ident 1.255.0035 R2(config-isis-1)#interface gei-0/3/0/7 R2(config-isis-1-if-gei-0/3/0/7)#ip router isis R2(config-isis-1-if-gei-0/3/0/7)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#label-distribution dod R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#exit R2(config)#reset mpls ldp instance 1 Configuration Verification Run the show mpls ldp neighbor detail instance 1 command on R2 to check whether an LDP neighbor has been established.1.646 .35 255.1.100.1.35.1.1.

and ensure that the loopback interfaces of R1 and R2 can ping each other. 1.16 Label-Retention Configuration Example Scenario Description Figure 1-32 shows a sample network topology.1 Session holdtime: 180000 ms. and a neighbor relationship with R1 (1. “state: Oper” indicates that the session status is “Oper”. Enable the label-retention conservative function on the MPLS instances operating on R1 and R2. 4. and enable the label-retention conservation function in the LDP configuration mode of R2. KA interval: 60000 ms LDP Peer BFD not register. Figure 1-32 Label-Retention Configuration Example Configuration Flow 1. Enable MPLS on the directly-connected interfaces of R1 and R2.100. hello interval: 5000 ms Addresses bound to peer LDP Ident: 1.1.1. Reset the MPLS instances.100.6.1. 3.ZXR10 M6000-S Configuration Guide (MPLS) Up Time: 00:00:30 LDP discovery sources: gei-0/3/0/7. Src IP addr: 100.100.1 holdtime: 15000 ms.0) ZTE Proprietary and Confidential .1. It is required to establish an LDP neighbor relationship between R1 and R2. 1-90 SJ-20140731105308-012|2014-10-20 (R1.34 100.100. Configure an IGP route. which means that the parameter negotiation is correct. 2.34) has been established. LDP dynamic capability enable: LDP send capability: LDP dynamic capability LDP Typed Wildcard FEC Cap LDP Unrecognized Noti Cap LDP received capability: LDP dynamic capability negotiate success LDP Typed Wildcard FEC Cap negotiate success LDP Unrecognized Noti Cap negotiate success In the sample output.

255.255.0002 R2(config-isis-1)#system-id 0002.100.34 255.100.100.1.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.255.35 255.100.255.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit R1(config)#mpls ldp instance 1 /*Run the following commands to configure the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#label-retention conservative R1(config-ldp-1)#exit R1(config)#reset mpls ldp instance 1 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.1 255.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-1)#area 00.Chapter 1 MPLS Configuration Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.255.0) ZTE Proprietary and Confidential .0002.2 255.1.0001 R1(config-isis-1)#system-id 0001.0002.1.0035 R2(config-isis-1)#interface gei-0/3/0/7 R2(config-isis-1-if-gei-0/3/0/7)#ip router isis 1-91 SJ-20140731105308-012|2014-10-20 (R1.1.255.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.255.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.255.

1. msgType = 0x403.35/32 local binding: label: imp-null advertised to: 1.1. msgId = 0x5 fecTlv: uBit = 0.1.1.1. fBit = 0.ZXR10 M6000-S Configuration Guide (MPLS) R2(config-isis-1-if-gei-0/3/0/7)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#exit R1(config-ldp-1)#label-retention conservative R2(config-ldp-1)#exit R2(config)#reset mpls ldp instance 1 R2#debug ldp session io instance 1 R2#terminal monitor Configuration Verification Run the show mpls ldp bindings detail instance 1 command on R2 to check the label status. msgId = 0x6 1-92 SJ-20140731105308-012|2014-10-20 (R1.1.1.35 is the last hop.1. preLen = 32.1. The execution results are displayed as follows: R2(config)#show mpls ldp bindings detail instance 1 1. fBit = 0.34:0 with socket-id(0x00002ae7cf01ad10) baseMsg: uBit = 0. label: imp-null(inuse) 1. type = 0x200. address = 0x1010123 genLblTlv: uBit = 0.1. length = 8 with 1 FEC elements: 1: type = 2.34 is R1.1. length = 4 label = 16385 Sent release msg to 1.1.1. and therefore the label advertised by R1 should be stored.1. msgLength = 24.1. However. Run the debug command on R2. msgType = 0x400. type = 0x100. and the out label information corresponding to the FEC is displayed: mpls_ldp_1: Rcvd mapping msg from 1.34:0.34/32 local binding: label: 16384 remote binding: lsr: 1.34:0 baseMsg: uBit = 0. and therefore the label advertised by R1 is not stored. the IP address 1.0) ZTE Proprietary and Confidential . msgLength = 24.34:0 In the sample output. addFam = 0x1.1. the next-hop of the route corresponding to FEC 1.

Enable MPLS on the directly-connected interfaces of R1 and R2. length = 8 with 1 FEC elements: 1: type = 2.0) ZTE Proprietary and Confidential .17 Label-Advertise Configuration Example Scenario Description Figure 1-33 shows a sample network topology. fBit = 0. 1-93 SJ-20140731105308-012|2014-10-20 (R1. 3. addFam = 0x1. Figure 1-33 Label-Advertise Configuration Example Configuration Flow 1. It is required to establish an LDP neighbor relationship between R1 and R2. 2.35 from R1. type = 0x200. and enable the label-advertise function in the LDP configuration mode of R2.1. type = 0x100. address = 0x1010123 genLblTlv: uBit = 0. length = 4 label = 16385 It can be seen that R2 has received the label mapping information related to FEC 1. fBit = 0.1. Configure an IGP route. 5. 1. Configure an ACL rule on R2 to permit all packets. R2 returns a label release message. 4. 6. Configure an ACL rule on R2 to deny all packets. Configure “label-advertise for non” for the MPLS LDP instance operating on R2.Chapter 1 MPLS Configuration fecTlv: uBit = 0. and ensure that the loopback interfaces of R1 and R2 can ping each other. preLen = 32.6. Configure “label-advertise for all to non” for the MPLS LDP instance operating on R2. Because the label-retention mode configured on R2 is "conservative".

only the later configuration takes effect. In Step 6.100. In Step 5. If one of the filtration conditions in the prefixed ACL is matched. If none of the filtration conditions in the prefix ACL is matched. For example. For example.100.ZXR10 M6000-S Configuration Guide (MPLS) l l l l Note: Steps 5 and 6 are optional.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100.255.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.1.255. the filtration of packets and whether a label is advertised to the neighbor are based on the FEC prefix.1.0001 R1(config-isis-1)#system-id 0001.34 255. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.255. The two commands should be used with the label-advertise disable command.255.0002. multiple label advertisement combination policies can be configured in the system. only the “label-advertise for all to non” command takes effect.0) ZTE Proprietary and Confidential . if “label-advertise for all” and “label-advertise for all to non” commands are sequentially executed. the configurations in Steps 5 and 6 can be used as a combination policy and take effect on R2.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit R1(config)#mpls ldp instance 1 /*Run the following commands to configure the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit 1-94 SJ-20140731105308-012|2014-10-20 (R1.1 255. the filtration of packets and whether a label is advertised to the neighbor are based on the FEC prefix and neighbor.

0035 R2(config-isis-1)#interface gei-0/3/0/7 R2(config-isis-1-if-gei-0/3/0/7)#ip router isis R2(config-isis-1-if-gei-0/3/0/7)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#ipv4-access-list non R2(config-ipv4-acl)#rule 1 deny any R2(config-ipv4-acl)#exit R2(config)#ipv4-access-list all R2(config-ipv4-acl)#rule 1 permit any R2(config-ipv4-acl)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#exit /*Run the following commands to enable “label-advertise for non”*/ R2(config-ldp-1)#label-advertise for non R2(config-ldp-1)#label-advertise disable R2(config-ldp-1)#exit /*Run the following commands to enable “label-advertise for all to non”*/ R2(config-ldp-1)#label-advertise for all to non R2(config-ldp-1)#label-advertise disable R2(config-ldp-1)#exit 1-95 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential .100.255.255.100.0002.35 255.1.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-1)#area 00.Chapter 1 MPLS Configuration Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.2 255.0002 R2(config-isis-1)#system-id 0002.1.255.255.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.

34/32 local binding: label: imp-null advertised to: 1. and enable the label-request function in the LDP configuration mode of R2. Figure 1-34 Label-Request Configuration Example 1-96 SJ-20140731105308-012|2014-10-20 (R1. the “advertised to:” item is not found.1.34:0.100.100. meaning that all FECs have no label advertisement information. It can be seen that.1.1.1. label: UnTag 100. label: imp-null(inuse) 1. The execution results are displayed as follows: R2(config)#show mpls ldp bindings detail instance 1 1.1.34/32 local binding: label: 16384 remote binding: lsr: 1.35/32 local binding: label: 16384 remote binding: lsr: 1.100.1.1.35:0.1.1.ZXR10 M6000-S Configuration Guide (MPLS) Configuration Verification Run the show mpls ldp bindings detail instance 1 command on R2 to check the label status. on R2.0/24 local binding: label: imp-null It can be seen that.1. meaning that R2 does not send any label.0/24 local binding: label: imp-null 1.1.35/32 local binding: label: imp-null 100.18 Label-Request Configuration Example Scenario Description Figure 1-34 shows a sample network topology.6. It is required to establish an LDP neighbor relationship between R1 and R2.1.1. all FECs do not receive the “remote binding” information from R2. on R1. R2(config)#show mpls ldp neighbor detail instance 1 1.1.100.35:0 1.0) ZTE Proprietary and Confidential .

Note: When the session operates in DoD mode. Enable MPLS on the directly-connected interfaces of R1 and R2. One of the filtration conditions in the ACL needs to be matched only when the label-request command is executed.255. Set the negotiation mode of the session between the directly-connected interfaces of R1 and R2 to "DoD".100.255.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.100. Configure an ACL rule on R2 to deny all packets.0) ZTE Proprietary and Confidential . 3.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100. label request messages are not sent.Chapter 1 MPLS Configuration Configuration Flow 1. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. 2.255.0001 R1(config-isis-1)#system-id 0001. Configure an IGP route. Configure “label-advertise for non” for the MPLS LDP instance operating on R2. if the label-request command is executed. 5. all of the valid next-hops of FECs send label request messages by default.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit R1(config)#mpls ldp instance 1 /*Run the following commands to configure the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#label-distribution dod 1-97 SJ-20140731105308-012|2014-10-20 (R1. 4.34 255. and ensure that the loopback interfaces of R1 and R2 can ping each other.1. If no match is found.1.0002.255.1 255.

0) ZTE Proprietary and Confidential . The execution results are displayed as follows: R2(config)#show mpls ldp bindings detail instance 1 1.0002 R2(config-isis-1)#system-id 0002.255.ZXR10 M6000-S Configuration Guide (MPLS) R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#exit R1(config)#reset mpls ldp instance 1 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#no shutdown R2(config-if-gei-0/3/0/7)#ip address 100.1.100.0002.255.1.255.35/32 1-98 SJ-20140731105308-012|2014-10-20 (R1.35 255.1.0035 R2(config-isis-1)#interface gei-0/3/0/7 R2(config-isis-1-if-gei-0/3/0/7)#ip router isis R2(config-isis-1-if-gei-0/3/0/7)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#ipv4-access-list non R2(config-ipv4-acl)#rule 1 deny any R2(config-ipv4-acl)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/3/0/7 R2(config-ldp-1-if-gei-0/3/0/7)#label-distribution dod R2(config-ldp-1-if-gei-0/3/0/7)#exit R2(config-ldp-1)#label-request for non R2(config-ldp-1)#exit R2(config)#reset mpls ldp instance 1 Configuration Verification Run the show mpls ldp bindings detail instance 1 command on R2 to check the label status.34/32 local binding: label: 16384 1.1.1.1.2 255.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#router isis R2(config-isis-1)#area 00.100.255.

34.19 LSP-Control Configuration Example Scenario Description Figure 1-35 shows a sample network topology. label: imp-null(inuse) 1. and R3.1.34/32 local binding: label: 16384 remote binding: lsr: 1.0) ZTE Proprietary and Confidential . Run the label-advertise disable command for the MPLS LDP instance operating on R3. Configure an IGP route. But the action defined in the ACL rule for the label request messages that meet the filtration conditions is "Deny".1. and R3. the “remote binding” item is generated. after R2 sends a label request message to R1. and ensure that the loopback interfaces of R1 and R2 can ping each other.0/24 local binding: label: imp-null It can be seen that. Enable the lsp-control ordered function on R1. 1.1. Normally in DoD mode.34 is R1. Figure 1-35 LSP-Control Configuration Example Configuration Flow 1. 5. 3. Run the no label-advertise disable command for the MPLS LDP instance operating on R3.1. R2. R2.Chapter 1 MPLS Configuration local binding: label: imp-null advertised to: 1. 2. It is required to establish LDP neighbor relationships between R1. and enable the lsp-control ordered function in the LDP instance configuration mode of R1.100.1.1. Enable MPLS on the directly-connected interfaces of R1. the valid next-hop of the IP address 1.34:0. a label cannot be bound to FEC 1.34:0 100.1.100. 4.1. 1-99 SJ-20140731105308-012|2014-10-20 (R1.1.1. on R2.6.

This can compare the difference between the labels assigned to FEC 1.255.1.255.255.255.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface gei-0/2/0/2 R1(config-isis-1-if-gei-0/2/0/2)#ip router isis R1(config-isis-1-if-gei-0/2/0/2)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit R1(config)#mpls ldp instance 1 /*Run the following commands to configure the LDP router-id and an LDP interface*/ R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#interface gei-0/2/0/2 R1(config-ldp-1-if-gei-0/2/0/2)#exit R1(config-ldp-1)#lsp-control ordered 1-100 SJ-20140731105308-012|2014-10-20 (R1.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#ip address 100. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. The goal of Step 4 is to disable the downstream to assign a label temporarily.34 255.0002.0 R1(config-if-gei-0/2/0/2)#exit R1(config)#router isis 1 R1(config-isis-1)#area 00.100.0001 R1(config-isis-1)#system-id 0001.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#interface gei-0/2/0/2 R1(config-if-gei-0/2/0/2)#no shutdown R1(config-if-gei-0/2/0/2)#ip address 200.1.1.100.1 255.ZXR10 M6000-S Configuration Guide (MPLS) Note: The ordered mode of label advertisement cannot be easily observed.200.1.255.255.36 by R1 and R2 after the downstream advertises a label in Step 5.1 255.0) ZTE Proprietary and Confidential .200.

2 255.3 255.255.0003 R3(config-isis-1)#system-id 0003.Chapter 1 MPLS Configuration R1(config-ldp-1)#exit R1(config)#reset mpls ldp instance 1 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.100.0035 R2(config-isis-1)#interface gei-0/2/0/9 R2(config-isis-1-if-gei-0/2/0/9)#ip router isis R2(config-isis-1-if-gei-0/2/0/9)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/2/0/9 R2(config-ldp-1-if-gei-0/2/0/9)#exit R2(config-ldp-1)#exit Run the following commands on R3: R3(config)#interface loopback1 R3(config-if-loopback1)#ip address 1.1.255.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/2/0/9 R2(config-if-gei-0/2/0/9)#no shutdown R2(config-if-gei-0/2/0/9)#ip address 100.200.0002.0003.0 R3(config-if-gei-0/2/0/6)#exit R3(config)#router isis R3(config-isis-1)#area 00.0) ZTE Proprietary and Confidential .255.100.36 255.255.255.255.0036 R3(config-isis-1)#interface gei-0/2/0/6 R3(config-isis-1-if-gei-0/2/0/6)#ip router isis R3(config-isis-1-if-gei-0/2/0/6)#exit R3(config-isis-1)#interface loopback1 R3(config-isis-1-if-loopbck1)#ip router isis 1-101 SJ-20140731105308-012|2014-10-20 (R1.0 R2(config-if-gei-0/2/0/9)#exit R2(config)#router isis R2(config-isis-1)#area 00.1.100.255.1.1.35 255.255.0002 R2(config-isis-1)#system-id 0002.255 R3(config-if-loopback1)#exit R3(config)#interface gei-0/2/0/6 R3(config-if-gei-0/2/0/6)#ip address 200.

1.1.1.36 32 detail instance 1 command on R1 to check the label status.36.1.36/32 local binding: label: 16384 remote binding: lsr: 1. it can be seen that the “remote binding” item is set to “UnTag” in the label information advertised by the valid next-hop of FEC 1.1.34:0.1.1. This means that the neighbor (1.1. Because the LSP generation mode of R1 is "Ordered". the execution results of Step 5 are as follows: Run the show mpls ldp bindings 1. The execution results are displayed as follows: R2(config)#show mpls ldp bindings 1.36:0.1.36) does not advertise any label.0) ZTE Proprietary and Confidential .1.1. The execution results are displayed as follows: R1(config)#show mpls ldp bindings 1.36 32 detail instance 1 1.1. label: UnTag On R1. Run the show mpls ldp bindings 1.1.1. The execution results are displayed as follows: R1(config)#show mpls ldp bindings 1.36/32 local binding: label: 16384 1-102 SJ-20140731105308-012|2014-10-20 (R1.36 32 detail instance 1 command on R2 to check the label status.1.1.36 32 detail instance 1 1.36 32 detail instance 1 command on R1 to check the label status.1.1.ZXR10 M6000-S Configuration Guide (MPLS) R3(config-isis-1-if-loopbck1)#exit R3(config-isis-1)#exit R3(config)#mpls ldp instance 1 R3(config-ldp-1)#router-id loopback1 R3(config-ldp-1)#interface gei-0/2/0/6 R3(config-ldp-1-if-gei-0/2/0/6)#exit /*Run the following command to disable label advertisement*/ R3(config-ldp-1)# label-advertise disable /*Run the following command to disable label advertisementt*/ R3(config-ldp-1)# label-advertise disable Configuration Verification l Check the execution result of Step 4 on R3.36/32 local binding: label: 16384 remote binding: lsr: 1.1.1.1. l On R3.1.1.1.1.1.36 32 detail instance 1 1. Run the show mpls ldp bindings 1. label: UnTag The same output information can be seen on R2.36. the “advertised to:” item cannot be seen in the label advertisement information. except that R1 does not advertise a label bound to FEC 1.1.1.

Chapter 1 MPLS Configuration advertised to: 1. 8. 6.3.1.1.1. and R1 advertises labels to R2 and R3. The execution results are displayed as follows: R2(config)#show mpls ldp bindings 1. Enable MPLS on the directly-connected interfaces of R1.1. and establish a DU-mode session between R1 and R3.34:0.34:0 remote binding: lsr: 1.3.36 32 detail instance 1 1.36/32 local binding: label: 16384 advertised to: 1.1. 7.1. it can be seen that the valid hop (R3) of FEC 1.6. and enable the longest-match function in the LDP instance configuration mode of R1.1. 4.1.1. set the next-hop of the static route (1.2.1. On R3.1. Figure 1-36 Longest-Match Configuration Example Configuration Flow 1. and R3. On R2.36:0.4/32) to R1.0.35:0 1. R2. 1-103 SJ-20140731105308-012|2014-10-20 (R1. and ensure that the loopback interfaces of R1 and R2 can ping each other.0/16 network segment.36 sends a valid label. 3. 1. Run the show mpls ldp bindings 1. label: imp-null(inuse) On R1.20 Longest-Match Configuration Example Scenario Description Figure 1-36 shows a sample network topology. 5. It is required to establish LDP neighbor relationships between R1.1.1.0. On R1.2. 2. R2. Configure the longest-match mode on R1.0) ZTE Proprietary and Confidential .1.1. label: 16384 (inuse) Upon receipt of a label from the downstream.2. set the next-hop of the static route (1. set the next-hop of the static aggregated route (1.4/32) to R3.0/16) to R3.36:0 remote binding: lsr: 1.36 32 detail instance 1 command on R2 to check the label status. and R3. R2 advertises a label to the upstream. Configure an ACL on R1 to permit the routes on the 1.1. Establish a DoD-mode session between R1 and R2.1. Configure an IGP route.1.2.

200.200.0) ZTE Proprietary and Confidential .4/32).255.3.34 255.100.0034 R1(config-isis-1)#interface gei-0/2/0/7 R1(config-isis-1-if-gei-0/2/0/7)#ip router isis R1(config-isis-1-if-gei-0/2/0/7)#exit R1(config-isis-1)#interface gei-0/2/0/2 R1(config-isis-1-if-gei-0/2/0/2)#ip router isis R1(config-isis-1-if-gei-0/2/0/2)#exit R1(config-isis-1)#interface loopback1 R1(config-isis-1-if-loopback1)#ip router isis R1(config-isis-1-if-loopback1)#exit R1(config-isis-1)#exit R1(config)#ipv4-access-list acl12 R1(config-ipv4-acl)#rule 1 permit 1.255. 8 or 9 can be used to create the longest matching LSP on R1 based on FEC 1.0 R1(config-if-gei-0/2/0/7)#exit R1(config)#interface gei-0/2/0/2 R1(config-if-gei-0/2/0/2)#ip address 200.0 255.4/32.0 0.0.2.0002.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/2/0/7 R1(config-if-gei-0/2/0/7)#no shutdown R1(config-if-gei-0/2/0/7)#ip address 100. and assign a static in label (100) to the static route (1.200.0.1 255.2.255.0001 R1(config-isis-1)#system-id 0001.0.255.3. Note: Steps 7.255 R1(config-ipv4-acl)#exit R1(config)#mpls ldp instance 1 /*Run the following commands to configure the LDP router-id and an LDP interface*/ 1-104 SJ-20140731105308-012|2014-10-20 (R1.255.2.200. Configuration Commands Run the following commands on R1: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. The matching result is the same as that based on FEC (1.255.0 200.0/16).1.1.255.2. Configure the static LDP on R1.1 255.0 R1(config-if-gei-0/2/0/2)#exit R1(config)#ip route 1.2.ZXR10 M6000-S Configuration Guide (MPLS) 9.3 R1(config)#router isis 1 R1(config-isis-1)#area 00.255.0.100.0.

255.255.0002 R2(config-isis-1)#system-id 0002.0 R2(config-if-gei-0/2/0/9)#exit R2(config)#router isis R2(config-isis-1)#area 00.36 255.100.255.Chapter 1 MPLS Configuration R1(config-ldp-1)#router-id loopback1 R1(config-ldp-1)#interface gei-0/2/0/7 R1(config-ldp-1-if-gei-0/2/0/7)#label-distribution dod R1(config-ldp-1-if-gei-0/2/0/7)#exit R1(config-ldp-1)#interface gei-0/2/0/2 R1(config-ldp-1-if-gei-0/2/0/2)#exit R1(config-ldp-1)#longest-match ipv4 for acl12 R1(config-ldp-1)#exit R2(config)#reset mpls ldp instance 1 Run the following commands on R2: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 1.255.1.1.1.2 255.1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/2/0/9 R2(config-if-gei-0/2/0/9)#no shutdown R2(config-if-gei-0/2/0/9)#ip address 100.0) ZTE Proprietary and Confidential .0035 R2(config-isis-1)#interface gei-0/2/0/9 R2(config-isis-1-if-gei-0/2/0/9)#ip router isis R2(config-isis-1-if-gei-0/2/0/9)#exit R2(config-isis-1)#interface loopback1 R2(config-isis-1-if-loopbck1)#ip router isis R2(config-isis-1-if-loopbck1)#exit R2(config-isis-1)#exit R2(config)#mpls ldp instance 1 R2(config-ldp-1)#router-id loopback1 R2(config-ldp-1)#interface gei-0/2/0/9 R1(config-ldp-1-if-gei-0/2/0/9)#label-distribution dod R2(config-ldp-1-if-gei-0/2/0/9)#exit R2(config-ldp-1)#exit R2(config)#reset mpls ldp instance 1 Run the following commands on R3: R3(config)#interface loopback1 R3(config-if-loopback1)#ip address 1.0002.100.255 R3(config-if-loopback1)#exit R3(config)#interface gei-0/2/0/6 R3(config-if-gei-0/2/0/6)#no shutdown 1-105 SJ-20140731105308-012|2014-10-20 (R1.35 255.255.255.

2.3. Run the show ip forwarding route 1.0036 R3(config-isis-1)#interface gei-0/2/0/6 R3(config-isis-1-if-gei-0/2/0/6)#ip router isis R3(config-isis-1-if-gei-0/2/0/6)#exit R3(config-isis-1)#interface loopback1 R3(config-isis-1-if-loopbck1)#ip router isis R3(config-isis-1-if-loopbck1)#exit R3(config-isis-1)#exit R3(config)#mpls ldp instance 1 R3(config-ldp-1)#router-id loopback1 R3(config-ldp-1)#interface gei-0/2/0/6 R3(config-ldp-1-if-gei-0/2/0/6)#exit /*Run the following command to set the next-hop of the static route 1.36:0.3.2.4 32 detail instance 1 1.3.0.3. and assign the static in label (100) to the static route 1.200.0) ZTE Proprietary and Confidential .255 loopback1 /*Run the following command to configure the static LDP.0003.4/32*/ R1(config)#mpls static-lsp sta R1(config-static-lsp-sta)#bind ipv4 1.255.3 255.3.1.100.255.3.1 /*Run the following command to set the next-hop of the static route 1.255.255.4 1-106 SJ-20140731105308-012|2014-10-20 (R1.255.3.255.0 100. label: 16385 It can be seen that R1 has received an out label from R3.2.1.4/32 local binding: label: 16386 remote binding: lsr: 1.3.100.2.3.3.ZXR10 M6000-S Configuration Guide (MPLS) R3(config-if-gei-0/2/0/6)#ip address 200.2.4 255.100.4/32 to R3*/ R3(config)#ip route 1.4/32 to R2*/ R2(config)#ip route 1.255 R1(config-if-loopback2)#insegment inlabel 100 Configuration Verification l Check the execution results of Step 7 on R2 or Step 9 on R1.2.4 command on R1 to check the routing information: R1(config)#show ip forwarding route 1. Run the show mpls ldp bindings 12.3.4 32 detail instance 1 command on R1 to check the label status.4 255.4 255.255.0 R3(config-if-gei-0/2/0/6)#exit R3(config)#router isis R3(config-isis-1)#area 00.2.2.2.0003 R3(config-isis-1)#system-id 0003. The execution results are displayed as follows: R1(config)#show mpls ldp bindings 12.

1. P-VRF: Per-VRF-label. >best.Chapter 1 MPLS Configuration -------------------------------------------------------------------------- IPv4 Routing Table: Headers: Dest: Destination.1. LDP-A: LDP-area. Codes Gw: Gateway. : BROADC: Broadcast.100. DHCP-S: DHCP-static. USER-S: User-special.4/32 route is the same as that of the 1. Run the show mpls forwarding-table 1. USER-S: User-special. NAT64: Stateless-NAT64.4 -------------------------------------------------------------------------Local Outgoing Prefix or OutgoingNext Hop M/S label label Lspnameinterface 16386 l 16385 1.0.4/32loopback11.2.3.0.3. Codes Gw: Gateway. GW-UE: PS-USER.2. The execution results are displayed as follows: R1(config)#show mpls ldp bindings 12. MULTIC: Multicast.2 Dest Gw gei-0/2/0/2 LDP-A 254 65534 *> 1. : BROADC: Broadcast. The next-hop information of the egress interface of the 1.2 gei-0/2/0/2 STAT 1 0 It can be seen that the 1.3.100.4 command on R1 to check the routing information: R1(config)#show ip forwarding route 1.4/32 local binding: label: 16386 remote binding: lsr: 1. label: 16385 (inuse) Run the show ip forwarding route 1.3.3.3.2. USER-I: User-ipaddr. Interface Owner Pri Metric *> 1.2.4/32 route is generated by the LDP based on the 1.1.4 -------------------------------------------------------------------------IPv4 Routing Table: Headers: Dest: Destination.36:0.2.35 M Check the execution result of Step 8 on R3. >best. USER-N: User-network. USER-I: User-ipaddr.3. NAT64: Stateless-NAT64. DHCP-S: DHCP-static.0/16 100. ASBR-V: ASBR-VPN.0) ZTE Proprietary and Confidential .4 32 detail instance 1 1.2. TE: RSVP-TE.3. LDP-A: LDP-area.4 32 detail instance 1 command on R1 to check the label status.2. P-VRF: Per-VRF-label. STAT-V: Static-VRF.2.4 command on R1 to check the forwarding table information: R1(config)#show mpls forwarding-table 1.2. GW-UE: PS-USER. Status codes: *valid. GW-FWD: PS-BUSI. TE: RSVP-TE.4/32 100. ASBR-V: ASBR-VPN.100. GW-FWD: PS-BUSI.0. STAT-V: Static-VRF.2.100. Status codes: *valid.3.0/16 route. DHCP-D: DHCP-DFT. Pri: Priority.3. USER-N: User-network.3. DHCP-D: DHCP-DFT.2. MULTIC: Multicast.2. Run the show mpls ldp bindings 12. 1-107 SJ-20140731105308-012|2014-10-20 (R1. Pri: Priority.1.0/16 route.

1.2 gei-0/2/0/2 STAT 1 0 The output information is the same as the execution results of Step 7 or 9.2.4 -------------------------------------------------------------------------Local Outgoing Prefix or Outgoing Next Hop M/S label label Lspnameinterface 16386 16385 1.100.ZXR10 M6000-S Configuration Guide (MPLS) Dest Gw Interface Owner Pri Metric *> 1.0) ZTE Proprietary and Confidential .100.100.3.0/16 100. 1-108 SJ-20140731105308-012|2014-10-20 (R1.2 gei-0/2/0/2 LDP-A 254 65534 *> 1.4/32 100.4 command on R1 to check the forwarding table information: R1(config)#show mpls forwarding-table 1.2.2.3.1.3.35 M It can be seen that there is a valid out label in the forwarding table. Run the show mpls forwarding-table 1.2.0.2.4/32loopback1 1.3.100.

..........................1 RSVP Overview RSVP Introduction RSVP is a resource reservation protocol designed for comprehensive network services............2-148 TE Tunnel AR Configuration .........................................2-121 Loose Node Re-optimization ...................................................................................................1 RSVP Configuration 2...............................................2-179 TE Tunnels Supporting Soft Preemption............................................................................2-152 TE Metric Configuration.............................................2-220 2......................................................................................................................2-135 TE GR Configuration .................................................................................................................................................................... 2-114 MPLS TE End-to-End Protection Path Configuration ..2-58 FRR Promotion Introduction .......................................................................................................2-185 Equal Load Sharing on the TE-ECMP .................................... In brief......................................................................................................................................................2-128 Automatic Bandwidth Regulation on an MPLS TE ............................................0) ZTE Proprietary and Confidential ...........................................................2-40 TE-FRR Configuration ....2-1 TE Summary Refresh Introduction.............. The reservation on each router is "soft".................................................................................................2-24 TE Message Acknowledgement and Retransmission ......................................1............. RSVP has the following features: 1............................................................2-140 TE Tunnel FA Configuration ....................................................................................................................................................2-202 Binding Interfaces Supporting TE Bandwidth Reservation .....2-103 FRR-Hello Configuration .............................................2-214 RSVP-TEs Supporting Resource Reservation .......................................................... It is necessary to update the reservation by advertising 2-1 SJ-20140731105308-012|2014-10-20 (R1........2-198 TE Affinity............................................................................2-173 WTR Configuration for a TE Tunnel..2-168 TE HOTSTANDBY Configuration..2-34 Confiugration of MPLS TE Crossing Several AS Domains...........................................Chapter 2 MPLS TE Configuration Table of Contents RSVP Configuration ...........................2-157 TE SRLG Configuration......2-162 TE Tunnel Reoptimization Configuration.................................................................................. which means that the reservation is updated by the receiver periodically...........2-29 TE Authentication Configuration .......................

After the RSVP process on an intermediate route along the path receives the PATH message.0) ZTE Proprietary and Confidential . When the RSVP process of the receiver receives the PATH message. The intermediate nodes establish and maintain the resource reservation path on the data transmission network through RSVP. The only work of RSVP is to advertise the RSVP signaling and maintain the reserved resources on the network. but it works together with TCP data flows or UDP data flows. the RSVP process forms a new PATH message and sends it to the next hop. and it is supposed that they hold the requests until the requests are removed explicitly. The receiver sends the request for resource reservation and maintains the resource reservation information. Before sending data. After this. or when the reservation event expires. The PATH message contains a unique LSP quintuple group and other control information. 3. saves the parameters of the service and the address of the previous hop. It does not carry data. it makes a confirmation about the QoS parameters designated 2-2 SJ-20140731105308-012|2014-10-20 (R1. 2. RSVP is not a routing protocol. the RSVP process returns the message according to the saved previous hop address. When it passes through each router. RSVP is a network (control) protocol instead of a transport protocol.ZXR10 M6000-S Configuration Guide (MPLS) the reservation repeatedly and periodically on the network. 3. The source application programme sends the characteristics of the user service and expected QoS to the RSVP process through the application programme interface. RSVP Control Path On the control path. it sends the message to the destination application programme through the RSVP application programme interface. The RSVP process also collects the information of available resources on the node and makes an preparation for the resource reservation. Any routing policy is made by Interior Gateway Protocol (IGP). At last. it establishes the PATH soft state. When the reservation is removed from the network by RSVP explicitly. Users can apply for buffers and bandwidth that meet the quality requirements of specific services from the network. This is different from the "hard-state" protocols. Generally. 4. PATH message and RESV message. The RESV message is transmitted to the sender along the same path. RSVP is receiver-oriented. IGP Traffic Engineering (TE) extension and Constrained Shortest Path First (CSPF). 1. RSVP is on the base of IP. The RESV message contains the QoS parameters and service characteristics that meet the parameters. the device will send a request. 4. the sender sends a PATH message first to establish a transmission path with the receiver. 2. the hard-state protocols only need to advertise requests once. thus to provide the corresponding quality of service. there are two basic messages used to establish the resource reservation path. The application programme forms an RESV message according to the service characteristics received and the parameters of the available resources. The RSVP process forms a PATH message according to the requirement and then sends the message to the next hop.

However. The RSVP message handling module is responsible for handling messages. the establishment of an LSP is started. the Least Upper Bound (LUB). 6. establishing. The sender and the receiver use this path to transmit data flow. When the RSVP process of an intermediate node receives the RESV message. RESV message. RSVP sends update messages periodically. RSVP uses the application programme interface between the RSVP message handling module and the service control module to trigger the service control module to adjust the reserved resources at the link layer. As service characteristics and reservation requirements are multidimensional. RSVP is a complex signaling system. maintaining and deleting the resource reservation state. Instead. flush timer and period-update timer. To maintain the path state information. If the state of a data flow changes. 2-3 SJ-20140731105308-012|2014-10-20 (R1. PATH update message and RESV update message it receives.Chapter 2 MPLS TE Configuration by the PATH message. the RSVP message handling module does not simply combine a reserved resource by using the larger value of a parameter. When the sender receives the RESV message from the receiver. the input LSR sends an RSVP PATH message to the output LSR. As shown in Figure 2-1. To adapt to the changes of routes and QoS. In multicasting situations. it establishes the RESV soft state. including PATH message and RESV message. the LSP tunnel is established. RSVP has two timers. it is better to use the minimum bandwidth to configure the RSVP packets to prevent data loss due to congestion. the RSVP message handling module combines the RESV messages that are sent by different senders to the same receiver. update and deletion of the resource reservation path. The two states contain the service parameters and resource reservation parameters of each data flow. it uses each parameter in the messages to calculate out a resource reservation state that meets the requirement in each message according to a specific algorithm. The routers along the path reserve resources for the data flow and forward the data flow according to the negotiated QoS. that is. Till Step 5. including establishment. LSP Tunnel Establishment After the input LSR at the head of the tunnel completes the CSPF calculation for a specific tunnel. as well as forwarding messages according to the routes obtained from the route handling module. The output LSR responds the input LSR for the RESV PATH message by sending an RSVP RESV message. and then forwards the message according to the saved previous hop address. an occasional loss of the PATH message will not cause the deletion of path state information. sets the parameters of the packet classifier and packet forwarder. 5. The RESV message handling module establishes and modifies the Path State Block (PSB) and Reservation State Block (RSB) for data flows according to the PATH message.0) ZTE Proprietary and Confidential . RSVP also handles different types of error information. In this way. the resource reservation path has been established. The interval of the period-update timer is several times smaller than that of the flush timer. and modifies the local PSB.

Through some mechanisms. 1. MPLS and RSVP are enabled globally and on the interfaces of LSR1. 2-4 SJ-20140731105308-012|2014-10-20 (R1. When the RESV message reaches the input LSR. the LSP establishment is completed. 2. The LSRs receiving the RSVP RESV message that contains the LABEL Object use the received labels for the services related to the specific LSP. the LSP is established. LABEL Object contains the label binding information that is used for communication between the output LSR and the upstream neighbors.ZXR10 M6000-S Configuration Guide (MPLS) Figure 2-1 LSP Tunnel Establishment 1 When the input LSR receives the RSVP RESV message. Figure 2-2 LSP Tunnel Establishment 2 As shown in Figure 2-2. The direction is opposite to that of the PATH message. When the output LSR receives the PATH message that contains LABEL_REQUEST Object. The input LSR can use the LSP tunnel to forward services to the output LSR. LSR2. LSR1 knows that the whole LSP needs to comply with the explicit route (LSR1 -> LSR2 -> LSR3 -> LSR4). The RESV message is sent in the upstream direction of the input LSR.0) ZTE Proprietary and Confidential . it sends an RESV that contains LABEL Object as a response. LSR3 and LSR4.

An ERO is a simple abstract node (just comprises a node defined by a 32-bit IPv4 packet). The L bit of each abstract node in the Explicit Route Object (ERO) is cleared. Create a tunnel interface.0) ZTE Proprietary and Confidential . loose}<A.D> 2-5 SJ-20140731105308-012|2014-10-20 (R1. Enable MPLS TE. Command Function ZXR10(config)#interface te_tunnel <tunnel-number> Enters a tunnel interface. 2. 2. 2 ZXR10 (config-mpls-te-expl-path-id- Configures a next hop of the identifier)#index <1-64> next-address {strict | explicit path. 2 ZXR10(config-mpls-te)#interface <interface-name> Enables TE on the interface.2 Configuring RSVP This procedure describes how to establish an LSP tunnel by using the RSVP-TE mode. unit: kbps. Step Command Function 1 ZXR10(config)#mpls traffic-eng Enables MPLS TE and enters the TE configuration mode.C. range 1–4294967295. Steps 1. that is.1.B. 3 ZXR10(config-mpls-te-if)#bandwidth Configures a bandwidth for [{static|dynamic}]<bandwidth value> the TE interface. Configure an explicit path for the tunnel.C.Chapter 2 MPLS TE Configuration 3. 3. the strict mode of specific bit in the explicit route. Step Command Function 1 ZXR10(config-mpls-te)#explicit-path {identifier Configures the explicit-path <identifier>|name <name>} name or identifier of the tunnel. bandwidth [{static|dynamic}]<bandwidth value>: maximum bandwidth (static reservation type or dynamic reservation type) that the TE interface supports. ZXR10 (config-mpls-te-expl-path-ididentifier)#index <1-64> exclude-address {interface| router-id}<A.B.D> 3 Configures an excluded path.

ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Configures the TE tunnel number)#tunnel mpls traffic-eng name <name> name. explicit-path {identifier <identifier>|name <name>} dynamic: uses the dynamic path calculation mode.D> address of the tunnel.ZXR10 M6000-S Configuration Guide (MPLS) strict: strict path. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Configures the destination number)#tunnel destination ipv4 <A. dynamic ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Configures the path of the tunnel number)#tunnel mpls traffic-eng path-option <number> (explicit path). Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters the tunnel configuration <tunnel-number> mode. Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters the tunnel configuration <tunnel-number> mode. 6. 2-6 SJ-20140731105308-012|2014-10-20 (R1. 2 5.B. 2 This tunnel name is carried to all nodes along the tunnel through the RSVP-TE signaling protocol. Configure the destination address of the tunnel. <name>: TE tunnel name with 1-63 characters. Configure other RSVP functions. Configure a TE tunnel name. Command Function ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Configures the path of the tunnel number)#tunnel mpls traffic-eng path-option <number> (dynamic). 4. Configure the path of the tunnel. Check different tunnel names by using the display command.C. loose: loose path. Tunnels with the same tunnelID can be more easily distinguished at the intermediate node. 7.0) ZTE Proprietary and Confidential .

<interval>: minimum time interval (in milliseconds) for sending BFD control packets. ZXR10#show mpls traffic-eng tunnels remote-tunnel Displays the information about a remote [tunnel-id <tunnel-id> lsp-id <lsp-id> ingress-id tunnel. Display the configuration results. which is 1–32. this number is not limited. checks whether the TE tunnel name is valid. <multiplier>: multiple of the timeout for detecting BFD control packets. <hop-num>: range of the maximum hops on a tunnel. <ingress-id> egress-id <egress-id>] ZXR10#show mpls traffic-eng tunnels brief Checks the brief information about a TE tunnel. Commands Functions ZXR10#show mpls traffic-eng tunnels te_tunnel <Tunnel Displays the information about a ID> specified local tunnel. ZXR10(config-mpls-te-tunnel-te_tunnel-number)#t Sets the maximum number of unnel mpls traffic-eng hop limit <hop-num> hops on a tunnel. specifically. range: 3–990. range: 3–50. 8.Chapter 2 MPLS TE Configuration Step Commands Functions 1 ZXR10(config-mpls-te-if-interface-name)#bfd Enables BFD on the real interface in MPLS-TE interface configuration mode. 2 3 ZXR10(config-mpls-te-tunnel-te_tunnel-number)#t Enables tunnel LSP BFD in unnel mpls traffic-eng bfd interval <interval> min-rx < MPLS-TE tunnel interface min-rx > multiplier <multiplier> configuration mode. <min-rx>: minimum time interval (in milliseconds) for receiving BFD control packets. range: 3–990.0) ZTE Proprietary and Confidential . By default. ZXR10#show mpls traffic-eng interface detail Displays the detailed information about the interface on which the TE function is enabled. ZXR10#show mpls traffic-eng interface brief Displays the brief information about the interface on which the TE function is enabled. – End of Steps – 2-7 SJ-20140731105308-012|2014-10-20 (R1.

3. there is a common RSVP tunnel from the P1 router to the P2 router.ZXR10 M6000-S Configuration Guide (MPLS) 2. The dynamic routing mode is used in this instance. Configure a static route to the destination on the P1 router. Establish the OSPF neighbor relationship between the P1 router and the P2 router through the direct-connected interfaces.3.1.168.255. Configure the destination and the path of tunnel1 on the P1 router.1. Enable TE on the direct connected interfaces of the P1 router and the P2 router. The tunnel is established through the OSPF TE protocol in dynamic routing mode.1 255.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit 2-8 SJ-20140731105308-012|2014-10-20 (R1. the traffic is transmitted through the tunnel.1.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.1. 2.0) ZTE Proprietary and Confidential . Establish the RSVP tunnel on the interfaces in the same OSPF area.1. Configuration Commands The configuration of P1 is as follows: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.1 Establishing a Basic OSPF TE RSVP Tunnel Configuration Descriptions As shown in Figure 2-3. In this case.255. Figure 2-3 Establishing a Basic OSPF TE RSVP Tunnel Configuration Flow 1. The next hop is Tunnel1.255. Enable OSPF TE.1 255.255.3 RSVP Configuration Instance 2.

168.1.1.255 te_tunnel1 The configuration of P2 is as follows: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.2 255.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1.0.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 dynamic P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit P1(config)#ip route 172.255.255 area 0 P2(config-ospf-1)#network 2.1 0.255.1.0) ZTE Proprietary and Confidential .1.1 255.0.0 0.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.2 255.1.1.0 0.255.1.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.1.1.1.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#exit 2-9 SJ-20140731105308-012|2014-10-20 (R1.255.255.1 P1(config-ospf-1)#network 192.0.1.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.255 area 0 P1(config-ospf-1)#network 1.0.1.1 0.0.1.1.20.0.1.0.0.1.1.168.168.1 P2(config-ospf-1)#network 192.255.1.1.Chapter 2 MPLS TE Configuration P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.

0 R2(config-if-gei-0/1/0/2)#exit Note: The loopback addresses are used as the Router-IDs in MPLS-TE. type dynamic (Basis for Setup) Actual Bandwidth: 0 kbps Hot-standby protection: No path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy class: default 2-10 SJ-20140731105308-012|2014-10-20 (R1.20.1.ZXR10 M6000-S Configuration Guide (MPLS) The configuration of R2 is as follows: R2(config)#interface gei-0/1/0/2 R2(config-if-gei-0/1/0/2)#ip address 172.1.1. Configuration Verification Check the tunnel information on the P1 router.255.1 gei-0/1/0/2 up/up - P1(config)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2.1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.255.2 255. P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 2. The loopback interfaces are always in UP state (unless the state is changed manually). The tunnel is in up state. It is to prevent the establishment of the tunnel from being affected by the Router-IDs due to down interfaces.0) ZTE Proprietary and Confidential . The information of the tunnel is shown below.1.1.

0 minutes Last lsp error information: None log record.168. peak rate= 0 kbits RSVP Resv Info: Record Route: NULL Fspec: ave rate= 0 kbits. 6 hours.Chapter 2 MPLS TE Configuration Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 Affinity: 0x0/0x0 EBS: 0 byte AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1.0.168.1 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kbits.1.0 OutLabel: gei-0/1/0/2.1.2 2.1. 2. Dst 2. The tunnel is established through the IS-IS TE protocol in strict routing mode.1. 2-11 SJ-20140731105308-012|2014-10-20 (R1. burst= 1000 bytes. Tun_Id 1.1.3.0) ZTE Proprietary and Confidential .1.1.1 192. there is a common RSVP tunnel from the P1 router to the P2 router.1. 10 minutes Prior LSP: path option 1 Current LSP: Uptime:0 days.0. burst= 1000 bytes.2 Establishing a Strict IS-IS TE RSVP Tunnel Configuration Descriptions As shown in Figure 2-4. 3 RSVP Signalling Info : Src 1.1.1. Tun_Instance 74 RSVP Path Info: Explicit Route: 192. peak rate= 0 kbits History: Tunnel: Time since created: 0 days. 0 hours.

1. Configure the destination and the path of tunnel1 on the P1 router. The next hop is Tunnel1.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router isis 1 P1(config-isis-1)#area 00 P1(config-isis-1)#system-id AAAA.255. 3.1 255.255. Establish the IS-IS neighbor relationship between the P1 router and the P2 router through the direct-connected interfaces and enable IS-IS TE.1. 2.BBBB.0) ZTE Proprietary and Confidential .1 255. the traffic is transmitted through the tunnel. Configuration Commands The configuration of P1 is as follows: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.255. Enable TE on the direct-connected interfaces of the P1 router and the P2 router.1.168.1111 P1(config-isis-1)#interface gei-0/1/0/2 P1(config-isis-1-if-gei-0/1/0/2)#ip router isis P1(config-isis-1-if-gei-0/1/0/2)#exit P1(config-isis-1)#interface loopback1 P1(config-isis-1-if-loopback1)#ip router isis P1(config-isis-1-if-loopback1)#exit 2-12 SJ-20140731105308-012|2014-10-20 (R1. In this case.255. Configure a static route to the destination on the P1 router. The strict routing mode is used in this example.ZXR10 M6000-S Configuration Guide (MPLS) Figure 2-4 Establishing a Strict IS-IS TE RSVP Tunnel Configuration Flow 1.

2 255.1.255 P2(config-if-loopback2)#exit P2(config)#router isis 1 P2(config-isis-1)#area 00 P2(config-isis-1)#system-id AAAA.20.1.1.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.0) ZTE Proprietary and Confidential .1.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit P1(config)#ip route 172.1.255.Chapter 2 MPLS TE Configuration P1(config-isis-1)#metric-style wide P1(config-isis-1)#mpls traffic-eng level-1 P1(config-isis-1)#mpls traffic-eng level-2 P1(config-isis-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1 255.168.1.2 255.1.1.2222 P2(config-isis-1)#interface gei-0/1/0/2 P2(config-isis-1-if-gei-0/1/0/2)#ip router isis P2(config-isis-1-if-gei-0/1/0/2)#exit P2(config-isis-1)#interface loopback2 P2(config-isis-1-if-loopback2)#ip router isis P2(config-isis-1-if-loopback2)#exit P2(config-isis-1)#metric-style wide P2(config-isis-1)#mpls traffic-eng level-1 P2(config-isis-1)#mpls traffic-eng level-2 P2(config-isis-1)#exit 2-13 SJ-20140731105308-012|2014-10-20 (R1.255.255.255.168.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.BBBB.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.255.1.255 te_tunnel1 The configuration of P2 is as follows: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.255.

1. The information of the tunnel is shown below.1.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#exit The configuration of R2 is as follows: R2(config)#interface gei-0/1/0/2 R2(config-if-gei-0/1/0/2)#no shutdown R2(config-if-gei-0/1/0/2)#ip address 172.255. The tunnel is in up state.1.ZXR10 M6000-S Configuration Guide (MPLS) P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.2 255. P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 2.1.1.1 - gei-0/1/0/2 up/up P1(config-mpls-te)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2.20.1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. type explicit identifier: 1 (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: no path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: enabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled 2-14 SJ-20140731105308-012|2014-10-20 (R1.0 R2(config-if-gei-0/1/0/2)#exit Configuration Verification Check the tunnel information on the P1 router.1.255.0) ZTE Proprietary and Confidential .1.

1.1.0) ZTE Proprietary and Confidential . Tun_Id 1. Tun_Instance 78 RSVP Path Info: Explicit Route: 192.0. 6 hours. 0 hours. burst= 1000 bytes. 2-15 SJ-20140731105308-012|2014-10-20 (R1.0.Chapter 2 MPLS TE Configuration BFD: disabled Policy class: default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 Affinity: 0x0/0x0 EBS: 0 byte AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1. 19 minutes Prior LSP: path option 1 Current LSP: Uptime:0 days.1.1. burst= 1000 bytes.1.1 192.1 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kbits.1. peak rate= 0 kbits History: Tunnel: Time since created: 0 days.168. Dst 2.1.0 InLabel: OutLabel: gei-0/1/0/2.2 2. peak rate= 0 kbits RSVP Resv Info: Record Route: NULL Fspec: ave rate= 0 kbits. 3 RSVP Signalling Info : Src 1. 0 minutes Last lsp error information: None log record.168.1.1.

1 255. 2.213 255.20. Enable BFD on the RSVP-TE interfaces on R1 and R2.0) ZTE Proprietary and Confidential .255.ZXR10 M6000-S Configuration Guide (MPLS) Note: The loopback addresses are used as the Router-IDs in MPLS TE.96.255.130.20. Establish an IS-IS TE tunnel between R1 and R2.3 Configuring BFD on RSVP Interface Configuration Description As shown in Figure 2-5. 2. it is required to establish an IS-IS TE tunnel between R1 and R2 and enable BFD for the RSVP-TE interfaces on R1 and R2. It is to prevent the establishment of the tunnel from being affected by the Router-IDs due to interface down. Configuration Command Run the following commands on R1: R1(config)#interface xgei-0/5/0/3 R1(config-if-xgei-0/5/0/3)#ip address 172.255.0172 R1(config-isis-0)#system-id 0020.255 R1(config-if-loopback1)#exit R1(config)#router isis R1(config-isis-0)#area 49.252 R1(config-if-xgei-0/5/0/3)#exit R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 172.0096.0001 R1(config-isis-0)#metric-style wide R1(config-isis-0)#mpls traffic-eng level-2 R1(config-isis-0)#interface xgei-0/5/0/3 R1(config-isis-0-if-xgei-0/5/0/3)#ip router isis R1(config-isis-0-if-xgei-0/5/0/3)#end 2-16 SJ-20140731105308-012|2014-10-20 (R1.255.3.1. Figure 2-5 Configuring BFD on RSVP Interface Configuration Flow 1. The loopback interfaces are always in UP state (unless the state is changed manually).

0002 R2(config-isis-0)#metric-style wide R2(config-isis-0)#mpls traffic-eng level-2 R2(config-isis-0)#interface xgei-0/0/0/3 R2(config-isis-0-if-xgei-0/0/0/3)#ip router isis R2(config-isis-0-if-xgei-0/0/0/3)#end R2(config)#mpls traffic-eng R2(config-mpls-te)#interface loopback1 R2(config-mpls-te-if-loopback1)#exit R2(config-mpls-te)#router-id 172.252 R2(config-if-xgei-0/0/0/3)#exit R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 172.108.20. Run the following commands to check the configuration result.1 R1(config-mpls-te)#tunnel te_tunnel 1 R1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 172.1 R1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 dynamic R1(config-mpls-te-tunnel-te_tunnel1)#exit R1(config-mpls-te)#interface xgei-0/5/0/3 R1(config-mpls-te-if-xgei-0/5/0/3)#bfd Run the following commands on R2: R2(config)#interface xgei-0/0/0/3 R2(config-if-xgei-0/0/0/3)#ip address 172.214 255.130.108.255 R2(config-if-loopback1)#exit R2(config)#router isis R2(config-isis-0)#area 49.20.1 255.20.255.0096.20. a session of RSVP interface on R1 should be established successfully.108.0172 R2(config-isis-0)#system-id 0020.20.1 R2(config-mpls-te)#interface xgei-0/0/0/3 R2(config-mpls-te-if-xgei-0/0/0/3)#bfd Configuration Verification After the configuration.255.Chapter 2 MPLS TE Configuration R1(config)#interface te_tunnel1 R1(config-if-te_tunnel1)#ip unnumbered loopback1 R1(config-if-te_tunnel1)#exit R1(config)#mpls traffic-eng R1(config-mpls-te)#interface loopback1 R1(config-mpls-te-if-loopback1)#exit R1(config-mpls-te)#router-id 172.96.0) ZTE Proprietary and Confidential . 2-17 SJ-20140731105308-012|2014-10-20 (R1.255.255.

20.1. 2-18 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential . the tunnel traffic should be changed over to the standby LSP.ZXR10 M6000-S Configuration Guide (MPLS) Run the show bfd neighbors [ip brief|ip detail] command to check whether the BFD configuration of the RSVP interface takes effect. Check the BFD configuration result of RSVP interface on R1: R1(config)#show bfd neighbors ip brief LocalAddr PeerAddr LD RD Hold State Interface 172.130. When it is combined with the hot standby function and when an invalid LSP becomes an active LSP.130.20.130.0 minute(s) Control Plane Rcv Phy Interface Name: xgei-0/5/0/3 ============================================================================ 2.214 Local Discr:2050 Remote Discr:2049 Holdown(ms):150 Interface: xgei-0/5/0/3 Vpnid:0 VRF Name:--- State:UP BFD Type:SingleHop Instance Name: ---------------------------------------------------------------------------Version:1 Dest UDP Port:3784 Final Bit:1 Local Diag:0 Demand Mode:0 Poll Bit:1 MinTxInt:50 MinRxInt:50 Multiplier:3 Received MinTxInt:50 Received MinRxInt:50 Received Multiplier:3 Length:24 Min Echo Interval:0 Min BFD Length:24 Max BFD Length:24 Rx Count:0 Rx Interval (ms) min/max/avg:0 /0 /0 Tx Count:66 Tx Interval (ms) min/max/avg:0 /0 /0 Registered Protocols:RSVP Uptime:0 day(s).213 PeerAddr :172.20.20.4 Configuring RSVP LSP BFD Configuration Description As shown in Figure 2-6.0 hour(s).130. RSVP LSP BFD is to use BFD to detect the LSP of an RSVP tunnel.214 8 1 150 UP xgei-0/5/0/3 R1(config)#show bfd neighbors ip detail ------------------------------------------------------------LocalAddr:172.3.213 172.

Enable OSPF-TE among R1.255 area 0 R1(config-ospf-100)#network 57.10.1 255.1.10. Configure a hot standby tunnel on R1 (R1-R3-R2) and configure BFD on the tunnel.255 R1(config-if-loopback10)#exit R1(config)#router ospf 100 R1(config-ospf-100)#network 54.1.0 R1(config-if-gei-0/5/0/7)#exit R1(config)#interface loopback10 R1(config-if-loopback10)#ip address 10.10.1.1 255.1.1 255.0.1.255.255 area 0 R1(config-ospf-100)#network 10.0 R1(config-if-gei-0/5/0/4)#exit R1(config)#interface gei-0/5/0/7 R1(config-if-gei-0/5/0/7)#ip address 57.0.255.1 0.255.255.0) ZTE Proprietary and Confidential .0.1.0.0 area 0 R1(config-ospf-100)#mpls traffic-eng area 0 R1(config-ospf-100)#exit R1(config)#interface te_tunnel1 R1(config-if-te_tunnel1)#ip unnumbered loopback10 R1(config-if-te_tunnel1)#exit 2-19 SJ-20140731105308-012|2014-10-20 (R1.0.255.0 0.0. Configuration Commands Run the following commands on R1: R1(config)#interface gei-0/5/0/4 R1(config-if-gei-0/5/0/4)#ip address 54.Chapter 2 MPLS TE Configuration Figure 2-6 RSVP LSP BFD Configuration Instance Configuration Flow 1.1.1. 2.255.10.0 0. R2 and R3.

255.255.10.2 2-20 SJ-20140731105308-012|2014-10-20 (R1.10.0 R2(config-if-gei-0/3/0/7)#exit R2(config)#interface gei-0/3/0/5 R2(config-if-gei-0/3/0/5)#ip address 115.1.1.1.0.2 255.0) ZTE Proprietary and Confidential .2 Run the following commands on R2: R2(config)#interface gei-0/3/0/7 R2(config-if-gei-0/3/0/7)#ip address 57.10.1 R1(config-mpls-te)#interface gei-0/5/0/4 R1(config-mpls-te-if-gei-0/5/0/4)#exit R1(config-mpls-te)#interface gei-0/5/0/7 R1(config-mpls-te-if-gei-0/5/0/7)#exit R1(config-mpls-te)#tunnel te_tunnel1 R1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 10.0.10.10.1.1.0.0 area 0 R2(config-ospf-100)#mpls traffic-eng area 0 R2(config-ospf-100)#exit R2(config)#mpls traffic-eng R2(config-mpls-te)#interface loopback10 R2(config-mpls-te-if-loopback10)#exit R2(config-mpls-te)#router-id 10.1.255.255 area 0 R2(config-ospf-100)#network 10.0.10.0.2 R1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 R1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route R1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng hot-standby protect 1 dynamic R1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng bfd interval 30 min-rx 30 multiplier 5 R1(config-mpls-te-tunnel-te_tunnel1)#exit R1(config-mpls-te)#explicit-path identifier 1 R1(config-mpls-te-expl-path-id-1)#next-address strict 54.10.1.0.10.0 0.10.1.2 0.255.0 0.255 area 0 R2(config-ospf-100)#network 57.3 R1(config-mpls-te-expl-path-id-1)#next-address strict 115.2 255.10.2 255.255.255.0 R2(config-if-gei-0/3/0/5)#exit R2(config)#interface loopback10 R2(config-if-loopback10)#ip address 10.ZXR10 M6000-S Configuration Guide (MPLS) R1(config)#mpls traffic-eng R1(config-mpls-te)#interface loopback10 R1(config-mpls-te-if-loopback10)#exit R1(config-mpls-te)#router-id 10.1.1.1.1.255 R2(config-if-loopback10)#exit R2(config)#router ospf 100 R2(config-ospf-100)#network 115.

1.1.10.255.0.10.255 area 0 R3(config-ospf-100)#network 54. If the link between R3 and R2 is invalid.1.0.0.3 255.1. The traffic is changed over to the hot standby tunnel.10.1.0 area 0 R3(config-ospf-100)#mpls traffic-eng area 0 R3(config-ospf-100)#exit R3(config)#mpls traffic-eng R3(config-mpls-te)#interface loopback10 R3(config-mpls-te-if-loopback10)#exit R3(config-mpls-te)#router-id 10.0 0.255.0) ZTE Proprietary and Confidential . the hot standby relation is ready. The RSVP LSP BFD session on R1 should be established successfully.0 R3(config-if-gei-0/1/1/5)#exit R3(config)#interface loopback10 R3(config-if-loopback10)#ip address 10. R1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running 2-21 SJ-20140731105308-012|2014-10-20 (R1.Chapter 2 MPLS TE Configuration R2(config-mpls-te)#interface gei-0/3/0/7 R2(config-mpls-te-if-gei-0/3/0/7)#exit R2(config-mpls-te)#interface gei-0/3/0/5 R2(config-mpls-te-if-gei-0/3/0/5)#exit Run the following commands on R3: R3(config)#interface gei-0/1/1/4 R3(config-if-gei-0/1/1/4)#ip address 54.1.1.255.3 255.0.3 255.0 R3(config-if-gei-0/1/1/4)#exit R3(config)#interface gei-0/1/1/5 R3(config-if-gei-0/1/1/5)#ip address 115. Run the show bfd neighbors [rsvp-brief|rsvp-detail] command to check whether the RSVP interface BFD configuration takes effect.10.0 0.10.3 R3(config-mpls-te)#interface gei-0/1/1/4 R3(config-mpls-te-if-gei-0/1/1/4)#exit R3(config-mpls-te)#interface gei-0/1/1/5 R3(config-mpls-te-if-gei-0/1/1/5)#exit Configuration Verification After the configuration.3 0.255 R3(config-if-loopback10)#exit R3(config)#router ospf 100 R3(config-ospf-100)#network 115.255. Check the tunnel on R1.255.0. the tunnel1 on R1 is Up and a hot standby tunnel is generated.10.1.255 area 0 R3(config-ospf-100)#network 10.0.255.

1.10.10.ZXR10 M6000-S Configuration Guide (MPLS) Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 10.10.10.1. burst= 1000 bytes.1.1.10.10.10. R1#show bfd neighbors rsvp lsp brief TunnelId LspId LD RD Hold State te_tunnel1 16 33053 2662 150 UP R1#show bfd neighbors rsvp lsp detail ---------------------------------------------------------------------------TunnelId:te_tunnel1 LspId:16 LspRole:master Local Discr:33053 Remote Discr:2662 State:UP 2-22 SJ-20140731105308-012|2014-10-20 (R1. Tun_Id 1.10.10.3 115.10.2 Record Route: NULL Tspec: ave rate= 0 kbits.1.10.1 57.2 57. peak rate= 0 kbits Check the RSVP interface BFD configuration on R1.2 Fspec: ave rate= 0 kbits.10. peak rate= 0 kbits RSVP Resv Info: Record Route: 10.1.2 10. 3 RSVP Signalling Info : Src 10.10.10. Tun_Instance 10 RSVP Path Info: Explicit Route: 57.2 Status: Admin: up Oper: up Path: valid Signalling: connected Fast Reroute Protection: None Hot-standby Protection: Ready InLabel: OutLabel: gei-0/5/0/7.0) ZTE Proprietary and Confidential .1. burst= 1000 bytes.1.10. Dst 10.2 Exclude Route: 10.2.2 - gei-0/5/0/4 up/up tunnel_1(hot) 10.2 - gei-0/5/0/7 up/up R1#sho mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID Tunnel1 9 In-label Out intf/label FRR intf/label Status Tun hd Tu1:3 ready FRR intf/label Status gei-0/5/0/4:14745 6 LSP midpoint frr information: LSP identifier In-label Out intf/label R1#sho mpls traffic-eng tunnels hot-standby Name: tunnel_1 (Tunnel1) Destination: 10.10.1.

0 minute(s) Control Plane Rcv Phy Interface Name: gei-0/5/0/4 ============================================================================ /*When the R3-R2 link is invalid.*/ R1#sho mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID Tunnel1 9 In-label Out intf/label FRR intf/label Status Tun hd Tu1:3 active FRR intf/label Status gei-0/5/0/4:14745 6 LSP midpoint frr information: LSP identifier In-label Out intf/label R1#sho mpls traffic-eng tunnels hot-standby Name: tunnel_1 (Tunnel1) Destination: 10.0) ZTE Proprietary and Confidential .10. the tunnel hot standby relation is active.0 hour(s).Chapter 2 MPLS TE Configuration Holddown(ms):150 BFD Type:RSVP LSP[Active] Instance Name: ---------------------------------------------------------------------------Version:1 Dest UDP Port:3784 Final Bit:1 Local Diag: 0 Demand Mode:0 Poll Bit:0 MinTxInt: 50 MinRxInt:50 Multiplier:3 Received MinTxInt: 10 Received MinRxInt:10 Received Multiplier:3 Length:24 Min Echo Interval:0 Rx Count:0 Rx Interval (ms) min/max/avg:0 /0 /0 Tx Count:0 Tx Interval (ms) min/max/avg:0 /0 /0 Registered Protocols:RSVP LSP Uptime:0 day(s).10.2 Status: Admin: up Oper: up Path: valid Signalling: connected Fast Reroute Protection: None Hot-standby Protection: Backup lsp in use R1(config)#show bfd neighbors rsvp lsp brief 2-23 SJ-20140731105308-012|2014-10-20 (R1.

a MESSAGE_ID_NACK object is generated. The MESSAGE-ID object is the object applied in the TE message acknowledgement and retransmission mechanism. In the TE message acknowledgement and retransmission mechanism. l l MESSAGE_ID_NACK object: After a MESSAGE_ID object is received. RFC extends the MESSAGE-ID object. The Srefresh message itself needs not to be acknowledged. Limited system resources can be effectively utilized by reducing the traffic loads caused by refresh messages. ACK message. and the related LSP status information is maintained by periodically sending refresh messages.1 TE Summary Refresh Introduction Overview RSVP is a typical soft status protocol.0) ZTE Proprietary and Confidential . the corresponding LSP is removed. refer to the "Introduction to TE Message Acknowledgement and Retransmission" section. and a large amount of bandwidth is used to maintain these tunnels. a MESSAGE_ID object is carried in a triggering message. Implementation To implement RSVP summary refresh. and it must carry a MESSAGE_ID object. Srefresh message: carries one or more MESSAGE_ID_LIST objects to refresh multiple PATH or RESV messages that have been advertised. MESSAGE_ID_ACK object. MESSAGE_ID_NACK object. This object is sent in an ACK message or carried in other messages through the TE message acknowledgement and retransmission mechanism. This mechanism is applied only in triggering messages. and no handlings are performed for PATH and RESV refresh messages. MESSAGE_ID_LIST object. when there are thousands of tunnels.2.2 TE Summary Refresh Introduction 2. and ACK message. For a description of the MESSAGE_ID object. l MESSAGE_ID_LIST object: identifies a received message. If an RSVP node does not receive any refresh message during the specified period. When a neighbor receives the message. MESSAGE_ID_ACK object. 2-24 SJ-20140731105308-012|2014-10-20 (R1. and Srefresh message.ZXR10 M6000-S Configuration Guide (MPLS) 2. Such feature of RSVP determines that. it sends an ACK message to the message sender. The MESSAGE_ID object plays the same role as a PATH or RESV message. The principle of summary refresh is to use a summary refresh message (carrying a MESSAGE-ID object indicating a PATH or RESV message) to replace the standard PATH and RESV message. too much pressure is put on system loads to maintain the refresh messages for these tunnels. if the corresponding status block is not found.

To display the configuration result. and enters the TE configuration mode. 3. The advantage of summary refresh is that a message sender needs not to construct a standard PATH or RESV message. 2 ZXR10(config-mpls-te)#signalling refresh reduction Enables summary refresh. enhancing the utilization of limited system resources. If the neighbor does not find the corresponding PATH or RSB status block through the MESSAGE_ID object.0) ZTE Proprietary and Confidential . and then updates the TTD time of the PSB or RSB. This can reduce the traffic loads caused by refresh messages. the neighbor considers that a PATH refresh message is received from the upstream. it sends a MESSAGE_ID_NACK object to the source end. and sends the message to the neighbor. If the corresponding status block is found. 2. Context Before the TE summary refresh configuration. it constructs a standard PATH or RESV refresh message based on the PATH or RSB status block corresponding to the MESSAGE_ID object. To enable MPLS TE.2.Chapter 2 MPLS TE Configuration Features After a neighbor receives a summary refresh message. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te)#signalling retransmit Enables TE message acknowledgement and retransmission.2 Configuring TE Summary Refresh This procedure describes how to configure TE summary refresh. TE message acknowledgement and retransmission should be enabled in the TE configuration mode of local and peer nodes. 2. run the following commands: Command Function ZXR10(config)#mpls traffic-eng Enables MPLS TE. Steps 1. and a neighboring node needs not to create a PKT and compare objects in a message. run the following command: 2-25 SJ-20140731105308-012|2014-10-20 (R1. or the RESV refresh message is received from the downstream. it determines the corresponding PATH or RSB status block based on the MESSAGE_ID object. After the source end receives the MESSAGE_ID_NACK object. To configure summary refresh.

1.255.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 2-26 SJ-20140731105308-012|2014-10-20 (R1. 2. Figure 2-7 TE Summary Refresh Configuration Example Configuration Flow 1. Enable summary refresh in the TE configuration mode of P1 and P2.255. – End of Steps – 2. 4.1 255.1. Configure the tunnel destination and strict routing mode on P1.168.255.ZXR10 M6000-S Configuration Guide (MPLS) Command Function ZXR10#show ip rsvp refresh reduction Displays summary refresh information. It is required to establish a common RSVP tunnel from P1 to P2 by using the OSPF TE-based strict routing mode. and configure summary refresh in the TE configuration mode of P1 and P2.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.1.255. Enable TE on the directly-connected interfaces of P1 and P2. 3.0) ZTE Proprietary and Confidential . Establish an OSPF neighbor relationship between the directly-connected interfaces of P1 and P2. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192. and enable OSPF TE.3 TE Summary Refresh Configuration Example Scenario Description Figure 2-7 shows a sample network topology.1 255.2.

0.168.0.1.1.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.168.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.168.1 255.1.0) ZTE Proprietary and Confidential .1.1.1.255 area 0 P1(config-ospf-1)#network 1.0 0.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit 2-27 SJ-20140731105308-012|2014-10-20 (R1.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.168.1.255.1.2 255.1.1.0.255.1 P2(config-ospf-1)#network 192.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.1.1 0.0.0.1 P1(config-ospf-1)#network 192.255.1 0.0.1.1.0.1.1.0 0.0.1.255.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.1.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.255 area 0 P2(config-ospf-1)#network 2.1.Chapter 2 MPLS TE Configuration P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.

1 Run the show ip rsvp refresh reduction command on P2 to display the information of TE summary refresh: P2(config-mpls-te)#show ip rsvp refresh reduction Retransmit:enabled Initial retransmit delay:1000ms Retransmit limit:3 Refresh Reduction:enabled next_hop type tunnel_id lsp_id ingressegress 192. The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 2.1.1 Resv 1 2 1.1.gei-0/1/0/2 up/up It can be seen that the tunnel is in up status.1.1 .0) ZTE Proprietary and Confidential .1 2-28 SJ-20140731105308-012|2014-10-20 (R1.1.1.1. Run the show ip rsvp refresh reduction command on P1 to display the information of TE summary refresh: P1(config)#show ip rsvp refresh reduction Retransmit:enabled Initial retransmit delay:1000ms Retransmit limit:3 Refresh Reduction:enabled next_hop type tunnel_id lsp_id ingressegress 192.1.12.1.ZXR10 M6000-S Configuration Guide (MPLS) P2(config-mpls-te)#router-id 2.1.1.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit Run the following commands to enable TE summary refresh: P1(config-mpls-te)#signalling retransmit P1(config-mpls-te)#signalling refresh reduction P2(config-mpls-te)#signalling retransmit P2(config-mpls-te)#signalling refresh reduction Configuration Verification Run the show mpls traffic-eng tunnels brief command on P1 to check whether the tunnel has been established.1.1.1.168.12.2 Path 1 2 1.1.168.

If the flag in the MESSAGE_ID object of the message sender is not 1. this object cannot be acknowledged. only the services related to the LSP are affected. a negative effect also arises: The function and significance of refresh messages are greatly enhanced. RFC adds a MESSAGE-ID object. even causing the removal of LSPs and service interruptions. receiving a MESSAGE_ID_ACK object is referred to as explicit acknowledgement. a MESSAGE_ID_ACK object. MESSAGE_ID_ACK object: acknowledges the corresponding MESSAGE_ID object.Chapter 2 MPLS TE Configuration 2. l l MESSAGE_ID object: uniquely identifies a message. Even though the use of the summary refresh mode can reduce the amount of refresh messages.3 TE Message Acknowledgement and Retransmission 2. which ensures the reliability of message transmission. Implementation To implement RSVP message acknowledgement and retransmission. and therefore it cannot carry any MESSAGE_ID object. In the worst cases. if an LSP is removed due to no receipt of an RSVP message during the specified period. Features l Explicit acknowledgement and implicit acknowledgement In general. in some abnormal cases (for example. To relieve and eliminate the negative effect. multiple messages by carrying multiple An ACK message does not need to be acknowledged. and indicates whether the message should be acknowledged by the peer end. 2-29 SJ-20140731105308-012|2014-10-20 (R1. and the consequence is not very serious.1 Introduction to TE Message Acknowledgement and Retransmission Overview RSVP messages are IP-based. messages that need to be acknowledged are retransmitted when no acknowledgements are received. but the forwarding of IP messages is unreliable: messages may be lost or failed. message acknowledgement and retransmission is used to guarantee the summary refresh function. Before the summary refresh function is enabled. The loss of a refresh message may cause multiple LSPs not to receive the corresponding refresh information. In this way. l ACK message: acknowledges MESSAGE_ID_ACK objects. messages are lost). and an ACK message.0) ZTE Proprietary and Confidential . Moreover.3. message senders are not informed of failures. an RSVP message is periodically sent to refresh an LSP.

à Batch delayed acknowledgement: buffers the ACK objects for a received message temporarily. An ACK message can only acknowledge a received message. 2-30 SJ-20140731105308-012|2014-10-20 (R1. Configure TE message acknowledgement and retransmission. the message receiver has two options: à Immediate acknowledgement: replies an ACK message for the received message (such as the NOTIFY message) immediately. and enters the TE configuration mode. a received RSVP message does not carry a MESSAGE_ID_ACK object. This acknowledgement mode is referred to as implicit acknowledgment. Step Command Function 1 ZXR10(config-mpls-te)#signalling retransmit Configures TE message acknowledgement and retransmission. Enable the MPLS TE. and sends these ACK objects all at once.0) ZTE Proprietary and Confidential . Command Function ZXR10(config)#mpls traffic-eng Enables MPLS TE. but the MESSAGE_ID object carried in the RSVP message functions as the MESSAGE_ID_ACK object. l Immediate acknowledgement and batch delayed acknowledgement If a received message needs to be acknowledged.2 Configuring TE Message Acknowledgement and Retransmission This procedure describes how to configure TE message acknowledgement and retransmission. 2. This acknowledgement mode has a real-time feature but lower efficiency. Steps 1. 2.3.ZXR10 M6000-S Configuration Guide (MPLS) In some cases. Context TE message acknowledgement and retransmission should be configured in the TE configuration mode of local and peer nodes.

Chapter 2 MPLS TE Configuration

Step

Command

Function

2

ZXR10(config-mpls-te)#signalling retransmit interval

Sets the message

< interval-value >

retransmission interval
(in milliseconds) in TE
message acknowledgement
and retransmission, range:
500–3000.

3

ZXR10(config-mpls-te)#signalling retransmit limit <

Sets the number of

limit-count >

times that a message is
retransmitted in TE message
acknowledgement and
retransmission, range: 2–10.

3. Verify the configuration.
Command

Function

ZXR10#show ip rsvp refresh reduction

Displays information of TE
message acknowledgement and
retransmission.

– End of Steps –

2.3.3 TE Message Acknowledgement and Retransmission
Configuration Example
Scenario Description
Figure 2-8 shows a sample network topology. It is required to establish a common RSVP
tunnel from P1 to P2 by using the OSPF TE-based strict routing mode, and configure TE
message acknowledgement and retransmission in the TE mode of P1 and P2.
Figure 2-8 TE Message Acknowledgement and Retransmission Configuration Example

2-31
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)

Configuration Flow
1. Establish an OSPF neighbor relationship between the directly-connected interfaces of
P1 and P2, and enable OSPF TE.
2. Enable TE on the directly-connected interfaces of P1 and P2.
3. Configure the tunnel destination and strict routing mode on P1.
4. Configure TE acknowledgement and retransmission in the TE configuration mode of
P1 and P2.

Configuration Commands
Run the following commands on P1:
P1(config)#interface gei-0/1/0/2
P1(config-if-gei-0/1/0/2)#no shutdown
P1(config-if-gei-0/1/0/2)#ip address 192.168.1.1 255.255.255.0
P1(config-if-gei-0/1/0/2)#exit
P1(config)#interface loopback1
P1(config-if-loopback1)#ip address 1.1.1.1 255.255.255.255
P1(config-if-loopback1)#exit
P1(config)#interface te_tunnel1
P1(config-if-te_tunnel1)#ip unnumbered loopback1
P1(config-if-te_tunnel1)#exit

P1(config)#router ospf 1
P1(config-ospf-1)#router-id 1.1.1.1
P1(config-ospf-1)#network 192.168.1.0 0.0.0.255 area 0
P1(config-ospf-1)#network 1.1.1.1 0.0.0.0 area 0
P1(config-ospf-1)#mpls traffic-eng area 0
P1(config-ospf-1)#exit

P1(config)#mpls traffic-eng
P1(config-mpls-te)#interface loopback1
P1(config-mpls-te-if-loopback1)#exit
P1(config-mpls-te)#router-id 1.1.1.1
P1(config-mpls-te)#interface gei-0/1/0/2
P1(config-mpls-te-if-gei-0/1/0/2)#exit
P1(config-mpls-te)#explicit-path identifier 1
P1(config-mpls-te-expl-path-id-1)#next-address strict 192.168.1.2
P1(config-mpls-te-expl-path-id-1)#exit
P1(config-mpls-te)#tunnel te_tunnel 1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1.1.1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng
path-option 1 explicit-path identifier 1
P1(config-mpls-te-tunnel-te_tunnel1)#exit
P1(config-mpls-te)#exit

2-32
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration

Run the following commands on P2:
P2(config)#interface gei-0/1/0/2
P2(config-if-gei-0/1/0/2)#no shutdown
P2(config-if-gei-0/1/0/2)#ip address 192.168.1.2 255.255.255.0
P2(config-if-gei-0/1/0/2)#exit
P2(config)#interface loopback2
P2(config-if-loopback2)#ip address 2.1.1.1 255.255.255.255
P2(config-if-loopback2)#exit

P2(config)#router ospf 1
P2(config-ospf-1)#router-id 2.1.1.1
P2(config-ospf-1)#network 192.168.1.0 0.0.0.255 area 0
P2(config-ospf-1)#network 2.1.1.1 0.0.0.0 area 0
P2(config-ospf-1)#mpls traffic-eng area 0
P2(config-ospf-1)#exit

P2(config)#mpls traffic-eng
P2(config-mpls-te)#interface loopback2
P2(config-mpls-te-if-loopback2)#exit
P2(config-mpls-te)#router-id 2.1.1.1
P2(config-mpls-te)#interface gei-0/1/0/2
P2(config-mpls-te-if-gei-0/1/0/2)#exit

Configuration Verification
Run the show mpls traffic-eng tunnels brief command on P1 to check whether the tunnel
has been established. The execution result is displayed as follows:
P1(config)#show mpls traffic-eng tunnels brief
Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
TUNNEL NAME DESTINATION UP IF DOWN IF
tunnel_1

2.1.1.1

-

STATE/PROT

gei-0/1/0/2

up/up

It can be seen that the tunnel is in up status.
Run the show ip rsvp refresh reduction command on P1 to check the information of
message acknowledgement and retransmission. The execution result is displayed as
follows:
P1(config)#show ip rsvp refresh reduction
/*TE message acknowledgement and retransmission is disabled*/
Retransmit:disabled
Initial retransmit delay:1000ms
Retransmit limit:3
Refresh Reduction:disabled

2-33
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)

Run the following commands on P1 to configure message acknowledgement and
retransmission:
P1(config-mpls-te)#signalling retransmit
P1(config-mpls-te)#signalling retransmit interval 2000
P1(config-mpls-te)#signalling retransmit limit 5

P2 has the same configuration as P1.
Run the show ip rsvp refresh reduction command on P1 to check the information of
message acknowledgement and retransmission. The execution result is displayed as
follows:
P1(config-mpls-te)#sho ip rsvp refresh reduction
/*TE message acknowledgement and retransmission is enabled*/
Retransmit:enabled
Initial retransmit delay:2000ms
Retransmit limit:5
Refresh Reduction:disabled

2.4 TE Authentication Configuration
2.4.1 TE Authentication Overview
Authentication Introduction
RSVP authentication mechanism (cryptographic authentication) is a method for encrypting
messages on the sender's end, and authenticating messages on the receiver's end
between two neighboring nodes in a RSVP networking solution. By using this mechanism,
RSVP messages can be prevented from being modified illegally or suffering from an
attack that causes repeated messages transmission.
This authentication function has the following features:
l

l

Based on the existing flow of RSVP protocol, the RSVP message authentication
function is implemented through adding operations in RSVP transmission and
reception packages.
Cryptographic authentication is more reliable than message checksum. Thus
message transmission through an interface that has an authentication mechanism
can be free from RSVP message checksum.

Authentication Implementation
To implement the RSVP authentication function, the field function of INTG objects,
challenge objects, challenge messages and challenge-response messages are extended.
l

An INTG object carries the information to be checked for authentication between
neighboring nodes. For the nodes that have been configured with an authentication
mechanism, all messages except challenge messages that are sent from the node
2-34

SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration

l

l

l

must carry INTG objects. The received messages also carry INTG objects that are
required to be checked.
A challenge object carries a key ID and a timestamp-based coolie file. This object is
only used between the interactions of challenge messages and challenge-response
messages.
For challenge messages, when the receiver end receives a RSVP message in which
the challenge consultation bit is set to 1, check the consultation status. If the status
is not successful, challenge consultation will be initialized, and a challenge message
will be sent to the sender's end.
A response message is the response to a challenge message. It contains an INTG
object and a challenge object. Among which, the challenge object is the one carried
in the original challenge message.

Authentication Features
The RSVP authentication method is to generate a data abstract based on packets and
passwords using a simplex algorithm. After the packets and the abstract are sent to a
neighbor, the neighbor also generates the abstract based on the packets and passwords
using the same algorithm, and then checks the two abstracts to confirm whether the
packets are intact. Meanwhile, to avoid vicious transmission of packets repeatedly, when
packets are sent, a sequence number field is added. the value for this field increases
continuously. If the sequence number is too old, the corresponding packets will also be
deleted.
The RSVP authentication requires a password. In this way, the unauthorized routers
cannot operate as a neighbor. Even with constructed packets, without the corresponding
password, a RSVP connection to the router cannot be created. The RSVP key verification
is performed between two RSVP neighbors. The key used by the two neighbors cannot
be different. Otherwise, the authentication will fail, and the RSVP packets received by the
interface will be deleted.
A RSVP key can be encrypted in two modes: MD5 and SHA-1. The default mode is MD5.
To promote the security and reliability of RSVP authentication, the enhanced functions
of RSVP authentication are provided, including slide-window technology and handshake
mechanism. Sliding windows are used to prevent unordered packets. The handshake
mechanism (authentication negotiation) is used to prevent nodes being attacked by
repeatedly-sent packets during reboot.

2.4.2 Configuring TE Authentication
This procedure describes how to configure TE authentication.

Context
You should configure two neighboring nodes to implement the authentication function.

2-35
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)

Steps
1. Enable MPLS TE.
Step

Command

Function

1

ZXR10(config)#mpls traffic-eng

Enables MPLS TE
globally, and enters the
TE configuration mode.

2

ZXR10(config-mpls-te)#interface <interface-name>

Enables MPLS TE on the
interface.

2. Enable the authentication function for an interface.
Step

Command

Function

1

ZXR10(config-mpls-te-if-interface-name)#authe

Enables the authentication

ntication

function for an interface.

ZXR10(config-mpls-te-if-interface-name)#authent

As the receiver's end,

ication challenge

perform Challenge/Response

2

handshake with a neighbor.
3

ZXR10(config-mpls-te-if-interface-name)#authent

As the sender's end,

ication challenge-imp

perform Challenge/Response
handshake with a neighbor.

4

ZXR10(config-mpls-te-if-interface-

Sets authentication key.

name)#authentication key passphrase {encrypted

<encrypted-password>:

<encrypted-password>|<password>}

encrypted authentication
key.
<password>: unencrypted
authentication key.

5

6

ZXR10(config-mpls-te-if-interface-name)#authen

Specifies an authentication

tication type {md5 | sha1}

type.

ZXR10(config-mpls-te-if-interface-name)#authent

Specifies the size of the

ication window-size <window-size>

window for displaying
authentication messages,
range: 1–64.

3. To displays the configuration results, run the following command:
Command

Function

ZXR10#show ip rsvp authentication

Displays the authentication relationship.

– End of Steps –

2-36
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration

2.4.3 TE Authentication Configuration Instance
Configuration Instruction
As shown in Figure 2-9, the establishment of common RSVP tunnel from P1 to P2 uses
OSPF TE and a strict routing mode. Under the interface, SHA 1 authentication mode is
used.
Figure 2-9 TE Interface Authentication Configuration

Configuration Method
1. Establish OSPF neighbors between P1 and P2 straight-through interfaces, and enable
TE function in the OSPF protocol.
2. Enable TE for P1 and P2 straight-through interfaces. Under these interfaces, use the
authentication mode. Enable challenge and challenge-imp for P1 and P2 interfaces,
and use SHA1 authentication mode. The password is 12345678.
3. On P1, set the tunnel destination and the strict routing mode.
4. Set a static route that routes to the destination on P1. The next hop is Tunnel1. In this
way, messages are forwarded through Tunnel1.

Configuration Steps
The following describes the configuration on P1:
P1(config)#interfacegei-0/1/0/2
P1(config-if-gei-0/1/0/2)#no shutdown
P1(config-if-gei-0/1/0/2)#ip address 192.168.1.1 255.255.255.0
P1(config-if-gei-0/1/0/2)#exit
P1(config)#interface loopback1
P1(config-if-loopback1)#ip address 1.1.1.1 255.255.255.255
P1(config-if-loopback1)#exit
P1(config)#interface te_tunnel1
P1(config-if-te_tunnel1)#ip unnumbered loopback1
P1(config-if-te_tunnel1)#exit

P1(config)#router ospf 1

2-37
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
P1(config-ospf-1)#router-id 1.1.1.1
P1(config-ospf-1)#network 192.168.1.0 0.0.0.255 area 0
P1(config-ospf-1)#network 1.1.1.1 0.0.0.0 area 0
P1(config-ospf-1)#mpls traffic-eng area 0
P1(config-ospf-1)#exit

P1(config)#mpls traffic-eng
P1(config-mpls-te)#interface loopback1
P1(config-mpls-te-if-loopback1)#exit
P1(config-mpls-te)#router-id 1.1.1.1
P1(config-mpls-te)#interface gei-0/1/0/2
P1(config-mpls-te-if-gei-0/1/0/2)#authentication
P1(config-mpls-te-if-gei-0/1/0/2)#authentication type sha1
/*Set SHA1 as the authentication type for TE interface*/
P1(config-mpls-te-if-gei-0/1/0/2)#authentication key passphrase 12345678
/*Set authentication key*/
P1(config-mpls-te-if-gei-0/1/0/2)#authentication challenge
P1(config-mpls-te-if-gei-0/1/0/2)#authentication challenge-imp
P1(config-mpls-te-if-gei-0/1/0/2)#authentication window-size 10
P1(config-mpls-te-if-gei-0/1/0/2)#exit
P1(config-mpls-te)#explicit-path identifier 1
P1(config-mpls-te-expl-path-id-1)#next-address strict 192.168.1.2
P1(config-mpls-te-expl-path-id-1)#exit
P1(config-mpls-te)#tunnel te_tunnel 1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1.1.1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1
explicit-path identifier 1
P1(config-mpls-te-tunnel-te_tunnel1)#exit
P1(config-mpls-te)#exit
P1(config)#ip route 172.20.1.2 255.255.255.255 te_tunnel1

The following describes the configuration on P2:
P2(config)#interface gei-0/1/0/2
P2(config-if-gei-0/1/0/2)#no shutdown
P2(config-if-gei-0/1/0/2)#ip address 192.168.1.2 255.255.255.0
P2(config-if-gei-0/1/0/2)#exit
P2(config)#interface loopback2
P2(config-if-loopback2)#ip address 2.1.1.1 255.255.255.255
P2(config-if-loopback2)#exit

P2(config)#router ospf 1
P2(config-ospf-1)#router-id 2.1.1.1
P2(config-ospf-1)#network 192.168.1.0 0.0.0.255 area 0
P2(config-ospf-1)#network 2.1.1.1 0.0.0.0 area 0
P2(config-ospf-1)#mpls traffic-eng area 0

2-38
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

1.gei-0/1/0/2 up/up P1(config)#show mpls traffic-eng interface detail gei-0/1/0/2 gei-0/1/0/2: State: ENABLE Traffic-eng metric: 0 Authentication: enabled Key: <encrypted> Type: sha-1 Challenge: enabled Challenge-imp: Implemented 2-39 SJ-20140731105308-012|2014-10-20 (R1.1.20. The tunnel is in up status.2 255.0) ZTE Proprietary and Confidential .1.255. check the tunnel status.1 .Chapter 2 MPLS TE Configuration P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#authentication P2(config-mpls-te-if-gei-0/1/0/2)#authentication challenge P2(config-mpls-te-if-gei-0/1/0/2)#authentication challenge-imp P2(config-mpls-te-if-gei-0/1/0/2)#authentication type sha1 /*Set SHA1 as the authentication type for TE interface*/ P2(config-mpls-te-if-gei-0/1/0/2)#authentication key passphrase 12345678 /*Set authentication key*/ P2(config-mpls-te-if-gei-0/1/0/2)#authentication window-size 10 P2(config-mpls-te-if-gei-0/1/0/2)#exit The following describes the configuration on R2: R2(config)#interface gei-0/1/0/2 R2(config-if-gei-0/1/0/2)#no shutdown R2(config-if-gei-0/1/0/2)#ip address 172.0 R2(config-if-gei-0/1/0/2)#exit Configuration Verification On P1. and the authentication information of Tunnel1 is available: P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 2.255.1.1.

1 MPLS TE Crossing Several AS Domains Overview MPLS TE Crossing Several AS Domains Introduction MPLS TE creates an LSP tunnel crossing the network to transmit the traffic.2 Interface: gei-0/1/0/2 Direction: Send Crypto Auth:Enable Send Key ID (hex): 0x6896a0010000 Next valid seq: 1c9f 6bafc3 Challenge-imp: Configured challenge-imp state: CHALL_IMP_WAIT Direction: recv Challenge: Configured challenge state: CHALL_SUCC Rcv Key ID (hex): 0x6896a0030000 Windowsize: 10 2. so 2-40 SJ-20140731105308-012|2014-10-20 (R1.1. Inter-Area TE LSP and Inter-AS TE LSP are advertised in the ERO through the sub-object of the loose hop.5 Confiugration of MPLS TE Crossing Several AS Domains 2.5. The ingress router does not know the strict path of the other areas. check the TE authentication information: P1#show ip rsvp authentication Neighbor: 192. This node is in other OSPF area or the IS-IS level. Inter-AS TE LSP: The LSP of the MPLS TE tunnel crosses the node who is not in the AS of the ingress router.0) ZTE Proprietary and Confidential . There are two types of LSPs that crossing the network: l l Inter-Area TE LSP: The LSP of the MPLS TE tunnel crosses the node in the topology database that is not in the ingress router.168.ZXR10 M6000-S Configuration Guide (MPLS) Window size: 10 BFD: disabled Backup path: None SRLGs: None Intf Fast-Hello: DISABLE Fast-Hello interval: 10000 Fast-Hello miss: 4 Convergence-Ratio: 100(%) On P1.

2-41 SJ-20140731105308-012|2014-10-20 (R1. In this case. you only need to set the path (in loose mode) for the router connected with the ingress of the tunnel during the configuration. and the AS is composed of multiple areas. so the head-end LSR can only calculates the LSP of ASBR. Now it is required to establish a TE LSP from LSR1 to LSR6 and calculate this LSP. If the AS where the head-end LSR responsible for calculating the TE LSP is located uses the OSPF protocol. In this case. the head-end LSR completes the LSP calculation task. establish a loose explicit path in the router on the ingress interface of the tunnel. the RSVP-TE could send the signalling to the router where the passive interface is located according to the path calculated by CSPF. The working principle of INTER-AS application is as follows: To realize INTER-AS application. the path to the next ABR or the egress interface of the tunnel is calculated separately. After that. An AS does not know the topology structure of another AS. Specify that the LSP must pass the Area Border Router (ABR) through the next-address loose command. LSR5 and LSR6 belong to AS200. it is required to calculate the TE LSP. the TE LSP crossing several domains is established. the AS does not know the topology of another AS. you needs to specify that the LSP must pass ABR through the next-address loose command.Chapter 2 MPLS TE Configuration the loose display mode must be used. The lower router handles the sub-object of these loose hop and set it to the strict hop. LSR3 is the ASBR for AS100. the key point is that how to calculate the LSP of the ASBR at the end of the link crossing different domains. For the INTER-AREA application. including INTER-AREA and INTER-AS. so the head-end LSR can only calculate the LSP of the local Autonomous System Boundary Router (ASBR). The router sends the receivesignallingng to the ASBR of another AS. add the strict explicit path of the ASBR in another AS to the loose explicit path of the destination node and then send it to the ASBR of another AS. MPLS TE Crossing Several AS Domains Work Flow The application of RSVP-TE crossing several domains is classified into two categories. you need to consider how to calculate the LSP crossing several domains (Inter-AS). it is assumed that LSR1. For the Inter-AS tunnel. In this case. For the Inter-Area TE tunnel. The ASBR calculates the loose path to the strict path. The ingress router and the ABR in this explicit path segment the LSP. If the LSP of the ASBR at the other end of the link is calculated. it is required to set the interface to passive-interface mode on the ASBR and flood it to the Interior Gateway Protocol (IGP) in the ASBR. and LSR4 is the ASBR for AS200. The remanent loose explicit path is calculated as the strict explicit path.0) ZTE Proprietary and Confidential . For each segment. LSR2 and LSR3 belong to AS100 and the same area area0. At the same time. In this case. and LSR4. As shown in Figure 2-10.

In this case. Configure the TE interface passive-interface attribute. the head-end LSR1 could calculate the LSP from LSR1 to LSR3 and from LSR3 to LSR4. 2 ZXR10(config-mpls-te-if-interface-name)#p Configures the TE interface assive-interface nbr-te-id <A. The LSR3 does not know how to get to the LSR4.[nbg-igp-id {isis <sysid>| ospf <sysid>}]}] 2-42 SJ-20140731105308-012|2014-10-20 (R1. the LSR3 can calculate the strict explicit path to the ASBR (LSR4) of another AS after the signaling is sent to the ASBR (LSR3) and sends the strict explicit path to the ASBR (LSR4) of another AS for processing. <if-address>].2 Configuring the MPLS TE Crossing Several AS Domains This procedure describes how to configure MPLS TE Crossing Several AS Domains. the LSR3 forms an Opaque LSA (type 10) or a TLV22 neighbor. Step Command Function 1 ZXR10(config-mpls-te)#interface <interface-name> Enters the TE interface configuration mode.D>[{[nbr-if-addr passive-interface attribute. Set the POSO/1 interface on the LSR3 to mpls traffic-eng passive interface.ZXR10 M6000-S Configuration Guide (MPLS) Figure 2-10 TE LSP Calculation Scheme According to the current mechanism. the LSP from the LSR1 to the LSR3 could be calculated. In this case. In this case. The method is as follows: configure a path to the ASBR (LSR4) of another AS on the ASBR (LSR3) of the local AS.0) ZTE Proprietary and Confidential . the LSR4 calculates the remanent loose path to the strict path to complete the TE LSP establishment in different domains.5. Steps 1.C. 2. Enable the TE function globally.B. When RSVP-TE establishes the tunnel. 2. Command Function ZXR10(config)#mpls traffic-eng Enables the TE function globally. The LSR3 reports the inter-domain link and LSR4 at the other end of the link to teh AS100.

run the following commands: Commands Functions ZXR10#show mpls traffic-eng interface detail Displays the detailed configuration of [<interface-name>] the TE interface.D>: indicates the TE router-id of the peer neighbor router of this link.B. 3.C. Enable the TE function on the egress interface of the ASBR1. <if-addr>: indicates the interface address of the remote ASBR (it is the TE RouterID of the default neighbor if not configured).1 Configuring an OSPF TE Crossing Several AS Domains Configuration Descriptions The network topology is shown in Figure 2-11. R1 and R3 locate in the AS100. – End of Steps – 2. and R2 locates in the AS 200.5. Configure the global OSPF instance and establish the OSPF neighbor.3. configure passive-interface to form an Opaque LSA (point-to-point LAS with type 10) and floods to its own area. Figure 2-11 Configuration Instance of OSPF TE Crossing Several AS Domains 2-43 SJ-20140731105308-012|2014-10-20 (R1. Displays whether the neighbor ZXR10#show isis database verbose information crossing several domains exists in the database. To display the configuration results.0) ZTE Proprietary and Confidential .Chapter 2 MPLS TE Configuration <A.3 MPLS TE Crossing Several AS Domains Configuration Instance 2.5. ZXR10#show ip ospf database opaque-area Displays whether the egress of the ASBR generates Point-to-point LSA (type 10).

1.61. Establish the OSPF neighbor between the R1 and the R3 in the same AS100 and enable TE. In this case. the traffic is transmitted through the tunnel.0.0.0) ZTE Proprietary and Confidential .61.ZXR10 M6000-S Configuration Guide (MPLS) Configuration Flow 1.61. Enable the TE on two interface direct connected with the R1 and the R3.255 area 0 R1(config-ospf-777)#mpls traffic-eng area 0 R1(config-ospf-777)#exit MPLS-TE configuration: R1(config)#mpls traffic-eng R1(config-mpls-te)#interface loopback61 R1(config-mpls-te-if-loopback61)#exit R1(config-mpls-te)#router-id 61.0 0.1 R1(config-ospf-777)#network 61.61.255. 6.0.255.4. Configuration Commands The configuration of R1 is as follows: Interface configuration: R1(config)#interface gei-0/1/0/3 R1(config-if-gei-0/1/0/3)#no shutdown R1(config-if-gei-0/1/0/3)#ip address 131.255 R1(config-if-loopback61)#exit OSPF and OSPF TE configuration: R1(config)#router ospf 777 R1(config-ospf-777)#router-id 61. 5. 4. Enable the TE on the egress interface of the ASBR1 and configure passive-interface.0 R1(config-if-gei-0/1/0/3)#exit R1(config)#interface loopback61 R1(config-if-loopback61)#ip address 61. 2. The next hop is Tunnel1.1 255.255.255.0.61.0 area 0 R1(config-ospf-777)#network 131. Configure a static route to the destination on the R1 router. 3.1.61.61.1 0.61.61.1 255.1 R1(config-mpls-te)#interface gei-0/1/0/3 R1(config-mpls-te-if-gei-0/1/0/3)#exit R1(config-mpls-te)#exit R1(config)#interface te_tunnel100 R1(config-if-te_tunnel100)#ip unnumbered loopback61 R1(config-if-te_tunnel100)#exit R1(config)#mpls traffic-eng R1(config-mpls-te)#tunnel te_tunnel 100 R1(config-mpls-te-tunnel-te_tunnel100)#tunnel destination ipv4 61.4. Configure a TE tunnel from R1 to R2 passing through ASBR1 in loose mode. Enable OSPF TE on ASBR2 and enable the TE on the gei-0/5/0/3 interface.61.2 2-44 SJ-20140731105308-012|2014-10-20 (R1.

255.1.3 R1(config-mpls-te-expl-path-id-100)#exit R1(config-mpls-te)#exit R1(config)#ip route 172.255.2 255.255.4.4.1.255.2 R2(config-ospf-777)#mpls traffic-eng area 0 MPLS-TE configuration: R2(config)#mpls traffic-eng R2(config-mpls-te)#interface loopback61 R2(config-mpls-te-if-loopback61)#exit R2(config-mpls-te)#router-id 61.255.61.255 R2(config-if-loopback61)#exit OSPF TE configuration: R2(config)#router ospf 777 R2(config-ospf-777)#router-id 61.2 255.2 255.61.0 R2(config-if-gei-0/5/0/3)#exit R2(config)#interface loopback61 R2(config-if-loopback61)#ip address 61.3 255.2.255.255.61.61.2.0) ZTE Proprietary and Confidential .255.61.255.2 255.61.255.1 255.255 R3(config-if-loopback61)#exit 2-45 SJ-20140731105308-012|2014-10-20 (R1.0 R3(config-if-gei-0/1/0/4)#exit R3(config)#interface loopback61 R3(config-if-loopback61)#ip address 61.61.255 te_tunnel1 The configuration of R2 is as follows: Interface configuration: R2(config)#interface gei-0/5/0/3 R2(config-if-gei-0/5/0/3)#no shutdown R2(config-if-gei-0/5/0/3)#ip address 131.0 R3(config-if-gei-0/1/0/3)#exit R3(config)#interface gei-0/1/0/4 R3(config-if-gei-0/1/0/4)#no shutdown R3(config-if-gei-0/1/0/4)#ip address 131.255.61.255.61.Chapter 2 MPLS TE Configuration R1(config-mpls-te-tunnel-te_tunnel100)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 100 R1(config-mpls-te-tunnel-te_tunnel100)#exit R1(config-mpls-te)#explicit-path identifier 100 R1(config-mpls-te-expl-path-id-100)#next-address loose 61.4.2 R2(config-mpls-te)#interface gei-0/5/0/3 R2(config-mpls-te-if-gei-0/5/0/3)#end The configuration of R3 is as follows: Interface configuration: R3(config)#interface gei-0/1/0/3 R3(config-if-gei-0/1/0/3)#no shutdown R3(config-if-gei-0/1/0/3)#ip address 131.20.61.

255.255.0 0.0.1.61.2 255.0.61.3 R3(config-mpls-te)#interface gei-0/1/0/3 R3(config-mpls-te-if-gei-0/1/0/3)#exit R3(config-mpls-te)#interface gei-0/1/0/4 R3(config-mpls-te-if-gei-0/1/0/4)#passive-interface nbr-te-id 61.0 R3(config-ospf-777)#network 61.61.0.2 The configuration of R5 is as follows: R5(config)#interface gei-0/2/1/1 R5(config-if-gei-0/2/1/1)#no shutdown R5(config-if-gei-0/2/1/1)#ip address 172.2.20.61.0 area 0 R3(config-ospf-777)#mpls traffic-eng area 0 R3(config-ospf-777)#exit MPLS-TE configuration: R3(config)#mpls traffic-eng R3(config-mpls-te)#interface loopback61 R3(config-mpls-te-if-loopback61)#exit R3(config-mpls-te)#router-id 61.2 nbr-if-addr 131.1.4.2 - gei-0/1/0/3 up/up R1(config)#show mpls traffic-eng tunnels te_tunnel 100 Name: tunnel_100 (Tunnel100) Destination: 61.0.61.4.61.2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. type explicit identifier 100 (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: no path options protected Config Parameters: 2-46 SJ-20140731105308-012|2014-10-20 (R1.61.ZXR10 M6000-S Configuration Guide (MPLS) OSPF and OSPF TE configuration: R3(config)#router ospf 777 R3(config-ospf-777)#router-id 61.61.0.1 nbr-igp-id ospf 61.61.3 R3(config-ospf-777)#network 131.61.255 area 0.61.61.0) ZTE Proprietary and Confidential .61.3 0.0.0 R5(config-if-gei-0/2/1/1)#exit Configuration Verification Show the tunnel establishment information on the R1 router: R1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_100 61.61.

61.61. peak rate = 0 kbits RSVP Resv Info: Record Route: NULL Fspec:ave rate= 0 kbits.147456 RSVP Signalling Info : Src 61. burst= 2000 bytes.61. Dst 61.2.61.1.0) ZTE Proprietary and Confidential .61.4.2 61.61.2 Exclude Route: NULL Record Route: NULL Tspec:ave rate= 0 kbits. peak rate = 0 kbits Check the database information on the ASBR to see whether the egress interface of the ASBR generates Point-to-point LSA (type 10): R3(config)#show ip ospf database opaque-area area 0 2-47 SJ-20140731105308-012|2014-10-20 (R1.1. burst= 2000 bytes.0.0 InLabel:OutLabel:gei-0/1/0/3. Tun_Id 100.1. Tun_Instance 105 RSVP Path Info: Explicit Route: 131.4.Chapter 2 MPLS TE Configuration Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy class: default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 Affinity: 0x0/0x0 EBS: 0 byte AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.0.1 131.

33) (Process ID 777) Type-10 Opaque Link Area Link States (Area 0.0.61.2 LS Seq Number: 0x80000001 Checksum: 0x5c62 Length: 28 Fragment number : 0 MPLS TE router ID : 61.0.0 Opaque Type: 1 Opaque ID: 0 Advertising Router: 61.0.61.0 Opaque Type: 1 Opaque ID: 0 Advertising Router: 61.61.0) ZTE Proprietary and Confidential .0) LS age: 665 Options: (No TOS-capability.2 Number of Links : 0 LS age: 752 Options: (No TOS-capability. DC) LS Type: Opaque Area Link Link State ID: 1.61. DC) LS Type: Opaque Area Link Link State ID: 1.61.61.0.61.61.1 LS Seq Number: 0x80000001 Checksum: 0x5868 Length: 28 Fragment number : 0 2-48 SJ-20140731105308-012|2014-10-20 (R1.61.0.0.61.61. DC) LS Type: Opaque Area Link Link State ID: 1.0.0 Opaque Type: 1 Opaque ID: 0 Advertising Router: 61.61.33 LS Seq Number: 0x80000001 Checksum: 0xabf2 Length: 28 Fragment number : 0 MPLS TE router ID : 61.3 Number of Links : 0 LS age: 735 Options: (No TOS-capability.0.ZXR10 M6000-S Configuration Guide (MPLS) OSPF Router with ID (61.

0.4.0.0) ZTE Proprietary and Confidential .1 Number of Links : 0 LS age: 655 Options: (No TOS-capability.0.33 LS Seq Number: 0x80000001 Checksum: 0xd66f Length: 124 Fragment number : 1 Link connected to Broadcast network Link ID : 131.61.1.Chapter 2 MPLS TE Configuration MPLS TE router ID : 61.4.0 Admin Metric : 1 Maximum bandwidth : 125000000 Maximum reservable bandwidth : 0 Number of Priority : 8 Priority 0 : 0 Priority 1 : 0 Priority 2 : 0 Priority 3 : 0 Priority 4 : 0 Priority 5 : 0 Priority 6 : 0 Priority 7 : 0 Affinity Bit : 0x0 Number of Links : 1 LS age: 664 Options: (No TOS-capability.1.61.2 Opaque Type: 1 Opaque ID: 2 Advertising Router: 61.61.1 Interface Address : 131. DC) LS Type: Opaque Area Link Link State ID: 1.2 Neighbor Interface Address : 0.61.0.61. DC) LS Type: Opaque Area Link Link State ID: 1.61.1 Opaque Type: 1 Opaque ID: 1 Advertising Router: 61.0.2 LS Seq Number: 0x80000002 Checksum: 0x99c8 Length: 124 Fragment number : 2 2-49 SJ-20140731105308-012|2014-10-20 (R1.0.

0.2.0.1 Neighbor Interface Address : 0.0.1 LS Seq Number: 0x80000003 Checksum: 0x6bf8 Length: 124 Fragment number : 2 Link connected to Broadcast network Link ID : 131.0 Admin Metric : 1 Maximum bandwidth : 125000000 Maximum reservable bandwidth : 0 Number of Priority : 8 Priority 0 : 0 Priority 1 : 0 Priority 2 : 0 Priority 3 : 0 Priority 4 : 0 Priority 5 : 0 Priority 6 : 0 Priority 7 : 0 Affinity Bit : 0x0 Number of Links : 1 LS age: 659 Options: (No TOS-capability.61.4.1.61.4.0.0.4.1 Interface Address : 131.2 Opaque Type: 1 Opaque ID: 2 Advertising Router: 61.4.ZXR10 M6000-S Configuration Guide (MPLS) Link connected to Broadcast network Link ID : 131.1 Neighbor Interface Address : 0.2.1 Interface Address : 131.0 Admin Metric : 1 Maximum bandwidth : 125000000 Maximum reservable bandwidth : 0 Number of Priority : 8 Priority 0 : 0 Priority 1 : 0 Priority 2 : 0 Priority 3 : 0 Priority 4 : 0 Priority 5 : 0 Priority 6 : 0 Priority 7 : 0 Affinity Bit : 0x0 2-50 SJ-20140731105308-012|2014-10-20 (R1.0.0) ZTE Proprietary and Confidential .1. DC) LS Type: Opaque Area Link Link State ID: 1.

61.61. DC) LS Type: Opaque Area Link Link State ID: 1.2 Admin Metric : 1 Maximum bandwidth : 125000000 Maximum reservable bandwidth : 0 Number of Priority : 8 Priority 0 : 0 Priority 1 : 0 Priority 2 : 0 Priority 3 : 0 Priority 4 : 0 Priority 5 : 0 Priority 6 : 0 Priority 7 : 0 Affinity Bit : 0x0 Number of Links : 1 Show the details about the TE interface on the ASBR.0) ZTE Proprietary and Confidential .Chapter 2 MPLS TE Configuration Number of Links : 1 LS age: 31 Options: (No TOS-capability.0.4.61.61.4 Opaque Type: 1 Opaque ID: 4 Advertising Router: 61. R3(config)#show mpls traffic-eng interface detail gei-0/1/0/4 gei-0/1/0/4: State: ENABLE Traffic-eng metric:0 Authentication: disabled Key: <encrypted> Type: md5 Challenge: disabled Challenge-imp: Window size: Not implemented(simulated) 32 BFD: disable Passive Info: 2-51 SJ-20140731105308-012|2014-10-20 (R1.61.61.33 LS Seq Number: 0x80000001 Checksum: 0x3524 Length: 124 Fragment number : 4 Link connected to Point-to-point network Link ID : 61.2 Interface Address : 131.2.2 Neighbor Interface Address : 61.0.

1 61.4.ZXR10 M6000-S Configuration Guide (MPLS) nbr_te_id nbr_if_addr ospf_rid 61.255.61.2 131.255.3.61.255.4.5.61.2 Configuring an IS-IS TE Crossing Several AS Domains Configuration Descriptions The network topology is shown in Figure 2-12.1 255. Establish the IS-IS neighbor between the R1 and the R3 in the same AS100 and enable IS-IS TE.255. Configure the global IS-IS instance and establish the IS-IS neighbor. 2.61. Figure 2-12 Configuration Instance of IS-IS TE Crossing Several AS Domains Configuration Flow 1. configure passive-interface to form a point-to-point database. 4.0 R1(config-if-gei-0/1/0/3)#exit R1(config)#interface loopback61 R1(config-if-loopback1)#ip address 61.61. R1 and R3 locate in the same area. Enable the TE on the egress interface of the ASBR1 and configure passive-interface.255 2-52 SJ-20140731105308-012|2014-10-20 (R1. Enable the TE on two interface direct connected with the R1 and the R3.0) ZTE Proprietary and Confidential . Configuration Commands The configuration of R1 is as follows: Interface configuration: R1(config)#interface gei-0/1/0/3 R1(config-if-gei-0/1/0/3)#no shutdown R1(config-if-gei-0/1/0/3)#ip address 131.2. Configure a TE tunnel from R1 to R2 passing through ASBR1 in loose mode.1. 3. R1 and R3 locates in AS100 and R2 locates in AS200. Enable IS-IS TE on ASBR2 and enable the TE on the ingress gei-0/5/0/3 interface. 5.61.2 isis_id Backup path: None SRLGs: None Intf Fast-Hello : DISABLE Fast-Hello interval : 10000 Fast-Hello miss : 4 2. Enable the TE function on the egress interface of the ASBR1.1 255.

2 R1(config-mpls-te-tunnel-te_tunnel100)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 100 R1(config-mpls-te-tunnel-te_tunnel100)#exit R1(config-mpls-te)#explicit-path identifier 100 R1(config-mpls-te-expl-path-id-100)#next-address loose 61.0 R2(config-if-gei-0/5/0/3)#exit R2(config)#interface loopback61 2-53 SJ-20140731105308-012|2014-10-20 (R1.1 R1(config-mpls-te)#tunnel te_tunnel 100 R1(config-mpls-te-tunnel-te_tunnel100)#tunnel destination ipv4 61.1 255.Chapter 2 MPLS TE Configuration R1(config-if-loopback1)#exit IS-IS and IS-IS TE configuration: R1(config)#router isis 1 R1(config-isis-1)#area 01 R1(config-isis-1)#system-id 1236.61.255.61.4562.0) ZTE Proprietary and Confidential .61.61.7895 R1(config-isis-1)#metric-style wide R1(config-isis-1)#mpls traffic-eng level-1 R1(config-isis-1)#interface gei-0/1/0/3 R1(config-isis-1-if-gei-0/1/0/3)#ip router isis R1(config-isis-1)#interface loopback61 R1(config-isis-1-if-loopback61)#ip router isis R1(config-isis-1-if-loopback61)#exit R1(config-isis-1)#exit MPLS-TE configuration: R1(config)#mpls traffic-eng R1(config-mpls-te)#interface gei-0/1/0/3 R1(config-mpls-te-if-gei-0/1/0/3)#exit R1(config-mpls-te)#exit R1(config)#interface te_tunnel100 R1(config-if-te_tunnel100)#ip unnumbered loopback1 R1(config-if-te_tunnel100)#exit R1(config)#mpls traffic-eng R1(config-mpls-te)#interface loopback61 R1(config-mpls-te-if-loopback61)#exit R1(config-mpls-te)#router-id 61.4.2.3 R1(config-mpls-te-expl-path-id-100)#exit R1(config-mpls-te)#exit The configuration of R2 is as follows: Interface configuration: R2(config)#interface gei-0/5/0/3 R2(config-if-gei-0/5/0/3)#no shutdown R2(config-if-gei-0/5/0/3)#ip address 131.61.255.61.

255.0 R3(config-if-gei-0/1/0/4)#exit R3(config)#interface loopback61 R3(config-if-loopback61)#ip address 61.255.1.255.255.61.2 255.255 R3(config-if-loopback61)#exit IS-IS and IS-IS TE configuration: R3(config)#router isis 1 R3(config-isis-1)#area 01 R3(config-isis-1)#system-id 1234.2 R2(config-mpls-te)#interface gei-0/5/0/3 R2(config-mpls-te-if-gei-0/5/0/3)#exit R2(config-mpls-te)#exit The configuration of R3 is as follows: Interface configuration: R3(config)#interface gei-0/1/0/3 R3(config-if-gei-0/1/0/3)#no shutdown R3(config-if-gei-0/1/0/3)# ip address 131.ZXR10 M6000-S Configuration Guide (MPLS) R2(config-if-loopback61)#ip address 61.255.2.5678.255E.255.61.255.3666 R2(config-isis-1)#metric-style wide R2(config-isis-1)#mpls traffic-eng level-1 R2(config-isis-1)#interface loopback61 R2(config-isis-1-if-loopback61)#ip router isis R2(config-isis-1-if-loopback61)#exit R2(config-isis-1)#exit R2(config)#mpls traffic-eng R2(config-mpls-te)#interface loopback61 R2(config-mpls-te-if-loopback61)#exit R2(config-mpls-te)#router-id 61.61.0) ZTE Proprietary and Confidential .4.0 R3(config-if-gei-0/1/0/3)#exit R3(config)#interface gei-0/1/0/4 R3(config-if-gei-0/1/0/4)#no shutdown R3(config-if-gei-0/1/0/4)#ip address 131.61.4.2 255.255.61.9101 R3(config-isis-1)#metric-style wide R3(config-isis-1)#mpls traffic-eng level-1 R3(config-isis-1)#interface gei-0/1/0/3 R3(config-isis-1-if-gei-0/1/0/3)#ip router isis R3(config-isis-1-if-gei-0/1/0/3)#exit 2-54 SJ-20140731105308-012|2014-10-20 (R1.2 255.3 255.255 R2(config-if-loopback61)#exit IS-IS and IS-IS TE configuration: R2(config)#router isis 1 R2(config-isis-1)#area 10 R2(config-isis-1)#system-id 2355.61.

61.61.4. type explicit identifier 100 (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: No path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled 2-55 SJ-20140731105308-012|2014-10-20 (R1.61.2 - gei-0/1/0/3 up/up R1(config)#show mpls traffic-eng tunnels te_tunnel 100 Name: tunnel_100 (Tunnel100) Destination: 61.3666 R3(config-mpls-te-if-gei-0/1/0/4)#exit R3(config-mpls-te)#exit Configuration Verification Check the tunnel establishment on the R1: R1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_100 61.61.61.61.0) ZTE Proprietary and Confidential .3 R3(config-mpls-te)#interface gei-0/1/0/3 R3(config-mpls-te-if-gei-0/1/0/3)#exit R3(config-mpls-te)#interface gei-0/1/0/4 R3(config-mpls-te-if-gei-0/1/0/4)#passive-interface nbr-te-id 61.2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.2.61.1 nbr-igp-id isis 2355.2 nbr-if-addr 131.255e.61.Chapter 2 MPLS TE Configuration R3(config-isis-1)#interface loopback61 R3(config-isis-1-if-loopback61)#ip router isis R3(config-isis-1-if-loopback61)#exit R3(config-isis-1)#exit R3(config)#mpls traffic-eng R3(config-mpls-te)#interface loopback61 R3(config-mpls-te-if-loopback61)#exit R3(config-mpls-te)#router-id 61.

147456 RSVP Signalling Info : Src 61.0 InLabel:OutLabel:gei-0/1/0/3.61.00-00* NLPID: Hostname: Area Address: LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL 0x16 0x27c3 837 0/0/0 0xcc R3 01 2-56 SJ-20140731105308-012|2014-10-20 (R1.2. peak rate = 0 kbits RSVP Resv Info: Record Route: NULL Fspec:ave rate= 0 kbits. Dst 61. Tun_Id 100.61.4.1 131.2 Exclude Route: NULL Record Route: NULL Tspec:ave rate= 0 kbits.1.61. Tun_Instance 105 RSVP Path Info: Explicit Route: 131.1. R3(config)#show isis database verbose level-1 Process ID:0 Process ID:1 IS-IS level 1 link-state database: LSPID R3.61.0.ZXR10 M6000-S Configuration Guide (MPLS) BFD: disabled Policy class: default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 Affinity: 0x0/0x0 EBS: 0 byte AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.61. burst= 2000 bytes.0) ZTE Proprietary and Confidential .4.1. burst= 2000 bytes.0. peak rate = 0 kbits Check the database information on the R3.61.2 61.

2 Physical BW: 1000000 kbits/sec Reservable Global Pool BW: 0 kbits/sec Global Pool BW Unreserved: [0]: 0 kbits/sec.00 Metric: 0 IS-Extended R3. [3]: 0 kbits/sec [4]: 0 kbits/sec. [7]: 0 kbits/sec Metric: 10 IP 131.61.82/32 Metric: 10 IP 61.2.1.61.3. [3]: 0 kbits/sec [4]: 0 kbits/sec.4.0) ZTE Proprietary and Confidential .Chapter 2 MPLS TE Configuration Router ID: 61. [5]: 0 kbits/sec [6]: 0 kbits/sec.3 Ip address: 1.2.61.61.4.3.2.3666-00 Affinity: 0x0 Interface IP Address: 131.255E.0/24 Metric: 10 IP 166.0/24 Metric: 10 IP 1.3.4.4.03 Affinity: 0x0 Interface IP Address: 131.00-00 0xf 0xb98c 491 0/0/0 NLPID: 0xcc Area Address: 01 Ip address: 1.166. [5]: 0 kbits/sec [6]: 0 kbits/sec.1.1 Hostname: R1 Metric: 10 IS-Extended R3.03-00* 0x8 0x7404 401 0/0/0 Metric: 0 IS-Extended R1.1.82 Metric: 16777215 IS-Extended 2355.3/32 LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL R3.03 Affinity: 0x0 Interface IP Address: 131.2.1 Physical BW: 1000000 kbits/sec Reservable Global Pool BW: 0 kbits/sec Global Pool BW Unreserved: [0]: 0 kbits/sec. [1]: 0 kbits/sec [2]: 0 kbits/sec.80 Router ID: 61. [3]: 0 kbits/sec 2-57 SJ-20140731105308-012|2014-10-20 (R1.61.7. [1]: 0 kbits/sec [2]: 0 kbits/sec.00 LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL R1. [7]: 0 kbits/sec Metric: 10 IS-Extended R3.61.2 Physical BW: 1000000 kbits/sec Reservable Global Pool BW: 0 kbits/sec Global Pool BW Unreserved: [0]: 0 kbits/sec. [1]: 0 kbits/sec [2]: 0 kbits/sec.

255e.2 131. With the further development of the network service.2. the switching protection duration should less than 50 ms.3. R3(config)#show mpls traffic-eng interface detail gei-0/1/0/4 gei-0/1/0/4: State: ENABLE Traffic-eng metric: 0 Authentication: disabled Key: <encrypted> Type: md5 Challenge: disabled Challenge-imp: Window size: Not implemented(simulated) 32 BFD: disable Passive Info: nbr_te_id nbr_if_addr 61.61.4.1 TE-FRR Overview TE-FRR Introduction At present.80/32 Metric: 10 IP 61. the IP network bearing multiple services must reach the traditional level of the telecommunication network on the aspect of reliability. such as quickly transferring.1 ospf_rid isis_id 2355.3666 Backup path: None SRLGs: None Intf Fast-Hello : DISABLE Fast-Hello interval : 10000 Fast-Hello miss : 4 Convergence-Ratio: 100(%) 2.0/24 Metric: 10 IP 1.ZXR10 M6000-S Configuration Guide (MPLS) [4]: 0 kbits/sec.1/32 Check the detailed configuration information of the TE interface on ASBR.166. 2-58 SJ-20140731105308-012|2014-10-20 (R1.4. QoS guarantee and multi-service support.61.2.0) ZTE Proprietary and Confidential .1.3. the MPLS technology has played an important role in the development of next generation telecommunication networks.61. For example.6. [5]: 0 kbits/sec [6]: 0 kbits/sec.61. the traditional IP network uses a "tried" service mode.6 TE-FRR Configuration 2. In the last few years since mid 1990s.0/24 Metric: 10 IP 166. [7]: 0 kbits/sec Metric: 10 IP 131.

The header node could continue sending a request to establish the main path when the data transmission is not affected. The concept of several terms is as follows: l l l Main LSP: The main LSP is the protected LSP for the Detour LSP or the Bypass LSP. Bypass mode (Facility Backup): It protects multiple LSPs through one protection path. This technology provides a quick switching protection function for the LSP with the help of the MPLS Traffic Engineering (TE).Chapter 2 MPLS TE Configuration To ensure the reliability of the MPLS network. the MPLS FRR establishes a local backup path in advance. It must be on the path of the main LSP and cannot be the tail node. This protection path is called Bypass LSP. 2-59 SJ-20140731105308-012|2014-10-20 (R1. At the same time. l l It is required to configure a backup tunnel on the egress interface of the main tunnel by manual. Backup the tunnel automatically. l l Detour mode (One-to-one Backup): It provides protection to each LSP to be protected. the MPLS FRR protects the faulty node or link to transmit the traffic through the protection node or link. the device that detects the link or node fault switches the services from the faulty link to the backup path quickly to reduce the data loss. The basic principle of the MPLS FRR is to protect one or more LSPs with a LSP which is established in advance. The Bypass mode also has two methods to implement fast rerouting. and create a protection path for each LSP to be protected. the MPLS Fast Reroute (FRR) technology plays a very important role. TE-FRR Features The MPLS FRR is a mechanism used for the link protection and node protection. When the LSP link or node is faulty. The purpose of the MPLS FRR is as follows: skip the faulty link or node through the fast rerouting tunnel to protect the main path. Before the new LSP is established. MPLS FRR is implemented based on RSVP TE. The protection is classified into the node protection and the link protection. It ensures the smooth transition of the service data. In this case. the service data is transmitted through the protection path. When a fault occurs. MP: It is the tail node of the Detour LSP or the Bypass LSP.0) ZTE Proprietary and Confidential . This protection path is called Detour LSP. The following two methods are used for the implementation of the fast rerouting. PLR: It is a head node of the Detour LSP or the Bypass LSP. Establish a backup tunnel for the main tunnel automatically when the backup condition is met (the node protection is generated first). The main feature of the MPLS fast rerouting is fast response and timely switching. the data transmission is not interrupted. the LSP tries to find a new path to re-establish the LSP and switch the data to the new path. The LSP established in advance is called fast rerouting LSP and the protected LSP is called main LSP. To ensure that the LSP is not affected by the link or the node fault. It must be on the path of the main LSP and cannot be the head node.

TE-FRR Bandwidth Protection If a bandwidth is configured for a protection LSP. When this router is invalid. services may be interrupted. The main LSP pass this link. tunnel back_tnnl1 has a 10 M bandwidth and tunnel back_tnnl2 has a 30 M bandwidth. an additional requirement can be promoted for bandwidth protection. The main LSP passes this router. Upon selecting backup protection. you have to wait till the TE LSP is re-established. all the service are switched to the Detour LSP path or the Bypass LSP path. TE FRR is only deployed at the core convergence layer due to the complexity of the network and devices at the access layer. all the services are switched to the Detour LSP path or the Bypass LSP path. Figure 2-13 TE-FRR Bandwidth Protection HOT_LSP Supporting TE-FRR When a dynamic IP/MPLS is deployed in the network with end-to-end TE HOT_LSP protection. 2-60 SJ-20140731105308-012|2014-10-20 (R1. which is not protected by the TE FRR at the convergence layer.ZXR10 M6000-S Configuration Guide (MPLS) l l Link protection: There is a direct link between the PLR and the MP. If both the convergence layer and the access layer are disconnected at the same time and the access device switches over to the standby LSP. The active tunnel is configured to have a 20 M bandwidth and require bandwidth protection. back_tnnl2 is selected as the backup tunnel because the backup bandwidth of back_tnnl1 cannot protect the bandwidth of the active tunnel. Two backup tunnels are configured at the RTB node. upon switchover. Once the requirement for bandwidth protection is promoted. Node protection: There is a router between the PLR and the MP. to ensure the bandwidth for the services of the protection LSP on the backup path. In this case.0) ZTE Proprietary and Confidential . Figure 2-13 shows the active tunnel path RTA-RTB-RTC-RTD-RTE and the backup tunnel path RTB-RTF-RTD. an optimal backup path is calculated through an algorithm so that the backup path has a sufficient bandwidth for forwarding the services of the protection LSP upon switchover. When this link is invalid.

At present. FRR protection is not needed for the downstream nodes of the HOT_LSP in some cases. configure FRR related protection attributes upon establishing the standby LSP to implement TE FRR protection on downstream nodes. Configure the auto-tunnel backup function. 2. 3.0) ZTE Proprietary and Confidential . FRR protection forms on downstream nodes of the HOT_LSP. Step Command Function 1 ZXR10(config-mpls-te)#interface <interface-name> Enters the MPLS-TE interface configuration mode. Step Command Function 1 ZXR10(config-mpls-te)#interface <interface-name> Enters the MPLS-TE interface configuration mode. Steps 1. 2 ZXR10(config-mpls-te-if-interface-name)#backup- Configures the tunnel-id for path te_tunnel <tunnel-id> the backup tunnel on the egress interface of the primary tunnel. However. 2 ZXR10(config-mpls-te-if-interface-name)#auto-tu Configures the tunnel to nnel backup support the auto-tunnel backup function. 3 ZXR10(config-mpls-te-if-interface-name)#auto-tu Indicates that the auto-backup nnel backup nhop-only tunnel only supports path protection. if both HOT_LSP protection and FRR protection are configured for a tunnel and a HOT_LSP has been created. a configuration item is added to enable or disable FRR protection for the HOT_LSP of a tunnel. 2 one-to-one} 2. Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters tunnel interface <tunnel-number> configuration mode.6.2 Configuring TE-FRR This procedure describes how to configure TE-FRR. 2-61 SJ-20140731105308-012|2014-10-20 (R1. To reduce the system calculation load. Configure a backup tunnel. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables the fast rerouting number)#tunnel mpls traffic-eng fast-reroute {facility | function on the tunnel.Chapter 2 MPLS TE Configuration To ensure the minimum traffic loss. Configure a tunnel to support the FRR function.

ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables RRO in tunnel mode. ZXR10(config-mpls-te)#tunnel te_tunnel <tunnel-number> 5 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Sets a backup bandwidth for number)#tunnel mpls traffic-eng backup-bw {bandwidth} the backup tunnel.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 4 ZXR10(config-mpls-te)#auto-tunnel backup Configures the maximum tunnel-num min <min-value> max <max-value> value or the minimum value for the auto-backup tunnel. <tunnel-number> 2 3 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables the bandwidth number)#tunnel mpls traffic-eng fast-reroute {facility| protection function of the one-to-one }[bw-protect] active tunnel. 2 3 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables TE-FRR on the number)#tunnel mpls traffic-eng hot-standby-lsp Hot-standby LSP in tunnel fast-reroute mode. number)#exit 4 Enters the backup tunnel. Step 1 Command Function ZXR10(config-mpls-te)#tunnel te_tunnel Enters the active tunnel. <min-value>: the minimum tunnel-num of the automatic backup tunnel. ZXR10#show mpls traffic-eng tunnels 2-62 SJ-20140731105308-012|2014-10-20 (R1. <max-value>: the maximum tunnel-num of the automatic backup tunnel. number)#tunnel mpls traffic-eng record-route 6. Configure TE-FRR bandwidth protection. 4. Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters tunnel interface <tunnel-number> configuration mode. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Exits the active tunnel. range: 64536~65535. Displays tunnel information. Command Function ZXR10#show mpls traffic-eng fast-reroute Displays the FRR mapping relationship configured globally. range: 64536~65535.0) ZTE Proprietary and Confidential . 5. Enables TE-FRR on the Hot-standby LSP. Display the configuration results.

Chapter 2 MPLS TE Configuration Command Function ZXR10#show mpls traffic-eng auto-backup tunnels band Displays the binding information of the [te_tunnel <tunnelId>] auto-backup tunnel and the primary tunnel. tunnel1 and tunnel2. 2-63 SJ-20140731105308-012|2014-10-20 (R1. Traffic is handed over to the stand-by LSP. Tunnel1 passes by the P1 router. ZXR10#show mpls traffic-eng auto-backup parameter Displays the parameters of the auto-backup tunnel. Tunnel2 passes by the P1 router and the P3 router.1 Establishing a Tunnel in Facility Mode Manually Configuration Descriptions As shown in Figure 2-14. When the active LSP has a fault. These two tunnels form the FRR relationship. ZXR10#show mpls traffic-eng auto-backup tunnels Displays the summary of the summary auto-backup tunnel. the P2 router and the P3 router.3 TE-FRR Configuration Instance 2.3. – End of Steps – 2.6. Displays the debugging information of ZXR10#debug rsvp fast-reroute the manual backup tunnel.6. there are two tunnels from the P1 router to the P3 router. ZXR10#show mpls traffic-eng tunnels backup Displays the backup bandwidth usage of the backup tunnel and the number of the protection tunnels. Tunnel1 is the active LSP and tunnel2 is stand-byndby LSP.0) ZTE Proprietary and Confidential . the stand-by LSP protects it.

255. Enable OSPF TE.0 P1(config-if-gei-0/2/1/3)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.ZXR10 M6000-S Configuration Guide (MPLS) Figure 2-14 Establishing a Tunnel in Facility Mode Manually Configuration Flow 1. 3. the P2 router and the P3 router.2 255. Establish two strict paths. 4. The path is in strict mode.1.255. Configuration Commands The configuration of P1 is as follows: P1(config)#interface gei-0/2/1/1 P1(config-if-gei-0/2/1/1)#no shutdown P1(config-if-gei-0/2/1/1)#ip address 74. Configure the stand-by LSP on gei-0/2/1/1 of the P1 router. Establish OSPF neighbor relationship through the direct-connected interfaces on the P1 router.255. Enable TE on the interfaces in use on the P1 router. The next hop is Tunnel. The destination is the TE router-id of P3.1.1 255. Create the active path and the standby path.1.1. The active path passes by the P1 router.255. the P2 router and the P3 router.1. the P2 router and the P3 router. 2.255.0 P1(config-if-gei-0/2/1/1)#exit P1(config)#interface gei-0/2/1/3 P1(config-if-gei-0/2/1/3)#no shutdown P1(config-if-gei-0/2/1/3)#ip address 60. Configure a static route to the destination on the P1 router.255.1 255.0) ZTE Proprietary and Confidential .255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 2-64 SJ-20140731105308-012|2014-10-20 (R1. Enable FRR on the active path. In this case. 5. The stand-by path passes by the P1 router and the P3 router. the traffic is transmitted through the tunnel.1.

Chapter 2 MPLS TE Configuration
P1(config-if-te_tunnel1)#ip unnumbered loopback1
P1(config-if-te_tunnel1)#exit
P1(config)#interface te_tunnel2
P1(config-if-te_tunnel2)#ip unnumbered loopback1
P1(config-if-te_tunnel2)#exit

P1(config)#router ospf 1
P1(config-ospf-1)#router-id 1.1.1.1
P1(config-ospf-1)#network 1.1.1.1

0.0.0.0 area 0

P1(config-ospf-1)#network 74.1.1.0 0.0.0.255 area 0
P1(config-ospf-1)#network 60.1.1.0 0.0.0.255 area 0
P1(config-ospf-1)#mpls traffic-eng area 0
P1(config-ospf-1)#exit

P1(config)#mpls traffic-eng
P1(config-mpls-te)#interface loopback1
P1(config-mpls-te-if-loopback1)#exit
P1(config-mpls-te)#router-id 1.1.1.1
P1(config-mpls-te)#explicit-path name primary
P1(config-mpls-te-expl-path-name)# next-address strict 74.1.1.1
P1(config-mpls-te-expl-path-name)#next-address strict 120.1.1.2
P1(config-mpls-te-expl-path-name)#exit
P1(config-mpls-te)#explicit-path name back
P1(config-mpls-te-expl-path-name)#next-address strict 60.1.1.2
P1(config-mpls-te-expl-path-name)#exit
P1(config-mpls-te)#interface gei-0/2/1/1
P1(config-mpls-te-if-gei-0/2/1/1)#exit
P1(config-mpls-te)#interface gei-0/2/1/3
P1(config-mpls-te-if-gei-0/2/1/3)#exit

P1(config-mpls-te)#tunnel te_tunnel1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 3.1.1.1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1
explicit-path name primary
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility
P1(config-mpls-te-tunnel-te_tunnel1)#exit
P1(config-mpls-te)#tunnel te_tunnel2
P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 3.1.1.1
P1(config-mpls-te- tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1
explicit-path name back
P1(config-mpls-te-tunnel-te_tunnel2)#exit
P1(config-mpls-te)#interface gei-0/2/1/1
P1(config-mpls-te-if-gei-0/2/1/1)#backup-path te_tunnel 2
P1(config-mpls-te-if-gei-0/2/1/1)#exit

2-65
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
P1(config-mpls-te)#exit

P1(config)#ip route 172.20.1.2 255.255.255.255 te_tunnel1

The configuration of P2 is as follows:
P2(config)#interface gei-0/2/1/1
P2(config-if-gei-0/2/1/1)#no shutdown
P2(config-if-gei-0/2/1/1)#ip address 74.1.1.1 255.255.255.0
P2(config-if-gei-0/2/1/1)#exit
P2(config)#interface gei-0/2/1/2
P2(config-if-gei-0/2/1/2)#no shutdown
P2(config-if-gei-0/2/1/2)#ip address 120.1.1.1 255.255.255.0
P2(config-if-gei-0/2/1/2)#exit
P2(config)#interface loopback2
P2(config-if-loopback2)#ip address 2.1.1.1 255.255.255.255
P2(config-if-loopback2)#exit

P2(config)#router ospf 1
P2(config-ospf-1)#router-id 2.1.1.1
P2(config-ospf-1)#network 2.1.1.1

0.0.0.0 area 0

P2(config-ospf-1)#network 74.1.1.0 0.0.0.255 area 0
P2(config-ospf-1)#network 120.1.1.0 0.0.0.255 area 0
P2(config-ospf-1)#mpls traffic-eng area 0
P2(config-ospf-1)#exit

P2(config)#mpls traffic-eng
P2(config-mpls-te)#interface loopback2
P2(config-mpls-te-if-loopback2)#exit
P2(config-mpls-te)#router-id 2.1.1.1
P2(config-mpls-te)#interface gei-0/2/1/1
P2(config-mpls-te-if-gei-0/2/1/1)#exit
P2(config-mpls-te)#interface gei-0/2/1/2
P2(config-mpls-te-if-gei-0/2/1/2)#exit
P2(config-mpls-te)#exit

The configuration of P3 is as follows:
P3(config)#interface gei-0/2/1/2
P3(config-if-gei-0/2/1/2)#no shutdown
P3(config-if-gei-0/2/1/2)#ip address 120.1.1.2 255.255.255.0
P3(config-if-gei-0/2/1/2)#exit
P3(config)#interface gei-0/2/1/3
P3(config-if-gei-0/2/1/3)#no shutdown
P3(config-if-gei-0/2/1/3)#ip address 60.1.1.2 255.255.255.0
P3(config-if-gei-0/2/1/3)#exit
P3(config)#interface loopback3

2-66
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration
P3(config-if-loopback3)#ip address 3.1.1.1 255.255.255.255
P3(config-if-loopback3)#exit

P3(config)#router ospf 1
P3(config-ospf-1)#router-id 3.1.1.1
P3(config-ospf-1)#network 3.1.1.1

0.0.0.0

area 0

P3(config-ospf-1)#network 120.1.1.0 0.0.0.255 area 0
P3(config-ospf-1)#network 60.1.1.0 0.0.0.255 area 0
P3(config-ospf-1)#mpls traffic-eng area 0
P3(config-ospf-1)#exit

P3(config)#mpls traffic-eng
P3(config-mpls-te)#interface loopback3
P3(config-mpls-te-if-loopback3)#exit
P3(config-mpls-te)#router-id 3.1.1.1
P3(config-mpls-te)#interface gei-0/2/1/2
P3(config-mpls-te-if-gei-0/2/1/2)#exit
P3(config-mpls-te)#interface gei-0/2/1/3
P3(config-mpls-te-if-gei-0/2/1/3)#exit
P3(config-mpls-te)#exit

The configuration of R2 is as follows:
R2(config)#interface gei-0/2/1/1
R2(config-if-gei-0/2/1/1)#no shutdown
R2(config-if-gei-0/2/1/1)#ip address 172.20.1.2 255.255.255.0
R2(config-if-gei-0/2/1/1)#exit

Configuration Verification
When the tunnel is up, check the FRR information on P1, as shown below.
P1#show mpls traffic-eng tunnels brief
Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
TUNNEL NAME

DESTINATION

UP IF

DOWN IF

STATE/PROT

tunnel_1

3.1.1.1

-

gei-0/2/1/1

up/up

tunnel_2

3.1.1.1

-

gei-0/2/1/3

up/up

P1#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel
Tunnel1

LspID
86

In-label Out intf/label
Tun hd

FRR intf/label

gei-0/2/1/1:147456

Tu2:3

Status
ready

LSP midpoint frr information:

2-67
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
LSP identifier

In-label Out intf/label

FRR intf/label

Status

When the active LSP has a fault, the traffic will be handed over to the stand-by LSP. FRR
is in active state. At this time, both the active tunnel and the standby tunnel are in up
status. Check the FRR state on P1. When the fault on the active LSP recovers, the FRR
relationship recovers to ready state.
P1#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel

LspID

Tunnel1

86

In-label Out intf/label
Tun hd

FRR intf/label

gei-0/2/1/3:147456

Tu2:3

Status
active

LSP midpoint frr information:
LSP identifier

In-label Out intf/label

FRR intf/label

Status

2.6.3.2 Establishing a Tunnel in Facility Mode Automatically
Configuration Descriptions
As shown in Figure 2-15, there is an active tunnel from P1 to P3. The automatic backup
function is enabled. The displayed path of the active tunnle1 is P1-P2-P3. The FRR facility
protect function is enabled on the active tunnel and the auto-backup relationship is formed.
When the active LSP has a fault, the standby LSP protects it. Traffic is handed over to the
standby LSP.
Figure 2-15 Establishing a Tunnel in Facility Mode Automatically

Configuration Flow
1. Establish OSPF neighbor relationship through the direct-connected interfaces on P1,
P2 and P3. Enable OSPF TE.
2. Enable the au-backup function in TE mode.
2-68
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration

3. Create an active tunnel passing P1-P2-P3.
4. Enable T3 on the interfaces in used on P1, P2 and P3.
5. Create the active path. Enable FRR facility on the active path. The destination is the
TE router-id of P3. The path is in strict mode.
6. Configure a static route to the destination on the P1. The next hop is Tunnel1. In this
case, the traffic is transmitted through the tunnel.

Configuration Commands
The configuration of P1 is as follows:
P1(config)#interface gei-0/2/1/1
P1(config-if-gei-0/2/1/1)#no shutdown
P1(config-if-gei-0/2/1/1)#ip address 74.1.1.2 255.255.255.0
P1(config-if-gei-0/2/1/1)#exit
P1(config)#interface gei-0/2/1/3
P1(config-if-gei-0/2/1/3)#no shutdown
P1(config-if-gei-0/2/1/3)#ip address 60.1.1.1 255.255.255.0
P1(config-if-gei-0/2/1/3)#exit
P1(config)#interface loopback1
P1(config-if-loopback1)#ip address 1.1.1.1 255.255.255.255
P1(config-if-loopback1)#exit
P1(config)#interface te_tunnel1
P1(config-if-te_tunnel1)#ip unnumbered loopback1
P1(config-if-te_tunnel1)#exit

P1(config)#router ospf 1
P1(config-ospf-1)#router-id 1.1.1.1
P1(config-ospf-1)#network 1.1.1.1

0.0.0.0

area 0

P1(config-ospf-1)#network 74.1.1.0 0.0.0.255 area 0
P1(config-ospf-1)#network 60.1.1.0 0.0.0.255 area 0
P1(config-ospf-1)#mpls traffic-eng area 0
P1(config-ospf-1)#exit

P1(config)#mpls traffic-eng
P1(config-mpls-te)#interface loopback1
P1(config-mpls-te-if-loopback1)#exit
P1(config-mpls-te)#router-id 1.1.1.1
P1(config-mpls-te)#explicit-path name primary
P1(config-mpls-te-expl-path-name)#next-address strict 74.1.1.1
P1(config-mpls-te-expl-path-name)#next-address strict 120.1.1.2
P1(config-mpls-te-expl-path-name)#exit

P1(config-mpls-te)#interface gei-0/2/1/1
P1(config-mpls-te-if-gei-0/2/1/1)#auto-tunnel backup
P1(config-mpls-te-if-gei-0/2/1/1)#exit

2-69
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
P1(config-mpls-te)#interface gei-0/2/1/3
P1(config-mpls-te-if-gei-0/2/1/3)#exit

P1(config-mpls-te)#tunnel te_tunnel 1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 3.1.1.1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1
explicit-path name primary
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility
P1(config-mpls-te-tunnel-te_tunnel1)#exit
P1(config-mpls-te)#exit

P1(config)#ip route 172.20.1.2 255.255.255.255 te_tunnel1

The configuration of P2 is as follows:
P2(config)#interface gei-0/2/1/1
P2(config-if-gei-0/2/1/1)#no shutdown
P2(config-if-gei-0/2/1/1)#ip address 74.1.1.1 255.255.255.0
P2(config-if-gei-0/2/1/1)#exit
P2(config)#interface gei-0/2/1/2
P2(config-if-gei-0/2/1/2)#no shutdown
P2(config-if-gei-0/2/1/2)#ip address 120.1.1.1 255.255.255.0
P2(config-if-gei-0/2/1/2)#exit
P2(config)#interface loopback2
P2(config-if-loopback2)#ip address 2.1.1.1 255.255.255.255
P2(config-if-loopback2)#exit

P2(config)#router ospf 1
P2(config-ospf-1)#router-id 2.1.1.1
P2(config-ospf-1)#network 2.1.1.1

0.0.0.0

area 0

P2(config-ospf-1)#network 74.1.1.0 0.0.0.255 area 0
P2(config-ospf-1)#network 120.1.1.0 0.0.0.255 area 0
P2(config-ospf-1)#mpls traffic-eng area 0
P2(config-ospf-1)#exit

P2(config)#mpls traffic-eng
P2(config-mpls-te)#interface loopback2
P2(config-mpls-te-if-loopback2)#exit
P2(config-mpls-te)#router-id 2.1.1.1
P2(config-mpls-te)#interface gei-0/2/1/1
P2(config-mpls-te-if-gei-0/2/1/1)#exit
P2(config-mpls-te)#interface gei-0/2/1/2
P2(config-mpls-te-if-gei-0/2/1/2)#exit
P2(config-mpls-te)#exit

The configuration of P3 is as follows:
2-70
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration
P3(config)#interface gei-0/2/1/2
P3(config-if-gei-0/2/1/2)#no shutdown
P3(config-if-gei-0/2/1/2)#ip address 120.1.1.2 255.255.255.0
P3(config-if-gei-0/2/1/2)#exit
P3(config)#interface gei-0/2/1/3
P3(config-if-gei-0/2/1/3)#no shutdown
P3(config-if-gei-0/2/1/3)#ip address 60.1.1.2 255.255.255.0
P3(config-if-gei-0/2/1/3)#exit
P3(config)#interface loopback3
P3(config-if-loopback3)#ip address 3.1.1.1 255.255.255.255
P3(config-if-loopback3)#exit

P3(config)#router ospf 1
P3(config-ospf-1)#router-id 3.1.1.1
P3(config-ospf-1)#network 3.1.1.1

0.0.0.0

area 0

P3(config-ospf-1)#network 120.1.1.0 0.0.0.255 area 0
P3(config-ospf-1)#network 60.1.1.0 0.0.0.255 area 0
P3(config-ospf-1)#mpls traffic-eng area 0
P3(config-ospf-1)#exit

P3(config)#mpls traffic-eng
P3(config-mpls-te)#interface loopback3
P3(config-mpls-te-if-loopback3)#exit
P3(config-mpls-te)#router-id 3.1.1.1
P3(config-mpls-te)#interface gei-0/2/1/2
P3(config-mpls-te-if-gei-0/2/1/2)#exit
P3(config-mpls-te)#interface gei-0/2/1/3
P3(config-mpls-te-if-gei-0/2/1/3)#exit
P3(config-mpls-te)#exit

The configuration of R2 is as follows:
R2(config)#interface gei-0/2/1/1
R2(config-if-gei-0/2/1/1)#no shutdown
R2(config-if-gei-0/2/1/1)#ip address 172.20.1.2 255.255.255.0
R2(config-if-gei-0/2/1/1)#exit

Configuration Verification
The P1 router shows that the active tunnel and the auto-backup tunnel are formed.
P1(config)##show mpls traffic-eng tunnels brief
Signalling Summary:
LSP Tunnels Process:

running

RSVP Process:

running

Forwarding:

enabled

TUNNEL NAME

DESTINATION

UP IF

DOWN IF

STATE/PROT

2-71
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
tunnel_1

3.1.1.1

-

gei-0/2/1/1

up/up

tunnel_65535

3.1.1.1

-

gei-0/2/1/3

up/up

The P1 shows that the auto-backup protection relationship is formed.
P1(config)#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel
Tunnel1

LspID
2

In-label

Out intf/label

FRR intf/label

Tun hd

gei-0/2/1/1:147456

Tu65535:3

Status
ready

LSP midpoint frr information:
LSP identifier

In-label Out intf/label

FRR intf/label

Status

When the active tunnel has a fault, the traffic will be handed over to the standby tunnel.
FRR is in active state. Check the FRR state on P1. When the fault on the active LSP
recovers, the FRR relationship recovers to ready state.
P1(config)#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel
Tunnel1

LspID
2

In-label

Out intf/label

FRR intf/label

Tun hd

gei-0/2/1/1:147456 Tu65535:3

Status
active

LSP midpoint frr information:
LSP identifier

In-label Out intf/label

FRR intf/label

Status

2.6.3.3 Establishing a Tunnel in Detour Protection Mode
Configuration Descriptions
As shown in Figure 2-16, the active tunnel1 is from R1 to R3 passes R1, R3 and R3.
Enable the FRR one-to-one protection on the active tunnel to form the detour protection
relationship. When the active LSP has a fault, the standby LSP protects it. Traffic is handed
over to the standby LSP.

2-72
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

255.1 255.1. Configuration Commands The configuration of R1 is as follows: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1.255.255. Establish the OSPF neighbor relationship through the direct-connected interfaces on the R1.1. 2. In this case.0 R1(config-if-gei-0/0/0/7)#exit R1(config)#interface te_tunnel1 R1(config-if-te_tunnel1)#ip unnumbered loopback1 R1(config-if-te_tunnel1)#exit 2-73 SJ-20140731105308-012|2014-10-20 (R1. R3 and R4 and enable TE.255.1. R3 and R4.255.0) ZTE Proprietary and Confidential .1. As shown in Figure 2-16.1 255.1 255. and configure the loopback address and the interface address for each router. The next hop is Tunnel1.0 R1(config-if-gei-0/0/1/4)#exit R1(config)#interface gei-0/0/0/7 R1(config-if-gei-0/0/0/7)#no shutdown R1(config-if-gei-0/0/0/7)# ip address 20.1.Chapter 2 MPLS TE Configuration Figure 2-16 Establishing a Tunnel in Detour Protection Mode Configuration Flow 1. Configure a static route to the destination on the R1. interconnect the R1.255 R1(config)#interface gei-0/0/1/4 R1(config-if-gei-0/0/1/4)#no shutdown R1(config-if-gei-0/0/1/4)# ip address 10. R2. R2. 3. Configure the FRR one-to-one function on the head node of the tunnel in MPLS TE mode. The specified strict path is R1-R2-R3. 4.255. the traffic is transmitted through the tunnel.1.

20.0.1.1.1.1.2 255.1 0.1.1.3 R1(config-mpls-te-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name zte R1(config-mpls-te-te_tunnel1)#tunnel mpls traffic-eng record-route R1(config-mpls-te-te_tunnel1)# tunnel mpls traffic-eng fast-reroute one-to-one R1(config-mpls-te-)#exit R1(config-mpls-te)#explicit-path name zte R1(config-mpls-te-expl-path-name)#next-address strict 10.0.0 R2(config-if-gei-0/5/1/9)#exit R2(config)#interface gei-0/5/0/8 2-74 SJ-20140731105308-012|2014-10-20 (R1.255.1.3 R1(config-mpls-te-expl-path-name)#exit R1(config-mpls-te)#exit R1(config)#ip route 172.0.2 R1(config-mpls-te-expl-path-name)#next-address strict 40.255.1 R1(config-ospf-1)#network 1.1.1.2.255.1.0 0.255.2 255.255.1.0.255.3.1.1 R1(config-mpls-te)# interface gei-0/0/1/4 R1(config-mpls-te-if-gei-0/0/1/4)#exit R1(config-mpls-te)# interface gei-0/0/0/7 R1(config-mpls-te-if-gei-0/0/0/7)#exit R1(config-mpls-te)#tunnel te_tunnel1 R1(config-mpls-te-te_tunnel1)#tunnel destination ipv4 3.0.1.255.1.255.ZXR10 M6000-S Configuration Guide (MPLS) R1(config)#router ospf 1 R1(config-ospf-1)#router-id 1.1.0) ZTE Proprietary and Confidential .0 area 0 R1(config-ospf-1)#mpls traffic-eng area 0 R1(config-ospf-1)#network 10.3.0.255 area 0 R1(config-ospf-1)#network 20.2.0 R2(config-if-gei-0/5/1/7)#exit R2(config)#interface gei-0/5/1/9 R2(config-if-gei-0/5/1/9)#no shutdown R2(config-if-gei-0/5/1/9)#ip address 40.255 area 0 R1(config-ospf-1)#exit R1(config)#mpls traffic-eng R1(config-mpls-te)#interface loopback1 R1(config-mpls-te-if-loopback1)#exit R1(config-mpls-te)#router-id 1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/5/1/7 R2(config-if-gei-0/5/1/7)#no shutdown R2(config-if-gei-0/5/1/7)#ip address 10.1.1.255 te_tunnel1 The configuration of R2 is as follows: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 2.1.1.2 255.0 0.2 255.

0 R2(config-if-gei-0/5/0/8)#exit R2(config)#router ospf 1 R2(config-ospf-1)#router-id 2.3.0.3 0 0.255.0 0.3 255.1.255 area 0 R2(config-ospf-1)#exit R2(config)#mpls traffic-eng R2(config-mpls-te)#interface loopback1 R2(config-mpls-te-if-loopback1)#exit R2(config-mpls-te)#router-id 2.2 R2(config-ospf-1)#network 2.0.2 255.1.0 area 0 R2(config-ospf-1)#mpls traffic-eng area 0 R2(config-ospf-1)#network 10.0.0.2 0.0.2.0.255 R3(config-if-loopback1)#exit R3(config)#interface gei-0/5/1/9 R3(config-if-gei-0/5/1/9)#no shutdown R3(config-if-gei-0/5/1/9)#ip address 40.255.3.255 area 0 R2(config-ospf-1)#network 30.1.255.2.255 area 0 R2(config-ospf-1)#network 40.255 area 0 R3(config-ospf-1)#exit R3(config)#mpls traffic-eng R3(config-mpls-te)#interface loopback1 R3(config-mpls-te-if-loopback1)#exit 2-75 SJ-20140731105308-012|2014-10-20 (R1.3 255.1.1.3.3 R3(config-ospf-1)#network 3.255.3.0 0.0 R3(config-if-gei-0/5/1/9)#exit R3(config)#router ospf 1 R3(config-ospf-1)#router-id 3.2.0 area 0 R3(config-ospf-1)#mpls traffic-eng area 0 R3(config-ospf-1)#network 40.0.Chapter 2 MPLS TE Configuration R2(config-if-gei-0/5/0/8)#no shutdown R2(config-if-gei-0/5/0/8)#ip address 30.255.0 0.0.1.0.2.1.0 0.1.0.1.255.2.3.2 R2(config-mpls-te)#interface gei-0/5/1/7 R2(config-mpls-te-if-gei-0/5/1/7)#exit R2(config-mpls-te)# interface gei-0/5/1/9 R2(config-mpls-te-if-gei-0/5/1/9)#exit R2(config-mpls-te)#exit R2(config-mpls-te)#interface gei-0/5/0/8 R2(config-mpls-te-if-gei-0/5/0/8)#exit R2(config-mpls-te)#exit The configuration of R3 is as follows: R3(config)#interface loopback1 R3(config-if-loopback1)#ip address 3.0) ZTE Proprietary and Confidential .1.1.1.0.3.0.2.

0.0 0.0 R6(config-if-gei-0/2/1/1)#exit Configuration Verification The R1 router shows that the active tunnel and the detour tunnel are formed.255.4 R4(config-ospf-1)#network 4.0 area 0 R4(config-ospf-1)#mpls traffic-eng area 0 R4(config-ospf-1)#network 20.0.0) ZTE Proprietary and Confidential .1.255 R4(config-if-loopback1)#exit R4(config)#router ospf 1 R4(config-ospf-1)#router-id 4.1.4.4.0.255.3 255.0.1.255.1.4.0 R4(config-if-gei-0/2/0/7)#exit R4(config)#interface gei-0/2/0/8 R4(config-if-gei-0/2/0/8)#no shutdown R4(config-if-gei-0/2/0/8)#ip address 30.4.0 0.3 R3(config-mpls-te)#interface gei-0/5/1/9 R3(config-mpls-te-if-gei-0/5/1/9)#exit R3(config-mpls-te)#exit The configuration of R4 is as follows: R4(config)#interface gei-0/2/0/7 R4(config-if-gei-0/2/0/7)#no shutdown R4(config-if-gei-0/2/0/7)#ip address 20.0. R1(config)#show mpls traffic-eng tunnels brief 2-76 SJ-20140731105308-012|2014-10-20 (R1.255 area 0 R4(config-ospf-1)#exit R4(config)#mpls traffic-eng R4(config-mpls-te)#interface loopback1 R4(config-mpls-te-if-loopback1)#exit R4(config-mpls-te)#router-id 4.3.ZXR10 M6000-S Configuration Guide (MPLS) R3(config-mpls-te)#router-id 3.255.0 R4(config-if-gei-0/2/0/8)#exit R4(config)#interface loopback1 R4(config-if-loopback1)#ip address 4.255.4 255.255 area 0 R4(config-ospf-1)#network 30.2 255.20.4.1.3.255.4.4.3 255.255.0.4 0.1.4 R4(config-mpls-te)#interface gei-0/2/0/7 R4(config-mpls-te-if-gei-0/2/0/7)#exit R4(config-mpls-te)#interface gei-0/2/0/8 R4(config-mpls-te-if-gei-0/2/0/8)#exit R4(config-mpls-te)#exit The configuration of R6 is as follows: R6(config)#interface gei-0/2/1/1 R6(config-if-gei-0/2/1/1)#no shutdown R6(config-if-gei-0/2/1/1)#ip address 172.1.4.1.1.255.

3 tunnel_1 (PLR backup) 3.3.3.Chapter 2 MPLS TE Configuration Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION tunnel_1 3.3. type explicit name zte (Basis for Setup) Hot-standby protection: no path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: enabled Facility Fast-reroute: disabled Detour Fast-reroute: enabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy class: default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 Affinity: 0x0/0x0 EBS: 0 byte AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.0.3.3.3.3 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.3 UP IF DOWN IF STATE/PROT - gei-0/0/1/4 up/up - gei-0/0/0/7 up/up ZXR10#show mpls traffic-eng tunnels Name: tunnel_1 (Tunnel1) Destination: 3.0.0) ZTE Proprietary and Confidential .0 InLabel:- 2-77 SJ-20140731105308-012|2014-10-20 (R1.

3.1 20. burst= 1000 bytes.1.3 Fspec: ave rate= 0 kbits.2 40.1.1.3. Name: tunnel_1(PLR backup)(Tunnel) Destination: 3.1.1.1.147456 RSVP Signalling Info : Src 1.1.1.1.1.1. Tun_Id 1.1.3 3.1.1 10.1.2 Fspec: ave rate= 0 kbits.1.3.3.3. Tun_Id 1.3 Status: Signalling: up RSVP Signalling Info : InLabel:OutLabel:gei-0/0/0/7.1.1.1. 10 minutes The R1 router shows that the detour protection relationship is formed.3 30.3 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kbits. Tun_Instance 62 RSVP Path Info: Explicit Route: 10.3 Tspec: ave rate= 0 kbits.3.3. 0 hours. 10 minutes Current LSP: Uptime:0 days.1.3.2 40. peak rate= 0 kbits RSVP Resv Info: Record Route: 3.3.3.1. 0 hours.3.1.ZXR10 M6000-S Configuration Guide (MPLS) OutLabel:gei-0/0/1/4.1.1.0) ZTE Proprietary and Confidential .1. 0 hours. 0 hours.2 40. burst= 1000 bytes. peak rate= 0 kbits RSVP Resv Info: Record Route: 3. burst= 1000 bytes.3 30. R1(config)#show mpls traffic-eng fast-reroute 2-78 SJ-20140731105308-012|2014-10-20 (R1.1. peak rate= 0 kbits History: Tunnel: Time since created: 0 days.1.1. Dst 3.3 10.2 40. peak rate= 0 kbits History: Tunnel: Time since created: 0 days.1.3 30. 12 minutes Prior LSP: path option 1 Current LSP: Uptime:0 days.1.147457 Src 1. 10 minutes Last lsp error information: None log record.3.1. Dst 13. burst= 1000 bytes.3.2 Exclude Route: NULL Record Route: NULL 40.1.3.1. Tun_Instance 62 RSVP Path Info: Explicit Route: 20.

R1(config)#interface gei-0/0/1/4 R1(config-if-gei-0/0/1/4)#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID In-label Out intf/label FRR intf/label Status Tunnel1 1 Tun hd gei-0/0/1/4:147456 Tu1:147457 active R1(config-if-gei-0/0/1/4)#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID In-label Out intf/label FRR intf/label Status Tunnel1 1 Tun hd gei-0/0/1/4:147458 Tu1:147459 ready 2. the traffic will be handed over to the standby tunnel. the FRR relationship recovers to ready state. Figure 2-17 TE-FRR Bandwidth Protection Configuration Instance After completing the configuration. Check the FRR state on R1. you can see on the head node whether the FRR bandwidth protection is enabled for the active tunnel and whether the backup bandwidth of the standby tunnel is properly configured. FRR is in active state. Multiple backup tunnels are configured for P1-P2 and P1-P3 and a backup width is configured (after a backup bandwidth is configured for a tunnel. a TE tunnel is established among P1-P2-P3 through IGP-TE. for which. If no backup bandwidth is configured.4 TE-FRR Bandwidth Protection Configuration Instance Configuration Description In Figure 2-17.Chapter 2 MPLS TE Configuration Tunnel head end item information Protected Tunnel Tunnel1 LspID 1 In-label Tun hd Out intf/label gei-0/0/1/4:147456 FRR intf/label Tu1:147457 Status ready LSP midpoint frr information: LSP identifier In-label Out intf/label FRR intf/label Status When the active tunnel has a fault.3.0) ZTE Proprietary and Confidential . the available bandwidth is configured for the egress interface. the reserved bandwidth is configured for the tunnel.6. and the FRR bandwidth protection is enabled. When the fault on the active LSP recovers. the backup bandwidth is unlimited). the backup bandwidth is limited. 2-79 SJ-20140731105308-012|2014-10-20 (R1.

the explicit path is set to strictly going through gei-0/2/0/1 of P1. the destination address to P2. Configure tunnel6 on P1. After an FRR is established. 3. and configure a backup bandwidth to 20 M. 5. and the corresponding loopback interface addresses. tunnel 1 and tunnel 6 form FRR protection. the reserved bandwidth to 5 M. and the backup bandwidth is set to 15 M. the destination address is set to P3. 10. and P3. 5. Enable the TE function on the loopback interfaces of P1. If the limited backup tunnels are insufficient. for which. and enable the TE function on the OSPF neighbors. the display path to gei-0/1/0/2 of P1. the reserved bandwidth to 5 M. and configure an available bandwidth of 40 M for the egress interfaces of P1. and P3. 6. and the backup bandwidth is set to 20 M. the destination address is set to P2. and configure the router-id of the TE as the loopback interface address. Configure backup tunnels tunnel2. further select unlimited backup tunnels (node protection is prior to link protection). you can check whether the number of the protection LSPs and the backup bandwidth use on a backup tunnel are correct. a backup tunnel with a limited backup bandwidth and a less bandwidth waste (node protection is prior to link protection) is preferentially selected. Configure OSPF neighbors for P1. 7. The backup tunnels for TE-FRR bandwidth protection are selected in the following sequence: a. 4. the reserved bandwidth is set to 10 M. P2. Configuration Flow 1. the reserved bandwidth is set to 10 M. the reserved bandwidth is set to 5 M. for which. Because node protection is prior to link protection. the explicit path is set to strictly going through gei-0/1/0/1 of P1. and 6 on the gei-0/1/0/1 interface. 2. If a common bandwidth or a ct0 bandwidth is configured for the active tunnel. Enable the TE function on the physical interfaces of P1. Configure TE tunnel 5 on P1. and configure a backup bandwidth to 20 M. and P3. and P3. and configure a backup bandwidth to 9 M. P2. you can only select the backup bandwidth as the unlimited backup tunnel (node protection is prior to link protection). Configure tunnel2 on P1. Configure TE tunnel 4 on P1. the display path to gei-0/1/0/2 of P1. for which. Configure the interfaces connecting P1. P2. P2. Configure TE tunnel 3 on P1. the destination address to P2. Configure TE tunnel 1 on P1. 3. and P3.0) ZTE Proprietary and Confidential . 11. the display path to gei-0/1/0/2 of P1. 9.ZXR10 M6000-S Configuration Guide (MPLS) If no bandwidth is configured or a cti (i≠0) bandwidth is configured for the active tunnel. and the FRR facility bandwidth protection is enabled. the destination address is set to P3. 4. the destination address to P2. 2-80 SJ-20140731105308-012|2014-10-20 (R1. P2. the explicit path is set to strictly going through gei-0/1/0/2 of P1. the reserved bandwidth to 10 M. 8.

0 P1(config-if-gei-0/1/0/1)#no shutdown P1(config-if-gei-0/1/0/1)#exit P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#ip address 2.101 P1(config-mpls-te)#interface gei-0/1/0/1 P1(config-mpls-te-if-gei-0/1/0/1)#bandwidth dynamic 40000 P1(config-mpls-te-if-gei-0/1/0/1)#exit P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#bandwidth dynamic 40000 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#interface gei-0/2/0/1 P1(config-mpls-te-if-gei-0/2/0/1)#bandwidth dynamic 40000 P1(config-mpls-te-if-gei-0/1/0/1)#exit P1(config-mpls-te)#explicit-path name main 2-81 SJ-20140731105308-012|2014-10-20 (R1. no FRR protection is formed.0.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 101.0 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#exit P1(config)#interface gei-0/2/0/1 P1(config-if-gei-0/2/0/1)#ip address 5.0.1. tunnel 1 and tunnel 2 form FRR protection.101.1.0 area 0 P1(config-ospf-1)#network 5. c.0) ZTE Proprietary and Confidential .1 255.1.0.101.1 0. d.1.1.0. Configuration Commands Run the following commands on P1: P1#configure terminal P1(config)#interface gei-0/1/0/1 P1(config-if-gei-0/1/0/1)#ip address 1. If tunnel6 is disabled. If tunnel2 and tunnel3 are further disabled.Chapter 2 MPLS TE Configuration b.0.101 255.1.255.101.1.1.1.255.255.255 P1(config-if-loopback1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#network 1.101. If tunnel5 is further disabled.0 area 0 P1(config-ospf-1)#network 2.0.1 0.1.1 255.255.1.0 P1(config-if-gei-0/2/0/1)#no shutdown P1(config-if-gei-0/2/0/1)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 101.1 255. tunnel 1 and tunnel 5 form FRR protection.255.255.255.255.1 0.1.

102 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng bandwidth 10000 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng backup-bw 15000 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 explicit-path name back P1(config-mpls-te-tunnel-te_tunnel2)#exit P1(config-mpls-te)#tunnel te_tunnel3 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel destination ipv4 102.1.0) ZTE Proprietary and Confidential .2 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#explicit-path name back P1(config-mpls-te-expl-path-name)#next-address strict 2.102.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-mpls-te-expl-path-name)#next-address strict 1.103.102.103 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng bandwidth 10000 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility bw-protect P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name main P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#tunnel te_tunnel2 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 102.102 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel mpls traffic-eng bandwidth 5000 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel mpls traffic-eng backup-bw 20000 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel mpls traffic-eng path-option 1 explicit-path name back P1(config-mpls-te-tunnel-te_tunnel3)#exit 2-82 SJ-20140731105308-012|2014-10-20 (R1.1.1.1.102.102.1.4 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#exit P1(config)#interface te_tunnel2 P1(config-if-te_tunnel2)#exit P1(config)#interface te_tunnel3 P1(config-if-te_tunnel3)#exit P1(config)#interface te_tunnel4 P1(config-if-te_tunnel4)#exit P1(config)#interface te_tunnel5 P1(config-if-te_tunnel5)#exit P1(config)#interface te_tunnel6 P1(config-if-te_tunnel6)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 103.103.2 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#explicit-path name back-1 P1(config-mpls-te-expl-path-name)#next-address strict 5.1.

102.2 255.0 P2(config-if-gei-0/1/0/1)#no shutdown P2(config-if-gei-0/1/0/1)#exit P2(config)#interface gei-0/2/0/1 P2(config-if-gei-0/2/0/1)#ip address 9.255 P2(config-if-loopback1)#exit 2-83 SJ-20140731105308-012|2014-10-20 (R1.102 P1(config-mpls-te-tunnel-te_tunnel5)#tunnel mpls traffic-eng bandwidth 5000 P1(config-mpls-te-tunnel-te_tunnel5)#tunnel mpls traffic-eng path-option 1 explicit-path name back P1(config-mpls-te-tunnel-te_tunnel5)#exi P1(config-mpls-te)#tunnel te_tunnel6 P1(config-mpls-te-tunnel-te_tunnel6)#tunnel destination ipv4 103.0 P2(config-if-gei-0/2/0/1)#no shutdown P2(config-if-gei-0/2/0/1)#exit P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#ip address 2.1.1.255.1.103.102.255.2 255.255.255.255.Chapter 2 MPLS TE Configuration P1(config-mpls-te)#tunnel te_tunnel4 P1(config-mpls-te-tunnel-te_tunnel4)#tunnel destination ipv4 102.102 P1(config-mpls-te-tunnel-te_tunnel4)#tunnel mpls traffic-eng bandwidth 10000 P1(config-mpls-te-tunnel-te_tunnel4)#tunnel mpls traffic-eng backup-bw 9000 P1(config-mpls-te-tunnel-te_tunnel4)#tunnel mpls traffic-eng path-option 1 explicit-path name back P1(config-mpls-te-tunnel-te_tunnel4)#exit P1(config-mpls-te)#tunnel te_tunnel5 P1(config-mpls-te-tunnel-te_tunnel5)#tunnel destination ipv4 102.103.1.255.102.0) ZTE Proprietary and Confidential .102.0 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback1 P2(config-if-loopback1)#ip address 102.102.1.255.2 255.103 P1(config-mpls-te-tunnel-te_tunnel6)#tunnel mpls traffic-eng bandwidth 5000 P1(config-mpls-te-tunnel-te_tunnel6)#tunnel mpls traffic-eng backup-bw 20000 P1(config-mpls-te-tunnel-te_tunnel6)#tunnel mpls traffic-eng path-option 1 explicit-path name back-1 P1(config-mpls-te-tunnel-te_tunnel6)#exit P1(config-mpls-te)#interface gei-0/1/0/1 P1(config-mpls-te-if-gei-0/1/0/1)#backup-path te_tunnel 2 P1(config-mpls-te-if-gei-0/1/0/1)#backup-path te_tunnel 3 P1(config-mpls-te-if-gei-0/1/0/1)#backup-path te_tunnel 4 P1(config-mpls-te-if-gei-0/1/0/1)#backup-path te_tunnel 5 P1(config-mpls-te-if-gei-0/1/0/1)#backup-path te_tunnel 6 Run the following commands on P2: P2#configure terminal P2(config)#interface gei-0/1/0/1 P2(config-if-gei-0/1/0/1)#ip address 1.102 255.1.102.255.

ZXR10 M6000-S Configuration Guide (MPLS) P2(config)#router ospf 1 P2(config-ospf-1)#network 1.4 255.0.0 area 0 P3(config-ospf-1)#network 5.0.1.0 P3(config-if-gei-0/1/0/2)#no shutdown P3(config-if-gei-0/1/0/2)#exit P3(config)#interface gei-0/1/0/1 P3(config-if-gei-0/1/0/1)#ip address 5.1.4 0.2 0.1.255.102 P2(config-mpls-te)#interface gei-0/1/0/1 P2(config-mpls-te-if-gei-0/1/0/1)#exit P2(config-mpls-te)#interface gei-0/2/0/1 P2(config-mpls-te-if-gei-0/2/0/1)#bandwidth dynamic 20000 P2(config-mpls-te-if-gei-0/2/0/1)#exit P2(config-mpls-te)# Run the following commands on P3: P3#configure terminal P3(config)#interface gei-0/1/0/2 P3(config-if-gei-0/1/0/2)#ip address 9.103 P3(config-mpls-te)#interface gei-0/1/0/2 P3(config-mpls-te-if-gei-0/1/0/2)#exit P3(config-mpls-te)# 2-84 SJ-20140731105308-012|2014-10-20 (R1.1.103.0 P3(config-if-gei-0/1/0/1)#no shutdown P3(config-if-gei-0/1/0/1)#exit P3(config)#interface loopback1 P3(config-if-loopback1)#ip address 103.0 area 0 P3(config-ospf-1)#mpls traffic-eng area 0 P3(config-ospf-1)#exit P3(config)#mpls traffic-eng P3(config-mpls-te)#interface loopback1 P3(config-mpls-te-if-loopback1)#exit P3(config-mpls-te)#router-id 103.1.103.0.103.1.102.0.255 P3(config-if-loopback1)#exit P3(config)#router ospf 1 P3(config-ospf-1)#network 9.0.255.0.4 0.1.1.0 area 0 P2(config-ospf-1)#network 9.103 255.0.0 area 0 P2(config-ospf-1)#network 2.255.1.255.103.102.1.2 0.0.255.0) ZTE Proprietary and Confidential .0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback1 P2(config-mpls-te-if-loopback1)#exit P2(config-mpls-te)#router-id 102.0.1.1.4 255.0.255.2 0.1.1.

103.0) ZTE Proprietary and Confidential .103 tunnel mpls traffic-eng bandwidth 10000 tunnel mpls traffic-eng record-route tunnel mpls traffic-eng fast-reroute facility bw-protect tunnel mpls traffic-eng path-option 1 explicit-path name main !</mpls-te> P1(config-mpls-te-tunnel-te_tunnel1)#show mpls traffic-eng tunnels te_tunnel 1 /*If the Bandwidth Protection field is set to enabled.*/ Name: tunnel_1 (Tunnel1) Destination: 103.103 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. run the show this command to check the tunnel configuration and information. After bandwidth protection is configured for a tunnel. the FRR bandwidth protection is enabled. The execution result is displayed as follows: P1(config-mpls-te-tunnel-te_tunnel1)#show this !<mpls-te> tunnel destination ipv4 103.103.103. type explicit name: main (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: No path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: enabled Facility Fast-reroute: enabled Detour Fast-reroute: disabled Bandwidth Protection: enabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 10000 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None 2-85 SJ-20140731105308-012|2014-10-20 (R1.Chapter 2 MPLS TE Configuration Configuration Verification 1.103.

101. peak rate= 10000 kb RSVP Resv Info: Record Route: 102.103.103 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 10000 kb.2 9. 40 second Last LSP Error Information: 2.0.101. 0 hour. 0 hour.103.2 9.Dest: 102.1.1.1.1.103. 15 minute.102(147457) 1.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: 15000 kbps.1. Dst 103. The execution result is displayed as follows.102.1.101.0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/1.ZXR10 M6000-S Configuration Guide (MPLS) Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1 1. 18 minute.101. inuse: 0 kbps Name: tunnel_3 2-86 SJ-20140731105308-012|2014-10-20 (R1.102. Run the show mpls traffic-eng tunnels backup command to check the information about a backup tunnel after a backup bandwidth is configured for the backup tunnel.103.101. Tun-Instance 4 RSVP Path Info: Explicit Route: 1.0) ZTE Proprietary and Confidential .1.1.102. P1#show mpls traffic-eng tunnels backup Name: tunnel_2 LSP Head: Tunnel2 Admin: up Oper: up Src:101.1.101.0.1. 147457 RSVP Signalling Info : Src 101. the Backup BW field is the configured backup bandwidth.1.102. Tun-ID 1. 3 second Prior LSP: path option 1 Current LSP: Uptime:0 day.1. burst= 0 byte. peak rate= 10000 kb History: Tunnel: Time Since Created: 0 day.102. burst= 0 byte.2(147457) 103. in which.4 103.103.4(3) Fspec: ave rate= 10000 kb.103.103(3) 9.103.

Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 1 Backup BW: 20000 kbps.102. P1#show mpls traffic-eng tunnels backup Name: tunnel_2 LSP Head: Tunnel2 Admin: up Oper: up 2-87 SJ-20140731105308-012|2014-10-20 (R1. The execution result is displayed as follows. After FRR protection is formed.101.Chapter 2 MPLS TE Configuration LSP Head: Tunnel3 Admin: up Oper: up Src:101.103.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: unlimited.101.Dest: 103.Dest: 102.101.101.0) ZTE Proprietary and Confidential .102. in which.102. inuse: 0 kbps Name: tunnel_4 LSP Head: Tunnel4 Admin: up Oper: up Src:101. inuse: 0 kbps 3. run the show mpls traffic-eng tunnels backup command to check the backup tunnel information.102.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: 20000 kbps.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: 9000 kbps.103.102.101. After FRR protection is formed.102.102.101.102.101.101. the Protected lsps field is the number of the LSPs under the protection of the backup tunnel. and the inuse field is the used backup bandwidth of the backup tunnel.101. run the following commands to check the selected optimum backup tunnel: P1#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID In-label Out intf/label FRR intf/label Status Tunnel1 4 Tu6:3 ready FRR intf/label Status Tun hd gei-0/1/0/1:147457 LSP midpoint frr information: LSP identifier In-label Out intf/label 4.101.102.101. inuse: 0 kbps Name: tunnel_6 LSP Head: Tunnel6 Admin: up Oper: up Src:101.Dest: 102.101.103. inuse: 0 kbps Name: tunnel_5 LSP Head: Tunnel5 Admin: up Oper: up Src:101.Dest: 102.

102.5 Instance of Configuration for HOT_LSP Supporting TE-FRR Configuration Description In Figure 2-18. an end-to-end MPLS-TE path protection tunnel is established by using IGP-TE.ZXR10 M6000-S Configuration Guide (MPLS) Src:101. inuse: 0 kbps Name: tunnel_3 LSP Head: Tunnel3 Admin: up Oper: up Src:101.101.103.102.Dest: 102.102.102. inuse: 10000 kbps (BWP inuse: 10000 kbps) 2. Take ISIS-TE as example.102.102.103.101.101.102.Dest: 102.101.102.Dest: 102.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: 20000 kbps.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: 9000 kbps.101.101. the path of the active LSP Tunnel1 is the yellow solid line P1->P2->P3.101.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: 15000 kbps.101.101. 2-88 SJ-20140731105308-012|2014-10-20 (R1.102.3.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 1 Backup BW: 20000 kbps.103.Dest: 103. inuse: 0 kbps Name: tunnel_6 LSP Head: Tunnel6 Admin: up Oper: up Src:101. the Tunnel HOT-LSP path is the black dotted line P1->P4->P2->P3.102.101. inuse: 0 kbps Name: tunnel_4 LSP Head: Tunnel4 Admin: up Oper: up Src:101.101. the FRR is enabled (facility or one-to-one). a backup tunnel Tunnel2 (P2->P4->P5->P3) protection link P2->P3 is configured on P2.Dest: 102.101.6. inuse: 0 kbps Name: tunnel_5 LSP Head: Tunnel5 Admin: up Oper: up Src:101. and the HOT_LSP is configured to support TE-FRR.101.102.101.102.Instance:1 Fast Reroute Backup Provided: Protected i/fs: gei-0/1/0/1 Protected lsps: 0 Backup BW: unlimited.0) ZTE Proprietary and Confidential .101.

2. Establish the ISIS neighbor relation for all interfaces interconnected in the network.0 2-89 SJ-20140731105308-012|2014-10-20 (R1. Configure a loopback address and interface address on each of five devices. Configure a proper HOT_LSP FRR protection relation on P1 and a protection link P2-P3 for backup tunnel Tunnel2 (P2->P4->P5->P3) on P2 to form a proper FRR link protection on P2. Configuration Commands Run the following commands on P1: Interface configurations: P1(config)#interface gei-0/1/0/7 P1(config-if-gei-0/1/0/7)#no shutdown P1(config-if-gei-0/1/0/7)#ip address 107. and enable the FRR facility function. If the P1-P2 link becomes invalid again. enable the TE function on the ISIS and interfaces. enable the active LSP to strictly route along P1->P2->P3.255.0 P1(config-if-gei-0/1/0/7)#exit P1(config)#interface gei-0/1/0/13 P1(config-if-gei-0/1/0/13)#no shutdown P1(config-if-gei-0/1/0/13)#ip address 1.4 255. 4.255. 3. which is still ready. but the FRR protection relation on P2 is not affected.255.255. If the P1-P2 link becomes invalid. the FRR protection relation on both P1 and P2 is active. 6.0) ZTE Proprietary and Confidential .44.Chapter 2 MPLS TE Configuration Figure 2-18 Instance of Configuration for HOT_LSP Supporting TE-FRR Configuration Flow 1.13.4 255.44. 5. Configure an MPLS-TE end-to-end path protection tunnel Tunnel1 on P1 to P3.0. and the HOT-LSP along P1->P4->P2->P3. the FRR protection relation on P1 becomes active.

4.44.13.4.52.52 P1(config-mpls-te-expl-path-name)#next-address strict 15.73.52.2 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name main 2-90 SJ-20140731105308-012|2014-10-20 (R1.4.4444.100 P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#interface gei-0/1/0/7 P1(config-mpls-te-if-gei-0/1/0/7)#exit P1(config-mpls-te)#interface gei-0/1/0/13 P1(config-mpls-te-if-gei-0/1/0/13)#exit P1(config-mpls-te)#explicit-path name main P1(config-mpls-te-expl-path-name)#next-address strict 1.73 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 73.0) ZTE Proprietary and Confidential .72.4.4444 P1(config-isis-10)#is-type level-1 P1(config-isis-10)#metric-style wide P1(config-isis-10)#mpls traffic-eng level-1 P1(config-isis-10)#interface gei-0/1/0/7 P1(config-isis-10-if-gei-0/1/0/7)#ip router isis P1(config-isis-10-if-gei-0/1/0/7)#exit P1(config-isis-10)#interface gei-0/1/0/13 P1(config-isis-10-if-gei-0/1/0/13)#ip router isis P1(config-isis-10-if-gei-0/1/0/13)#exit P1(config-isis-10)#exit MPLS-TE configurations: P1(config)#mpls traffic-eng P1(config-mpls-te)#router-id 4.73.255.100 255.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-if-gei-0/1/0/13)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 4.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit ISIS and ISIS-TE configurations: P1(config)#router isis 10 P1(config-isis-10)#area 00 P1(config-isis-10)#system-id 0000.72 P1(config-mpls-te-expl-path-name)#next-address strict 208.73.44.73 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#explicit-path name hot-lsp P1(config-mpls-te-expl-path-name)#next-address strict 107.73.52.0.255.52 P1(config-mpls-te-expl-path-name)#next-address strict 15.

0 P2(config-if-gei-0/1/0/18)#exit P2(config)#interface loopback1 P2(config-if-loopback1)#ip address 52.5252 P2(config-isis-10)#is-type level-1 P2(config-isis-10)#metric-style wide P2(config-isis-10)#mpls traffic-eng level-1 P2(config-isis-10)#interface gei-0/1/0/13 P2(config-isis-10-if-gei-0/1/0/13)#ip router isis P2(config-isis-10-if-gei-0/1/0/13)#exit P2(config-isis-10)#interface gei-0/1/0/15 P2(config-isis-10-if-gei-0/1/0/15)#ip router isis P2(config-isis-10-if-gei-0/1/0/15)#exit P2(config-isis-10)#interface gei-0/1/0/18 P2(config-isis-10-if-gei-0/1/0/18)#ip router isis P2(config-isis-10-if-gei-0/1/0/18)#exit P2(config-isis-10)#exit MPLS-TE configurations: 2-91 SJ-20140731105308-012|2014-10-20 (R1.255.73.0 P2(config-if-gei-0/1/0/15)#exit P2(config)#interface gei-0/1/0/18 P2(config-if-gei-0/1/0/18)#no shutdown P2(config-if-gei-0/1/0/18)#ip address 208.0.0 P2(config-if-gei-0/1/0/13)#exit P2(config)#interface gei-0/1/0/15 P2(config-if-gei-0/1/0/15)#no shutdown P2(config-if-gei-0/1/0/15)#ip address 15.255.100 255.255.255.52.52 255.255.255.52 255.72.255.52.0) ZTE Proprietary and Confidential .52 255.13.Chapter 2 MPLS TE Configuration P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng hot-standby protect 1 explicit-path name hot-lsp P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng hot-standby-lsp fast-reroute P1(config-mpls-te-tunnel-te_tunnel1)#exit Run the following commands on P2: Interface configurations: P2(config)#interface gei-0/1/0/13 P2(config-if-gei-0/1/0/13)#no shutdown P2(config-if-gei-0/1/0/13)#ip address 1.255 P2(config-if-loopback1)#exit P2(config)#interface te_tunnel2 P2(config-if-te_tunnel2)#ip unnumbered loopback1 P2(config-if-te_tunnel2)#exit ISIS and ISIS-TE configurations: P2(config)#router isis 10 P2(config-isis-10)#area 00 P2(config-isis-10)#system-id 0000.5252.52.255.52.

72 P2(config-mpls-te-expl-path-name)#next-address strict 13.13.ZXR10 M6000-S Configuration Guide (MPLS) P2(config)#mpls traffic-eng P2(config-mpls-te)#router-id 52.2 P2(config-mpls-te-expl-path-name)#next-address strict 14.0 P3(config-if-gei-0/1/0/6)#exit P3(config)#interface loopback1 P3(config-if-loopback1)#ip address 73.255.0 P3(config-if-gei-0/1/0/15)#exit P3(config)#interface gei-0/1/0/6 P3(config-if-gei-0/1/0/6)#no shutdown P3(config-if-gei-0/1/0/6)#ip address 14.73.2 255.1.255.561c.52.41a2 P3(config-isis-10)#is-type level-1 P3(config-isis-10)#metric-style wide P3(config-isis-10)#mpls traffic-eng level-1 2-92 SJ-20140731105308-012|2014-10-20 (R1.73 255.2 255.2 P2(config-mpls-te-expl-path-name)#exit P2(config-mpls-te)#tunnel te_tunnel2 P2(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 explicit-path name P2-P4-P5-P3 P2(config-mpls-te-tunnel-te_tunnel2)#exit P2(config-mpls-te)#interface gei-0/1/0/15 P2(config-mpls-te-if-gei-0/1/0/15)#backup-path te_tunnel 2 P2(config-mpls-te-if-gei-0/1/0/15)#exit P2(config-mpls-te)#exit Run the following commands on P3: Interface configurations: P3(config)#interface gei-0/1/0/15 P3(config-if-gei-0/1/0/15)#no shutdown P3(config-if-gei-0/1/0/15)#ip address 15.100 P2(config-mpls-te)#interface loopback1 P2(config-mpls-te-if-loopback1)#exit P2(config-mpls-te)#interface gei-0/1/0/13 P2(config-mpls-te-if-gei-0/1/0/13)#exit P2(config-mpls-te)#interface gei-0/1/0/15 P2(config-mpls-te-if-gei-0/1/0/15)#exit P2(config-mpls-te)#interface gei-0/1/0/18 P2 (config-mpls-te-if-gei-0/1/0/18)#exit P2(config-mpls-te)#explicit-path name P2-P4-P5-P3 P2(config-mpls-te-expl-path-name)#next-address strict 208.52.73.1.1.255.52.0) ZTE Proprietary and Confidential .52.255.1.255 P3(config-if-loopback1)#exit ISIS and ISIS-TE configurations: P3(config)#router isis 10 P3(config-isis-10)#area 00 P3(config-isis-10)#system-id 2008.255.72.255.13.73.

255.255 ISIS and ISIS-TE configurations: P4(config)#router isis 10 P4(config-isis-10)#area 00 P4(config-isis-10)#system-id 0000.44.Chapter 2 MPLS TE Configuration P3(config-isis-10)#interface gei-0/1/0/6 P3(config-isis-10-if-gei-0/1/0/6)#ip router isis P3(config-isis-10-if-gei-0/1/0/6)#exit P3(config-isis-10)#interface gei-0/1/0/15 P3(config-isis-10-if-gei-0/1/0/15)#ip router isis P3(config-isis-10-if-gei-0/1/0/15)#exit P3(config-isis-10)#exit MPLS-TE configurations: P3(config)#mpls traffic-eng P3(config-mpls-te)#router-id 73.0072 P4(config-isis-10)#is-type level-1 P4(config-isis-10)#metric-style wide P4(config-isis-10)#mpls traffic-eng level-1 P4(config-isis-10)#interface gei-0/1/0/7 P4(config-isis-10-if-gei-0/1/0/7)#ip router isis P4(config-isis-10-if-gei-0/1/0/7)#exit 2-93 SJ-20140731105308-012|2014-10-20 (R1.255.13.255.72.255.73.0) ZTE Proprietary and Confidential .2 P3(config-mpls-te)#interface loopback1 P3(config-mpls-te-if-loopback1)#exit P3(config-mpls-te)#interface gei-0/1/0/15 P3(config-mpls-te-if-gei-0/1/0/15)#exit P3(config-mpls-te)#interface gei-0/1/0/6 P3(config-mpls-te-if-gei-0/1/0/6)#exit P3(config-mpls-te)#exit Run the following commands on P4: Interface configurations: P4(config)#interface gei-0/1/0/7 P4(config-if-gei-0/1/0/7)#no shutdown P4(config-if-gei-0/1/0/7)#ip address 107.52.1 255.255.13.0 P4(config-if-gei-0/1/0/7)#exit P4(config)#interface gei-0/2/0/1 P4(config-if-gei-0/2/0/1)#no shutdown P4(config-if-gei-0/2/0/1)#ip address 13.72 255.0000.255.0 P4(config-if-gei-0/2/0/1)#exit P4(config)#interface gei-0/2/0/8 P4(config-if-gei-0/2/0/8)#no shutdown P4(config-if-gei-0/2/0/1)# ip address 208.1 255.44.72 255.255.72.73.0 P4(config-if-gei-0/2/0/8)#exit P4(config)#interface loopback1 P4(config-if-loopback1)#ip address 72.72.255.

7301 P5(config-isis-10)#is-type level-1 P5(config-isis-10)#metric-style wide P5(config-isis-10)#mpls traffic-eng level-1 P5(config-isis-10)#interface gei-0/1/0/11 P5(config-isis-10-if-gei-0/1/0/11)#ip router isis P5(config-isis-10-if-gei-0/1/0/11)#exit P5(config-isis-10)#interface gei-0/1/0/6 2-94 SJ-20140731105308-012|2014-10-20 (R1.1 255.0 P5(config-if-gei-0/1/0/6)#exit P5(config)#interface loopback1 P5(config-if-loopback1)#ip address 73.ZXR10 M6000-S Configuration Guide (MPLS) P4(config-isis-10)#interface gei-0/2/0/1 P4(config-isis-10-if-gei-0/2/0/1)#ip router isis P4(config-isis-10-if-gei-0/2/0/1)#exit P4(config-isis-10)#interface gei-0/2/0/8 P4(config-isis-10-if-gei-0/2/0/8)#ip router isis P4(config-isis-10-if-gei-0/2/0/8)#exit P4(config-isis-10)#exit MPLS-TE configurations: P4(config)#mpls traffic-eng P4(config-mpls-te)#router-id 72.255.255.0 P5(config-if-gei-0/1/0/11)#exit P5(config)#interface gei-0/1/0/6 P5(config-if-gei-0/1/0/6)#no shutdown P5(config-if-gei-0/1/0/6)#ip address 14.72.255.1 P4(config-mpls-te)#interface loopback1 P4(config-mpls-te-if-loopback1)#exit P4(config-mpls-te)#interface gei-0/1/0/7 P4(config-mpls-te-if-gei-0/1/0/7)#exit P4(config-mpls-te)#interface gei-0/2/0/1 P4(config-mpls-te-if-gei-0/2/0/1)#exit P4(config-mpls-te)#interface gei-0/2/0/8 P4(config-mpls-te-if-gei-0/2/0/8)#exit P4(config-mpls-te)#exit Run the following commands on P5: Interface configurations: P5(config)#interface gei-0/1/0/11 P5(config-if-gei-0/1/0/11)#no shutdown P5(config-if-gei-0/1/0/11)#ip address 13.73.255 P5(config-if-loopback1)#exit ISIS and ISIS-TE configurations: P5(config)#router isis 10 P5(config-isis-10)#area 00 P5(config-isis-10)#system-id 0000.72.255.0) ZTE Proprietary and Confidential .255.13.13.1.2 255.1 255.1.0000.73.255.

The execution result is displayed as follows: P1(config-mpls-te)#show mpls traffic-eng tunnels Name: tunnel_1 (Tunnel1) Destination: 73.2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.73.0) ZTE Proprietary and Confidential . Run the show mpls traffic-eng tunnels brief command to check the status of the active LSP and HOT-LSP on P1.73.73.2 - gei-0/1/0/13 up/up tunnel_1 (hot) 73.2 - gei-0/1/0/7 up/up 2. type explicit name: main (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: protect option: 1. in which up/up indicates that the active LSP and HOT-LSP are activated. type explicit name: hot-lsp (Basis for Protect) Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: enabled 2-95 SJ-20140731105308-012|2014-10-20 (R1.73. The execution result is displayed as follows. P1(config-mpls-te)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process:running RSVP Process:running Forwarding:enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 73.73.1 P5(config-mpls-te)#interface loopback1 P5(config-mpls-te-if-loopback1)#exit P5(config-mpls-te)#interface gei-0/1/0/11 P5(config-mpls-te-if-gei-0/1/0/11)#exit P5(config-mpls-te)#interface gei-0/1/0/6 P5(config-mpls-te-if-gei-0/1/0/6)#exit P5(config-mpls-te)#exit Configuration Verification 1. Run the show mpls traffic-eng tunnels command to check the information about the active LSP and HOT-LSP.73.73.Chapter 2 MPLS TE Configuration P5(config-isis-10-if-gei-0/1/0/6)#ip router isis P5(config-isis-10-if-gei-0/1/0/6)#exit P5(config-isis-10)#exit MPLS-TE configurations: P5(config)#mpls traffic-eng P5(config-mpls-te)#router-id 73.73.

73. Tun-Instance 143 RSVP Path Info: Explicit Route: 1.0.4.0.100.52 15.0.73 73.52 15.2 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kb.52. burst= 1000 byte. Dst 73.52(212992) 73.52.0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/13.73. burst= 1000 byte.73.73.2(147456) 15 .73(147456) Fspec: ave rate= 0 kb. peak rate= 0 kb RSVP Resv Info: Record Route: 52. Tun-ID 1. 34 minute.73.52.13.0.73.13.4. 212992 RSVP Signalling Info : Src 4.73.13.4 1.0.0) ZTE Proprietary and Confidential .52.73.100(212992) 1. 48 second Prior LSP: path option 1 2-96 SJ-20140731105308-012|2014-10-20 (R1.ZXR10 M6000-S Configuration Guide (MPLS) Facility Fast-reroute: enabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.73.2. peak rate= 0 kb History: Tunnel: Time Since Created: 0 day.52. 14 hour.

4.44.72.0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/7.73.72(147458) 52.errvalue:4).73.73.52 15.52. 147458 RSVP Signalling Info : Src 4. Path-option config changed(lspid:138.73.4.2 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kb.0.73.4 107.52.73(147462) 2-97 SJ-20140731105308-012|2014-10-20 (R1. Name: tunnel_1 (hot) (Tunnel1) Destination: 73.errcode:1.100(212994) 208.2(147462) 15.73.44.52.52 15.errvalue:2).Chapter 2 MPLS TE Configuration Current LSP: Uptime:0 day. 45 second Last LSP Error Information: Path-option config changed(lspid:139.44.44.52.1(147458) 107.2 Status: Signalling: up Actual Bandwidth: N/A Hot-standby protection: Config Parameters: BFD: disabled Hot-standby-lsp Fast-reroute: disabled Hot-standby-lsp Auto-reoptimize: disabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0. Tun-Instance 157 RSVP Path Info: Explicit Route: 107.errcode:1. 0 hour.52.73.2.52(212994) 73.73.73 73.errvalue:2). Tunnel destination changed(lspid:137.52. 7 minute.100.44.73.52.0.72.44.errcode:1.72 208.72. Dst 73.73. peak rate= 0 kb RSVP Resv Info: Record Route: 72.72.73.72 208.72.0) ZTE Proprietary and Confidential . burst= 1000 byte. Tun-ID 1.52.

3.52.44. burst= 1000 byte.73 73.errcode:1. 14 hour.72(147458) 52.73. Tunnel destination changed(lspid:137.72. Dst 73. Tun-Instance 157 RSVP Path Info: Explicit Route: 107.2.2 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kb.2(147462) 15.100(212994) 208. P1(config-mpls-te)#show mpls traffic-eng tunnels hot-standby Name: tunnel_1 (Tunnel1) Destination: 73.73. 45 second Last LSP Error Information: Path-option config changed(lspid:139.72.ZXR10 M6000-S Configuration Guide (MPLS) Fspec: ave rate= 0 kb. Hot-standby Protection:ready indicates that FRR protection is enabled. 0 hour. in which.0) ZTE Proprietary and Confidential .72.52 15. The execution result is displayed as follows. peak rate= 0 kb History: Tunnel: Time Since Created: 0 day.0 InLabel: OutLabel: gei-0/1/0/7.52.44.52.52 15.44.errvalue:2).44.44.52.4.73.73.73.errcode:1.errvalue:4).4 107.72 208.2 Status: Admin: up Oper: up Path: valid Signalling: connected Fast Reroute Protection: none Hot-standby Protection: ready Config Parameters: BFD: disabled Hot-standby-lsp Fast-reroute: disabled Hot-standby-lsp Auto-reoptimize: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1(147458) 107.72 208.0.73.5 2.errcode:1.44. 0 minute. Tun-ID 1. peak rate= 0 kb 2-98 SJ-20140731105308-012|2014-10-20 (R1.73(147462) Fspec: ave rate= 0 kb. peak rate= 0 kb RSVP Resv Info: Record Route: 72. burst= 1000 byte.52.73.73.52.73.4. 147458 RSVP Signalling Info : Src 4.73.72. Run the show mpls traffic-eng tunnels hot-standby command to check the details of the HOT-LSP.72.100.0.52(212994) 73. burst= 1000 byte. Path-option config changed(lspid:138. 34 minute.errvalue:2). 49 second Prior LSP: path option 1 Current LSP: Uptime:0 day.73.52.

Run the show mpls traffic-eng tunnels te_tunnel 2 command on P2 to check the details of the backup tunnel Tunnel2.2 - gei-0/1/0/18 up/up 6. Run the show mpls traffic-eng tunnels brief command on P2 to check the status of the backup tunnel Tunnel2. The execution result is displayed as follows: P2(config)#show mpls traffic-eng tunnels te_tunnel 2 Name: tunnel_2 (Tunnel2) Destination: 73. up/up indicates that Tunnel2 is properly established.0) ZTE Proprietary and Confidential . The execution result is displayed as follows. The execution result is displayed as follows. type explicit name: P2-P4-P5-P3 (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: No path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: 2-99 SJ-20140731105308-012|2014-10-20 (R1. P2(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process:running RSVP Process:running Forwarding:enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_2 73.73.Chapter 2 MPLS TE Configuration 4. Run the show mpls traffic-eng fast-reroute command on P1 to check the FRR protection relation.73.73.2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. P1(config-mpls-te)#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID In-label Out intf/label Tunnel1 143 Tun hd gei-0/1/0/13:212992 FRR intf/label Status Tu1:147458 ready FRR intf/label Status LSP midpoint frr information: LSP identifier In-label Out intf/label P1(config-mpls-te)# 5.73. in which. ready indicates that the FRR protection relation is properly established. in which.

2.1.52 208.13.52.52. Dst 73.1 13.73. The execution result is displayed as follows. 147462 RSVP Signalling Info : Src 52. Tun-ID 2. the protection link P2->P3 of the backup tunnel Tunnel2 is displayed.0) ZTE Proprietary and Confidential .4. Tun-Instance 18 RSVP Path Info: Explicit Route: 208.2 7.52.0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/18.0.13. the FRR protection relation on P1 becomes active.2 14.72 13.73.100. P2(config)#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID In-label Out intf/label FRR intf/label Status LSP midpoint frr information: LSP identifier In-label Out intf/label FRR intf/label Status 4.73.4. When the P1->P2 link is invalid.13.4.13.72.1.2 73. in which.1.0.73.1 14.ZXR10 M6000-S Configuration Guide (MPLS) Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0. Run the show mpls traffic-eng fast-reroute command on P2 to check the FRR link protection configuration.100 1/183 212992 gei-0/1/0/15:147456 Tu2:147457 ready 4.1.52.100 1/184 212993 gei-0/1/0/15:147461 Tu2:147457 ready 8. for example: P1(config)#interface gei-0/1/0/13 P1(config-if-gei-0/1/0/13)#shutdown P1(config-if-gei-0/1/0/13)#show mpls traffic-eng fast-reroute 2-100 SJ-20140731105308-012|2014-10-20 (R1.72.4.

73. The execution result is displayed as follows: P1(config-if-gei-0/1/0/13)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process:running RSVP Process:running Forwarding:enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 73.73.0) ZTE Proprietary and Confidential .2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.73.73.Chapter 2 MPLS TE Configuration Tunnel head end item information Protected Tunnel LspID In-label Out intf/label Tunnel1 162 Tun hd FRR intf/label Status Tu1:147459 active gei-0/1/0/13:212992 Run the show mpls traffic-eng tunnels brief command on P1 to check the information about Tunnel1.2 - gei-0/1/0/7 up/up P1(config-if-gei-0/1/0/13)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 73. type explicit name: hot-lsp (Basis for Protect) Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: enabled Facility Fast-reroute: enabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None 2-101 SJ-20140731105308-012|2014-10-20 (R1. type explicit name: main Actual Bandwidth: N/A Hot-standby protection: protect option: 1.

Tun-ID 1.0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/7.44.0 2-102 SJ-20140731105308-012|2014-10-20 (R1.73.73.44.52.73(147460) Fspec: ave rate= 0 kb. Tun-Instance 163 RSVP Path Info: Explicit Route: 107.44. burst= 1000 byte.73.52.52 15.2(147460) 15. 147459 RSVP Signalling Info : Src 4.72.2.72 208.73.2 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kb. peak rate= 0 kb Run the show mpls traffic-eng tunnels hot-standby command on P1 to check the HOT-LSP protection relation.73.52. Dst 73.52.44.44.100. The execution result is displayed as follows.72.52.73.2 Status: Admin: up Oper: up Path: valid Signalling: connected Fast Reroute Protection: none Hot-standby Protection: backup lsp in use Config Parameters: BFD: disabled Hot-standby-lsp Fast-reroute: disabled Hot-standby-lsp Auto-reoptimize: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.52.4.0.44.0.73.52.1(147459) 107. P1(config-if-gei-0/1/0/13)#show mpls traffic-eng tunnels hot-standby Name: tunnel_1 (Tunnel1) Destination: 73.ZXR10 M6000-S Configuration Guide (MPLS) AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.73 73.0.0) ZTE Proprietary and Confidential .100(212993) 208. peak rate= 0 kb RSVP Resv Info: Record Route: 72.73.72(147459) 52.72.72 208.73. backup lsp in use indicates that the traffic on P1 is forwarded through HOT-LSP.72.52 15.72.52(212993) 73.73.0.52.4 107. burst= 1000 byte.73. in which.4.

Select the optimal backup tunnel for establishing an FRR relationship (facility mode-based protection).4. if an interface has a backup tunnel only (Tunnel1). 2. if the corresponding node has FRR promotion enabled.100 1/162 212992 Tu2:147462 ready gei-0/1/0/15:147456 9.Chapter 2 MPLS TE Configuration Run the show mpls traffic-eng fast-reroute command on P2 to check the FRR protection relation. only a link protection relationship can be established between active and backup tunnels.4. in which. The execution result is displayed as follows.0) ZTE Proprietary and Confidential . The process is as follows: 1. 2-103 SJ-20140731105308-012|2014-10-20 (R1.100 1/184 212993 Tu2:147457 active gei-0/1/0/15:147461 When the P2->P3 link is restored. the FRR protection relation on both P1 and P2 is active. Only when the P1->P2 link is also restored. the FRR relationship is deleted and a new FRR relationship is established. without being affected. can the FRR protection relation on P1 and P2 be restored to ready. If another backup tunnel (Tunnel2) is configured on the interface. FRR protection relation is still ready. the FRR protection relation on both P1 and P2 is active. For example.1 FRR Promotion Introduction Overview Multiple backup tunnels can be configured on an interface. P2(config)#show mpls traffic-eng fast-reroute LSP midpoint frr information: LSP identifier In-label Out intf/label FRR intf/label Status 4.7. 2. Configure FRR attributes on the protected tunnel.7 FRR Promotion Introduction 2.4. Implementation After the FRR relationship is established manually. a node protection relationship can be established between the backup tunnel and active tunnel by using FRR promotion. If the P2->P3 link also becomes invalid. The FRR promotion function is used to properly adjust the protection relationships between active and backup tunnels.4. for example: P2(config)#interface gei-0/1/0/15 P2(config-if-gei-0/1/0/15)#shutdown P2(config-if-gei-0/1/0/15)#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID In-label Out intf/label FRR intf/label Status LSP midpoint frr information: LSP identifier In-label Out intf/label FRR intf/label Status 4.

and establish an FRR relationship between the optimal tunnel and protected tunnel.ZXR10 M6000-S Configuration Guide (MPLS) 3. and enters TE configuration mode.0) ZTE Proprietary and Confidential . Context FRR promotion should be configured on an PLR node generated in FRR protection. FRR promotion takes effect for the backup tunnels in ready status only. Steps 1. A maximum of 16 tunnels can be configured on an egress interface for FRR protection. run the following command: Command Function ZXR10#show mpls traffic-eng fast-reroute promotion Displays the FRR promotion information. To enable FRR promotion. The priorities of the conditions for selecting the optimal backup tunnel is as follows: protection type>bandwidth for backup tunnels>pooling mechanism. 3 ZXR10(config-mpls-te)#fast-reroute timers promotion Configures a periodic interval interval <interval> for running FRR promotion. 5. 2. Configure the ID of the backup tunnel on the egress interface of the protected tunnel. 3. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te)#fast-reroute promote Enables FRR promotion manually. To display the configuration results. 4.2 Configuring FRR Promotion This procedure describes how to configure FRR promotion. To enable MPLS TE.7. 2 ZXR10(config-mpls-te)#fast-reroute timers promotion Enables the FRR promotion timer. Configure FRR promotion: select the optimal tunnel from the configured 16 tunnels. run the following command: Command Function ZXR10(config)#mpls traffic-eng Enables MPLS TE. 2. – End of Steps – 2-104 SJ-20140731105308-012|2014-10-20 (R1.

Tunnel2 (backup tunnel) should pass through P1 and P2.1 255. P2. Configure Tunnel2 and Tunnel3 to be backup tunnels on the gei-0/2/1/1 interface of P1.1. and Tunnel3 provides node protection.7. and P3. Tunnel2 should pass through P1 and P2.3 FRR Promotion Configuration Examples 2.0 P1(config-if-gei-0/2/1/1)#exit P1(config)#interface gei-0/2/1/3 P1(config-if-gei-0/2/1/3)#no shutdown P1(config-if-gei-0/2/1/3)#ip address 60. 3.255. Figure 2-19 FRR Promotion Configuration Example (Node Protection Having a Higher Priority than Link Protection) Configuration Flow 1.1 FRR Promotion Configuration Example (Node Protection Having a Higher Priority than Link Protection) Scenario Description Figure 2-19 shows a sample network topology.1.1.0 2-105 SJ-20140731105308-012|2014-10-20 (R1. Tunnel1 should pass through P1. 2. and enable OSPF TE.0) ZTE Proprietary and Confidential . Establish three tunnels.255. 4. Tunnel2 provides link protection. and P3.1 255. Tunnel1 (primary tunnel) should pass through P1.1. Enable FRR promotion in the TE configuration mode of P1. and P3.255.3.Chapter 2 MPLS TE Configuration 2. P2.7. P2. and Tunnel3 should pass through P1 and P3. and Tunnel3 (backup tunnel) should pass through P1 and P3. Establish OSPF neighbor relationships between the directly-connected interfaces of P1.255. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/2/1/1 P1(config-if-gei-0/2/1/1)#no shutdown P1(config-if-gei-0/2/1/1)#ip address 74. It is required to establish a primary tunnel (Tunnel1) from P1 to P3 and two backup tunnels (Tunnel2 and Tunnel3).

1 P1(config-ospf-1)#network 1.0.0.1.0.1.1.0.1.1 0.1.3 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#interface gei-0/2/1/1 P1(config-mpls-te-if-gei-0/2/1/1)#exit P1(config-mpls-te)#interface gei-0/2/1/3 P1(config-mpls-te-if-gei-0/2/1/3)#exit P1(config-mpls-te)#interface gei-0/2/1/4 2-106 SJ-20140731105308-012|2014-10-20 (R1.1.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#interface te_tunnel2 P1(config-if-te_tunnel2)#ip unnumbered loopback1 P1(config-if-te_tunnel2)#exit P1(config)#interface te_tunnel3 P1(config-if-te_tunnel3)#ip unnumbered loopback1 P1(config-if-te_tunnel3)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.0 area 0 P1(config-ospf-1)#network 74.0.1.1.1.0 0.0 P1(config-if-gei-0/2/1/4)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.1 255.0 0.1.3 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#explicit-path name back1 P1(config-mpls-te-expl-path-name)#next-address strict 39.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-if-gei-0/2/1/3)#exit P1(config)#interface gei-0/2/1/4 P1(config-if-gei-0/2/1/4)#no shutdown P1(config-if-gei-0/2/1/4)#ip address 39.2 P1(config-mpls-te)#explicit-path name back2 P1(config-mpls-te-expl-path-name)#next-address strict 60.255 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1.2 P1(config-mpls-te-expl-path-name)#next-address strict 120.255.0.1 255.255.1.1.1.1.1.1 P1(config-mpls-te)#explicit-path name primary P1(config-mpls-te-expl-path-name)#next-address strict 74.0 0.0) ZTE Proprietary and Confidential .255 area 0 P1(config-ospf-1)#network 39.0.1.255 area 0 P1(config-ospf-1)#network 60.1.1.0.255.1.1.255.1.1.1.

255.255.1.255.0) ZTE Proprietary and Confidential .1.1.1.1 P1(config-mpls-te.1.0 P2(config-if-gei-0/2/1/2)#exit P2(config)#interface gei-0/2/1/4 P2(config-if-gei-0/2/1/4)#no shutdown P2(config-if-gei-0/2/1/4)#ip address 39.0 P2(config-if-gei-0/2/1/4)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.255.1.1.1.1.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name primary P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#tunnel te_tunnel2 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 2.255.255 2-107 SJ-20140731105308-012|2014-10-20 (R1.tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 explicit-path name back1 P1(config-mpls-te-tunnel-te_tunnel2)#exit P1(config-mpls-te)#tunnel te_tunnel3 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel destination ipv4 3.255.1.255.1.0 P2(config-if-gei-0/2/1/1)#exit P2(config)#interface gei-0/2/1/2 P2(config-if-gei-0/2/1/2)#no shutdown P2(config-if-gei-0/2/1/2)#ip address 120.1 255.1.Chapter 2 MPLS TE Configuration P1(config-mpls-te-if-gei-0/2/1/4)#exit P1(config-mpls-te)#fast-reroute promote P1(config-mpls-te)#fast-reroute timers promotion P1(config-mpls-te)#fast-reroute timers promotion interval 60 P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 3.1.2 255.2 255.1.2 255.255.1 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel mpls traffic-eng path-option 1 explicit-path name back2 P1(config-mpls-te-tunnel-te_tunnel2)#exit P1(config-mpls-te)#interface gei-0/2/1/1 P1(config-mpls-te-if-gei-0/2/1/1)#backup-path te_tunnel 2 P1(config-mpls-te-if-gei-0/2/1/1)#backup-path te_tunnel 3 P1(config-mpls-te-if-gei-0/2/1/1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/2/1/1 P2(config-if-gei-0/2/1/1)#no shutdown P2(config-if-gei-0/2/1/1)#ip address 74.

1.0.3 255.0.0.1.0) ZTE Proprietary and Confidential .255.1.1.1 0.0 P3(config-if-gei-0/2/1/2)#exit P3(config)#interface gei-0/2/1/3 P3(config-if-gei-0/2/1/3)#no shutdown P3(config-if-gei-0/2/1/3)#ip address 60.1 P2(config-ospf-1)#network 2.0 0.255 area 0 P3(config-ospf-1)#mpls traffic-eng area 0 P3(config-ospf-1)#exit P3(config)#mpls traffic-eng P3(config-mpls-te)#interface loopback3 2-108 SJ-20140731105308-012|2014-10-20 (R1.255 P3(config-if-loopback3)#exit P3(config)#router ospf 1 P3(config-ospf-1)#router-id 3.0.1 0.0.0 area 0 P2(config-ospf-1)#network 74.1.255 area 0 P3(config-ospf-1)#network 60.255.1.0 0.0.0.255.1.1.1 P3(config-ospf-1)#network 3.0.255.0.3 255.1.255.1.0 0.1.1 255.255.ZXR10 M6000-S Configuration Guide (MPLS) P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.1.1.1.0 area 0 P3(config-ospf-1)#network 120.1.1.0 P3(config-if-gei-0/2/1/3)#exit P3(config)#interface loopback3 P3(config-if-loopback3)#ip address 3.0 0.1.1.255 area 0 P2(config-ospf-1)#network 120.1.1.255 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.0.1.1.1.0.1.1 P2(config-mpls-te)#interface gei-0/2/1/1 P2(config-mpls-te-if-gei-0/2/1/1)#exit P2(config-mpls-te)#interface gei-0/2/1/2 P2(config-mpls-te-if-gei-0/2/1/2)#exit P2(config-mpls-te)#interface gei-0/2/1/4 P2(config-mpls-te-if-gei-0/2/1/4)#exit P2(config-mpls-te)#exit Run the following commands on P3: P3(config)#interface gei-0/2/1/2 P3(config-if-gei-0/2/1/2)#no shutdown P3(config-if-gei-0/2/1/2)#ip address 120.0.

7.1 . The execution result is displayed as follows: P1#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 3.1 P3(config-mpls-te)#interface gei-0/2/1/2 P3(config-mpls-te-if-gei-0/2/1/2)#exit P3(config-mpls-te)#interface gei-0/2/1/3 P3(config-mpls-te-if-gei-0/2/1/3)#exit P3(config-mpls-te)#exit Configuration Verification After the tunnel goes up. 2-109 SJ-20140731105308-012|2014-10-20 (R1. FRR promotion should be enabled to establish an FRR relationship between P1 and P2.gei-0/2/1/4 up/up tunnel_33. It is required to establish the primary tunnel (Tunnel1 has a 5000 kbps bandwidth) from P1 to P2 and two backup tunnels (Tunnel2 has a 6000 kbps bandwidth and Tunnel3 has a 5000 kbps bandwidth) through other two links.3.1.1. next in 4 second 2.gei-0/2/1/3 up/up P1#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspIDIn-label Out intf/label FRR intf/label Status Tunnel186 Tun hd gei-0/2/1/1:147456Tu3:3 ready LSP midpoint frr information: LSP identifierIn-label Out intf/label FRR intf/label Status P1(config)#show mpls traffic-eng fast-reroute promotion MPLS-TE: Enabled Periodic FRR Promotion: every 60 seconds.1 .1 .1. run the show mpls traffic-eng tunnels brief command on P1 to check whether FRR relationships have been established.1.gei-0/2/1/1 up/up tunnel_22.1.1.1. Moreover.2 FRR Configuration Example (Bandwidth for Backup Tunnels Being Met) Scenario Description Figure 2-20 shows a sample network topology.0) ZTE Proprietary and Confidential .Chapter 2 MPLS TE Configuration P3(config-mpls-te-if-loopback3)#exit P3(config-mpls-te)#router-id 3.1.

Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.1.255. 2.255.1.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.255.1.255. Enable FRR promotion.1 255. Establish the primary tunnel (Tunnel1 with a 5000 kbps bandwidth) and two backup tunnels (Tunnel2 with a 6000 kbps bandwidth and Tunnel3 with a 5000 kbps bandwidth).0 P1(config-if-gei-0/1/0/4)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#interface te_tunnel2 P1(config-if-te_tunnel2)#ip unnumbered loopback1 P1(config-if-te_tunnel2)#exit 2-110 SJ-20140731105308-012|2014-10-20 (R1.ZXR10 M6000-S Configuration Guide (MPLS) Figure 2-20 FRR Configuration Example (Bandwidth for Backup Tunnels Being Met) Configuration Flow 1. 3.0) ZTE Proprietary and Confidential .1 255.1 255.1 255. Establish an OSPF neighbor relationship between the directly-connected interfaces of P1 and P2. 4. enable OSPF TE.1.255.255. The primary path is configured between the gei-0/1/0/2 interfaces of P1 and P2.1.168.1.0 P1(config-if-gei-0/1/0/3)#exit P1(config)#interface gei-0/1/0/4 P1(config-if-gei-0/1/0/4)#no shutdown P1(config-if-gei-0/1/0/4)#ip address 32. and configure the bandwidth.1.255.255 P1(config-if-loopback1)#exit P1(config)#interface gei-0/1/0/3 P1(config-if-gei-0/1/0/3)#no shutdown P1(config-if-gei-0/1/0/3)#ip address 31. Establish three strict paths. and configure Tunnel2 and Tunnel3 to be backup tunnels on the egress interface (gei-0/1/0/2) of the primary tunnel of P1. and two backup paths are respectively configured between the gei-0/1/0/3 interfaces and between the gei-0/1/0/4 interfaces of P1 and P2.255.

0.1.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng 2-111 SJ-20140731105308-012|2014-10-20 (R1.1.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#explicit-path identifier 2 P1(config-mpls-te-expl-path-id-2)#next-address strict 31.1 P1(config-ospf-1)#network 192.0 0.1.2 P1(config-mpls-te-expl-path-id-2)#exit P1(config-mpls-te)#explicit-path identifier 3 P1(config-mpls-te-expl-path-id-3)#next-address strict 32.0) ZTE Proprietary and Confidential .1.0.1.168.1.Chapter 2 MPLS TE Configuration P1(config)#interface te_tunnel3 P1(config-if-te_tunnel3)#ip unnumbered loopback1 P1(config-if-te_tunnel3)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.0 0.0.1.0.1.255 area 0 P1(config-ospf-1)#network 1.1.1.1.0 0.1.1 0.168.255 area 0 P1(config-ospf-1)#network 31.255 area 0 P1(config-ospf-1)#network 32.0.1.1.2 P1(config-mpls-te-expl-path-id-3)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1.1.1 P1(config-mpls-te)#fast-reroute timers promotion P1(config-mpls-te)#fast-reroute timers promotion interval 60 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#bandwidth 20000 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#interface gei-0/1/0/3 P1(config-mpls-te-if-gei-0/1/0/3)#bandwidth 20000 P1(config-mpls-te-if-gei-0/1/0/3)#exit P1(config-mpls-te)#interface gei-0/1/0/4 P1(config-mpls-te-if-gei-0/1/0/4)#bandwidth 20000 P1(config-mpls-te-if-gei-0/1/0/4)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.0.0.1.1.0.

1.168.255.1.1.1.1.1.0 0.1.0.1.2 255.1.0 P2(config-if-gei-0/1/0/3)#exit P2(config)#interface gei-0/1/0/4 P2(config-if-gei-0/1/0/4)#no shutdown P2(config-if-gei-0/1/0/4)#ip address 32.0) ZTE Proprietary and Confidential .0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface gei-0/1/0/3 P2(config-if-gei-0/1/0/3)#no shutdown P2(config-if-gei-0/1/0/3)#ip address 31.1.255.ZXR10 M6000-S Configuration Guide (MPLS) fast-reroute facility P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng bandwidth 5000 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#tunnel te_tunnel 2 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 2.0.0.255 area 0 P2(config-ospf-1)#network 31.255.0.255.2 255.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.255.1 P2(config-ospf-1)#network 192.1.255.0 P2(config-if-gei-0/1/0/4)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.168.255.0 0.1 255.1 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 2 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng backup-bw 6000 P1(config-mpls-te)#tunnel te_tunnel 3 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel destination ipv4 2.255 area 0 2-112 SJ-20140731105308-012|2014-10-20 (R1.2 255.1 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 3 P1(config-mpls-te-tunnel-te_tunnel3)#tunnel mpls traffic-eng backup-bw 5000 P1(config-mpls-te-tunnel-te_tunnel3)#exit P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/2/1/1)#backup-path te_tunnel 2 P1(config-mpls-te-if-gei-0/2/1/1)#backup-path te_tunnel 3 P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.1.1.1.1.1.255.

1.0 0.0.Chapter 2 MPLS TE Configuration P2(config-ospf-1)#network 32.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.1.1. run the show mpls traffic-eng tunnels brief command on P1 to check whether an FRR relationship has been enabled.1.1 -gei-0/1/0/3 up/up tunnel_32. The execution result is displayed as follows: P1#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_12.1 -gei-0/1/0/4 up/up P1#show mpls traffic-eng fast-reroute Tunnel head end item information Tunnel head end item information Protected Tunnel LspID In-label Out intf/label FRR intf/label Status Tunnel176 Tun hd gei-0/1/0/2:3 Tu3:3 ready LSP midpoint frr information: LSP identifierIn-label Out intf/label FRR intf/label Status P1(config)#show mpls traffic-eng fast-reroute promotion MPLS-TE: Enabled Periodic FRR Promotion: every 60 seconds.1.0) ZTE Proprietary and Confidential .1.1.0.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#interface gei-0/1/0/3 P2(config-mpls-te-if-gei-0/1/0/3)#exit P2(config-mpls-te)#interface gei-0/1/0/4 P2(config-mpls-te-if-gei-0/1/0/4)#exit Configuration Verification After the tunnel goes up.1. next in 4 second 2-113 SJ-20140731105308-012|2014-10-20 (R1.0.1.255 area 0 P2(config-ospf-1)#network 2.1.0.1.1 -gei-0/1/0/2 up/up tunnel_22.1 0.1.

BFD detection can only detect the loss of neighbors on the link-layer plane. If neighbors cannot be detected. Features l l A hello component sends a message to detect the reachability of a hello neighbor. Implementation To implement RSVP FRR hello. IETF RFC defines and describes the implementation process of the function. This mechanism provides the basics of the RSVP-TE FRR HELLO technology. such as the widespread BFD detection and MPLS OAM detection.8. RFC defines an extended hello message mechanism. It is required for RSVP itself to provide one neighbor failure detection technology (RSVP hello fault detection mechanism). the corresponding fast fault detection techniques are needed.ZXR10 M6000-S Configuration Guide (MPLS) 2. In some cases. and therefore a technology for detecting the loss of neighbors on the protocol-layer plane is required (that is. users do not use the corresponding detection techniques or neighbor failures are not detected in time). however.8. fault detection on neighbors cannot be implemented due to some reasons (for example.2 Configuring FRR Hello This procedure describes how to configure FRR hello. The loss of neighbors may be caused by the loss of neighbors on the link-layer plane or protocol-layer plane. refer to the "GR Introduction" section). If no hello-ack message is received from the neighbor during the “interval × misses” period. FRR reroute starts to operate on the local device.8 FRR-Hello Configuration 2. Due to the fast switchover requirements of RSVP FRR. the neighbor is considered to be unreachable If a neighbor is considered to be unreachable. RSVP HELLO messages are sent to neighboring devices through a local interface to detect the reachability.0) ZTE Proprietary and Confidential . 2-114 SJ-20140731105308-012|2014-10-20 (R1.1 FRR Hello Introduction Overview RSVP FRR protection is a local protection technology used to provide link or node protection for TE tunnels. it enables the traffic to bypass the faulty link or node along a backup tunnel. FRR HELLO detection). and enables nodes to detect when neighbors become unreachable or reboot. It also defines an hello object and an hello message (for more information. FRR switchover is then triggered by using the MBB technology. When a PLR detects a failure on its downstream node. 2.

run the following command: Command Function ZXR10(config)#mpls traffic-eng Enables MPLS TE. To enable MPLS TE. 3 4 ZXR10(config-mpls-te-if-interface-name)#signall Enables FRR Hello on the ing hello interface. 2 ZXR10(config-mpls-te)#interface <interface-name> Enters the signalling interface to be protected. 4. The FRR Hello function is conflicted with the GR function. 3. ZXR10(config-mpls-te-if-interface-name)#signall Sets the maximum number of ing hello refresh misses <num> times that hello messages can be lost. To enable FRR Hello. To enable FRR Hello. and enters the TE configuration mode. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te)#signalling hello Enables FRR Hello globally. range: 1000–30000. run the following commands: Command Function ZXR10#show ip rsvp hello instance summary Displays the summary information about RSVP Hello instances. 2. To display the configuration results. ZXR10#show ip rsvp hello instance detail Displays the detailed information about RSVP Hello instances.0) ZTE Proprietary and Confidential .Chapter 2 MPLS TE Configuration Context FRR hello should be configured on the PLR node generated in FRR protection and the signalling interface of the protected tunnel associated with a neighbor. run the following command: 2-115 SJ-20140731105308-012|2014-10-20 (R1. Steps 1. range: 4–10. ZXR10(config-mpls-te-if-interface-name)#signal Sets the time interval (in ling hello refresh interval <interval> milliseconds) for refreshing hello messages.

P2. Enable FRR hello on P1 and P2. – End of Steps – 2. 5. 4.0) ZTE Proprietary and Confidential . Tunnel 1 (active tunnel) passes through P1. and P3.3 FRR Hello Configuration Example Scenario Description Figure 2-21 shows a sample network topology. P2. Enable TE on the interfaces of P1. 3. Figure 2-21 FRR Hello Configuration Example Configuration Flow 1. It is required to establish two tunnels (with an FRR relationship between them) from P1 to P3 and enable FRR hello on P1 and P2. and configure the backup tunnel on the gei-0/2/1/1 interface of P1. 2-116 SJ-20140731105308-012|2014-10-20 (R1. Establish active and backup tunnels. 2.8. Establish two strict paths. and Tunnel2 (backup tunnel) passes through P1 and P3. The active path is P1–>P2–>P3. and enable OSPF TE. and P3. and the backup path is P1–>P3. Enable FRR facility on the active tunnel (the destination is the router-id of P2. Establish OSPF neighbor relationships between the directly-connected interfaces of P1. and the path is a strict path). P2.ZXR10 M6000-S Configuration Guide (MPLS) Command Function ZXR10#debug rsvp hello Enables the debugging of FRR Hello. and P3.

0.0.2 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#explicit-path name back P1(config-mpls-te-expl-path-name)#next-address strict 60.1.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#interface te_tunnel2 P1(config-if-te_tunnel2)#ip unnumbered loopback1 P1(config-if-te_tunnel2)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.1 0.2 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#interface gei-0/2/1/1 P1(config-mpls-te-if-gei-0/2/1/1)#exit P1(config-mpls-te)#interface gei-0/2/1/3 P1(config-mpls-te-if-gei-0/2/1/3)#exit 2-117 SJ-20140731105308-012|2014-10-20 (R1.255.255.2 255.255.1.255.1.1.1.1 P1(config-mpls-te)#explicit-path name primary P1(config-mpls-te-expl-path-name)# next-address strict 74.255.255.1 P1(config-mpls-te-expl-path-name)#next-address strict 120.1.0 P1(config-if-gei-0/2/1/3)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.0 0.1.1.Chapter 2 MPLS TE Configuration Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/2/1/1 P1(config-if-gei-0/2/1/1)#no shutdown P1(config-if-gei-0/2/1/1)#ip address 74.1.255 area 0 P1(config-ospf-1)#network 60.0.1.1.0 P1(config-if-gei-0/2/1/1)#exit P1(config)#interface gei-0/2/1/3 P1(config-if-gei-0/2/1/3)#no shutdown P1(config-if-gei-0/2/1/3)#ip address 60.1.0) ZTE Proprietary and Confidential .1.1.0.1.1.1 255.1.1.1.1 P1(config-ospf-1)#network 1.255 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.0 0.0.1.1.1 255.0.1.0 area 0 P1(config-ospf-1)#network 74.

1.1.tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 explicit-path name back P1(config-mpls-te-tunnel-te_tunnel2)#exit P1(config-mpls-te)#interface gei-0/2/1/1 P1(config-mpls-te-if-gei-0/2/1/1)#backup-path te_tunnel 2 P1(config-mpls-te-if-gei-0/2/1/1)#exit P1(config-mpls-te)#signalling hello P1(config-mpls-te)#interface gei-0/2/1/1 P1(config-mpls-te-if-gei-0/2/1/1)#signalling hello P1(config-mpls-te-if-gei-0/2/1/1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/2/1/1 P2(config-if-gei-0/2/1/1)#no shutdown P2(config-if-gei-0/2/1/1)#ip address 74.0) ZTE Proprietary and Confidential .255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.1.255.1.1.255.0 P2(config-if-gei-0/2/1/1)#exit P2(config)#interface gei-0/2/1/2 P2(config-if-gei-0/2/1/2)#no shutdown P2(config-if-gei-0/2/1/2)#ip address 120.1.1.0.1 255.1.1.0 area 0 P2(config-ospf-1)#network 74.1.1 P1(config-mpls-te.0.255 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng 2-118 SJ-20140731105308-012|2014-10-20 (R1.1.1.0 0.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name primary P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#tunnel te_tunnel2 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 3.255.0.1.255.1.0.1 255.255.1.0 P2(config-if-gei-0/2/1/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.1 P2(config-ospf-1)#network 2.1.1.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 3.1 255.1.1 0.0.0.255 area 0 P2(config-ospf-1)#network 120.255.0 0.

1.1.255 area 0 P3(config-ospf-1)#network 60.1.1.0 area 0 P3(config-ospf-1)#network 120.1 255.0 0.1 P3(config-ospf-1)#network 3.1.1 P2(config-mpls-te)#interface gei-0/2/1/1 P2(config-mpls-te-if-gei-0/2/1/1)#exit P2(config-mpls-te)#interface gei-0/2/1/2 P2(config-mpls-te-if-gei-0/2/1/2)#exit P2(config-mpls-te)# signalling hello P2(config-mpls-te)#interface gei-0/2/1/1 P2(config-mpls-te-if-gei-0/2/1/1)#signalling hello P2(config-mpls-te-if-gei-0/2/1/1)#exit P2(config-mpls-te)#exit Run the following commands on P3: P3(config)#interface gei-0/2/1/2 P3(config-if-gei-0/2/1/2)#no shutdown P3(config-if-gei-0/2/1/2)#ip address 120.255.255.2 255.0.2 255.255 area 0 P3(config-ospf-1)#mpls traffic-eng area 0 P3(config-ospf-1)#exit P3(config)#mpls traffic-eng P3(config-mpls-te)#interface loopback3 P3(config-mpls-te-if-loopback3)#exit P3(config-mpls-te)#router-id 3.1.1.1.1.0.0.255.255 P3(config-if-loopback3)#exit P3(config)#router ospf 1 P3(config-ospf-1)#router-id 3.0 0.1.255.0.0.1.1 0.0 P3(config-if-gei-0/2/1/2)#exit P3(config)#interface gei-0/2/1/3 P3(config-if-gei-0/2/1/3)#no shutdown P3(config-if-gei-0/2/1/3)#ip address 60.Chapter 2 MPLS TE Configuration P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.255.0) ZTE Proprietary and Confidential .1.1.1 P3(config-mpls-te)#interface gei-0/2/1/2 P3(config-mpls-te-if-gei-0/2/1/2)#exit P3(config-mpls-te)#interface gei-0/2/1/3 P3(config-mpls-te-if-gei-0/2/1/3)#exit P3(config-mpls-te)#exit 2-119 SJ-20140731105308-012|2014-10-20 (R1.0 P3(config-if-gei-0/2/1/3)#exit P3(config)#interface loopback3 P3(config-if-loopback3)#ip address 3.1.255.0.1.1.1.1.

1.1.1 Source 74.0) ZTE Proprietary and Confidential . P1#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 3.1. run the show mpls traffic-eng tunnels brief command on P1 to check the status of FRR.1.1.ZXR10 M6000-S Configuration Guide (MPLS) Configuration Verification After the tunnel goes up. Dst_instance 28778033 GR HELLO parameters Refresh Misses Configured:4 Refresh Interval (msec) Configured:10000 Current :0 Local restart time (msec):120000 Local recovery time (msec):120000 Nbr restart time (msec):0 Nbr recovery time (msec):0 Lost count:0 2-120 SJ-20140731105308-012|2014-10-20 (R1.1 - gei-0/2/1/1 up/up tunnel_2 3.2 Clients:Fast Reroute State:UP Type:ACTIVE I/F: gei-0/2/1/1 LSP num:1 Src_instance 30138456.1.1 ACTIVE UP 0 1 R5(config)#show ip rsvp hello instance detail Hello Graceful Restart globally disabled Fast-Hello globally enabled Neighbor 74.1.1.1 - gei-0/2/1/3 up/up P1#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspID In-label Out intf/label FRR intf/label Status Tunnel1 86 Tun hd gei-0/2/1/1:147456 Tu2:3 ready LSP midpoint frr information: LSP identifier In-label Out intf/label FRR intf/label Status R5(config)#show ip rsvp hello instance summary Client I/F Neighbor Type State LostCnt LSPs FRR gei-0/2/1/1 74.1.1.

Chapter 2 MPLS TE Configuration intf hello FRR HELLO parameters Fast_hello_period (msec):10000 Fast_hello_miss:4 Fast_hello_protect_lsps:1 Fast_hello_lost_count:0 Fast_hello_del_time (msec):0 Fast_hello_reroute_time (msec):5900 2.9. For the end-to-end protection. the switching items of these two LSPs are written and the relationship is bound.0) ZTE Proprietary and Confidential . On the switching layer.9. 2. Steps 1. 2-121 SJ-20140731105308-012|2014-10-20 (R1. In general.2 Path Configuration for MPLS TE End-to-End Protection This procedure describes how to configure MPLS TE End-to-End Protection. a Hot_standby_lsp path is created in advance for one working LSP before a fault occurs. the traffic is transmitted through the working LSP path. If the primary LSP is established successfully. When a tunnel is established.1 MPLS TE End-to-End Path Protection Overview Both TE FRR and Hot_standby are used to protect the RSVP-TE tunnel. Only when the link or the node of the working LSP is faulty the traffic passes the Hot_standby_lsp path after the handover. the switching layer hands over the traffic to the second LSP. The out-label could be the same or be different. l l l l Each LSP has its own label switching item. two LSPs with different paths are established. the switching item of the primary LSP is used for switching. the RSVP-TE protocol tries to re-establish a primary LSP. After the handover. The TE FRR is used for part protection and the Hot_standby is used for the a single LSP protection from the head node to the tail node (end-to-end protection).9 MPLS TE End-to-End Protection Path Configuration 2. In this case. one LSP is set as the primary LSP and another LSP is set as the second LSP. the fast handover for the hot-backup item is implemented. In general. the egress interface and the next hop address are different. On the head node. the traffic is handed over to this primary LSP after the switching item of the primary LSP is written. The paths of these two LSPs on the tunnel do not intersect except the head node and the tail node. Once when the path of the primary LSP is faulty. In general. Configure MPLS TE End-to-End Protection.

identifier: Specifies the identity mode for the explicit path of the standby LSP. <explicit-path-identifier-id>: explicit path ID used by the standby LSP. <explicit-path-of-name>: explicit path name used by the standby LSP. To display the configuration results. the active and standby paths cannot be completely overlapped. 2. there is an MPLS TE end-to-end path protection tunnel created through the OSPF-TE protocol in the network. the active and standby paths cannot be overlapped except the head and tail nodes. range: 1-64 characters.0) ZTE Proprietary and Confidential . range: 1-65535. prefer: Specifies the dynamic calculation mode for the path of the standby LSP. range: 1-16. If the prefer option is not configured. The path for working LSP is R1-R2 and the path for Hot_standby_lsp is R1-R3-R2. run the following command: Commands Functions ZXR10#show mpls traffic-eng tunnels hot-standby Displays the detailed information about the backup LSPs in hot-standby LSP protection.3 Establishing an MPLS TE End-to-End Path Protection Configuration Descriptions As shown in Figure 2-22.9. 2-122 SJ-20140731105308-012|2014-10-20 (R1. exclude: specifies the hot standby path and forcibly excludes the active path. – End of Steps – 2. If this option is configured. ZXR10(config-mpls-te-tunnel-te_tunnel- Enables the hot-standby function tunnel-number)#tunnel mpls traffic-eng hot-standby for the specified path option on protect <protected-path-option-id>{dynamic [ the tunnel. name: Specifies the name mode for the explicit path of the standby LSP. 2 prefer]|explicit-path {identifier <explicit-path-identifie r-id>|name <explicit-path-of-name>}[exclude]} <protected-path-option-id>: specifies the active path-option that the standby LSP needs to protect.ZXR10 M6000-S Configuration Guide (MPLS) Step Commands Functions 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters tunnel interface <tunnel-number> configuration mode. dynamic: Specifies the dynamic calculation mode for the path of the standby LSP.

5. interconnect the R1. 2.255. 4. 6. the traffic is transmitted through the tunnel.1 255. R2 and R3.255.255 R1(config-if-loopback1)#exit R1(config)#interface gei-0/0/1/4 R1(config-if-gei-0/0/1/4)#no shutdown R1(config-if-gei-0/0/1/4)#ip address 10.255.0) ZTE Proprietary and Confidential . Check the hot-standby relationship when the link of the primary tunnel is invalid. Configuration Commands The configuration of R1 is as follows: Interface related configuration: R1(config)#interface loopback1 R1(config-if-loopback1)#ip address 1. and configure the loopback address and the interface address for each router.1. Configure a static route to the destination on the R1 router.1. R2 and R3 and enable TE.1. In this case. The next hop is Tunnel1. Check the hot-standby relationship when the link of the primary tunnel recoveries normally. The specified strict path is R1-R2. 3. Check the hot-standby relationship.255. Configure the hot-standby function on the head node of the tunnel in MPLS TE mode.1 255.Chapter 2 MPLS TE Configuration Figure 2-22 Establishing an MPLS TE End-to-End Path Protection Configuration Flow 1.0 R1(config-if-gei-0/0/1/4)#exit R1(config)#interface gei-0/0/0/7 R1(config-if-gei-0/0/0/7)#no shutdown 2-123 SJ-20140731105308-012|2014-10-20 (R1. 7. Establish the OSPF neighbor relationship through the direct-connected interfaces on the R1. As shown in Figure 2-22.1.

2 R1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name zte R1(config-mpls-te-tunnel-te_tunnel1)# tunnel mpls traffic-eng record-route R1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng hot-standby protect 1 explicit-path name hot R1(config-mpls-te-tunnel-te_tunnel1)#exit R1(config-mpls-te)#exit R1(config)#ip route 172.1.0 area 0 R1(config-ospf-1)#mpls traffic-eng area 0 R1(config-ospf-1)#network 10.1.1.255 area 0 R1(config-ospf-1)#exit MPLS-TE configuration: R1(config)#mpls traffic-eng R1(config-mpls-te)#interface loopback1 R1(config-mpls-te-if-loopback1)#exit R1(config-mpls-te)#router-id 1.1.1.255.1 0.255 area 0 R1(config-ospf-1)#network 20.1.255.2 R1(config-mpls-te-expl-path-name)#exit R1(config-mpls-te)#tunnel te_tunnel1 R1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.2 255.1.2.0.0.20.255.1.1.1.1.0.0) ZTE Proprietary and Confidential .0.1.0.0.1 255.1.ZXR10 M6000-S Configuration Guide (MPLS) R1(config-if-gei-0/0/0/7)#ip address 20.1.1.1 R1(config-mpls-te)#interface gei-0/0/1/4 R1(config-mpls-te-if-gei-0/0/1/4)#exit R1(config-mpls-te)#interface gei-0/0/0/7 R1(config-mpls-te-if-gei-0/0/0/7)#exit R1(config-mpls-te)#exit R1(config)#mpls traffic-eng R1(config-mpls-te)#explicit-path name zte R1(config-mpls-te-expl-path-name)# next-address strict 10.1.255 te_tunnel1 2-124 SJ-20140731105308-012|2014-10-20 (R1.255.2.0 0.1.1 R1(config-ospf-1)#network 1.3 R1(config-mpls-te-expl-path-name)# next-address strict 30.2 R1(config-mpls-te-expl-path-name)#exit R1(config-mpls-te)#explicit-path name hot R1(config-mpls-te-expl-path-name)# next-address strict 20.0 R1(config-if-gei-0/0/0/7)#exit R1(config)#interface te_tunnel1 R1(config-if-te_tunnel1)#ip unnumbered loopback1 R1(config-if-te_tunnel1)#exit OSPF and OSPF-TE related configuration: R1(config)#router ospf 1 R1(config-ospf-1)#router-id 1.1.0 0.1.

0.0.3.2 255.1.255 R2(config-if-loopback1)#exit R2(config)#interface gei-0/5/1/7 R2(config-if-gei-0/5/1/7)#no shutdown R2(config-if-gei-0/5/1/7)#ip address 10.0 area 0 R2(config-ospf-1)#mpls traffic-eng area 0 R2(config-ospf-1)#network 10.2.255.255.0 R3(config-if-gei-0/2/0/7)#exit R3(config)#interface gei-0/2/0/8 R3(config-if-gei-0/2/0/8)#no shutdown 2-125 SJ-20140731105308-012|2014-10-20 (R1.0 0.255.1.2.1.2 255.0.2 0 0.0) ZTE Proprietary and Confidential .255.1.3 255.0 R2(config-if-gei-0/5/1/7)#exit R2(config)#interface gei-0/5/0/8 R2(config-if-gei-0/5/0/8)#no shutdown R2(config-if-gei-0/5/0/8)#ip address 30.1.0 0.3.1.0.1.1.255.2 255.255.2.255.2.2.255.2.2 R2(config-ospf-1)#network 2.1.1.2.Chapter 2 MPLS TE Configuration The configuration of R2 is as follows: Interface related configuration: R2(config)#interface loopback1 R2(config-if-loopback1)#ip address 2.255 area 0 R2(config-ospf-1)#network 30.255 R3(config-if-loopback1)#exit R3(config)#interface gei-0/2/0/7 R3(config-if-gei-0/2/0/7)#no shutdown R3(config-if-gei-0/2/0/7)#ip address 20.255.2 R2(config-mpls-te)#interface gei-0/5/1/7 R2(config-mpls-te-if-gei-0/5/1/7)#exit R2(config-mpls-te)#interface gei-0/5/0/8 R2(config-mpls-te-if-gei-0/5/0/8)#exit R2(config-mpls-te)#exit The configuration of R3 is as follows: Interface related configuration: R3(config)#interface loopback1 R3(config-if-loopback1)#ip address 3.0.2.255 area 0 R2(config-ospf-1)#exit MPLS-TE related configuration: R2(config)#mpls traffic-eng R2(config-mpls-te)#interface loopback1 R2(config-mpls-te-if-loopback1)#exit R2(config-mpls-te)#router-id 2.0 R2(config-if-gei-0/5/0/8)#exit OSPF and OSPF-TE related configuration: R2(config)#router ospf 1 R2(config-ospf-1)#router-id 2.3 255.0.255.

2.3.0.3 R3(config-mpls-te)#interface gei-0/2/0/7 R3(config-mpls-te-if-gei-0/2/0/7)#exit R3(config-mpls-te)# interface gei-0/2/0/8 R3(config-mpls-te-if-gei-0/2/0/8)#exit The configuration of R5 is as follows: R5(config)#interface gei-0/2/1/1 R5(config-if-gei-0/2/1/1)#no shutdown R5(config-if-gei-0/2/1/1)#ip address 172.1.0.1.255.2 - 2.0 area 0 R3(config-ospf-1)#mpls traffic-eng area 0 R3(config-ospf-1)#network 20.255.255 area 0 R3(config-ospf-1)#exit MPLS-TE configuration: R3(config)#mpls traffic-eng R3(config-mpls-te)#interface loopback1 R3(config-mpls-te-if-loopback1)#exit R3(config-mpls-te)#router-id 3.0 0.1.1.3 0.3.0.2 255.0 0.20.2 STATE/PROT gei-0/0/1/4 - up/up gei-0/0/0 /7 up/up Check the protection relationship between the hot-standby LSP and the LSP: R1(config-if)#show mpls traffic-eng tunnels hot-standby Name: tunnel_1 (Tunnel1) Destination: 2.1.0 R5(config-if-gei-0/2/1/1)#exit Configuration Verification Check the R1 to see the status information of the tunnel: R1#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: TUNNEL NAME enabled DESTINATION tunnel_1 tunnel_1(hot) UP IF DOWN IF 2.3.3 255.3.0.255.0 R3(config-if-gei-0/2/0/8)#exit OSPF and OSPF-TE related configuration: R3(config)#router ospf 1 R3(config-ospf-1)#router-id 3.3 R3(config-ospf-1)#network 3.0) ZTE Proprietary and Confidential .255 area 0 R3(config-ospf-1)#network 30.3.2.255.2.2.2.1.1.2.0.ZXR10 M6000-S Configuration Guide (MPLS) R3(config-if-gei-0/2/0/8)#ip address 30.2 Status: Admin: up Oper: up Path: valid Signaling: connected Fast Reroute Protection:disabled 2-126 SJ-20140731105308-012|2014-10-20 (R1.3.0.

3 2.2 Exclude 30.1.1.1 Tspec: ave rate= 0 kbits. peak rate= 0 kbits RSVP Resv Info: Record Route: 3.3.1.2.1. Tun_Id 1.2.1.3 30.1.2. type explicit name zte (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: protect option: 1.1.1.1.2 Route: NULL Record Route: 1.2 30.1.2 Fspec: ave rate= 0 kbits.1. After the recovery.2.2. check the protection relationship between hot-standby LSP and the primary LSP. Dst 2.1.Chapter 2 MPLS TE Configuration Hot-standby Protection: Ready Config Parameters: BFD: disabled InLabel: OutLabel: gei-0/0/0/7. peak rate= 0 kbits When the link of the primary LSP is down.1.1 20. type explicit name: hot (Basis for Protect) Config Parameters: Bandwidth: 0 kbps (Global) Priority: 7 7 Affinity: 0x0/0x0 Resv-Style: SE Metric Type: IGP (default) Upper Limit: 4294967295 2-127 SJ-20140731105308-012|2014-10-20 (R1.2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.2.2 Status: Admin: up Oper: up Path: valid Signaling: connected Fast Reroute Protection:disabled Hot-standby Protection: Backup lsp in use Config Parameters: BFD: disabled When the link of the primary LSP recoveries normal.1 20. Tun_Instance 2 RSVP Path Info: Explicit Route: 20.2. burst= 1000 bytes.3 20.1.1.1.2.2.1.2.0) ZTE Proprietary and Confidential .2.3 2.1. check the protection relationship between hot-standby LSP and the primary LSP. 147456 RSVP Signaling Info : Src 1. the detailed information of the primary LSP and the hot-standby LSP tunnel is as follows: R1(config-if)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2.1.3. R1(config)#interface gei-0/0/1/4 R1(config-if-gei-0/0/1/4)#shutdown R1(config-if-gei-0/0/1/4)#show mpls traffic-eng tunnels hot-standby Name: tunnel_1 (Tunnel1) Destination: 2. burst= 1000 bytes.

2. burst= 2000 bytes.errcode:23. Tun_Id 1.10.2 Fspec:ave rate= 0 kbits.10 Loose Node Re-optimization 2.2 Configuring Loose Node Re-optimization This procedure describes how to configure loose node re-optimization.errvalue:1). peak rate = 0 kbits RSVP Resv Info: Record Route: 2.1.errvalue:5) 2. Path error:rsvp sys error(lspid:3.2.2. burst= 2000 bytes. 18 hours.1.2 2.1.errcode:24.1.1. Dst 2.1. 0 hours.2. 0 minutes Prior LSP: path option 1 [27] Current LSP: Uptime:0 days.1 10. 2.2. Path error:routing error.10.errcode:1. If there is.1 Loose Node Re-optimization Introduction Loose node re-optimization refers to triggering an intermediate node whose next hop is a loose or abstract node in the LSP path to check whether there is a better local route in accordance with a scheme. Tun_Instance 34 RSVP Path Info: Explicit Route: 10. the route is notified to the head node.2.errvalue:0).1. 0 hours. which determines whether to re-optimize the LSP. 37 minutes Time since path change: 0 days. peak rate = 0 kbits History: Tunnel: Time since created: 0 days. 2-128 SJ-20140731105308-012|2014-10-20 (R1. 11 minutes Last lsp error information: Delete mbb old inuse lsp(lspid:2.3 RSVP Signalling Info : Src 1.ZXR10 M6000-S Configuration Guide (MPLS) Facility Fast-reroute: disabled Detour Fast-reroute: disabled BFD: disabled Bidirect: disabled AutoRoute: disabled Forwarding-adjacency: disabled InLabel:OutLabel:gei-0/0/1/4.no route to destination(lspid:1.1.2 Exclude Route: NONE Record Route: NONE Tspec:ave rate= 0 kbits.2.1.2 10.0) ZTE Proprietary and Confidential .

The tunnel path is P1->P2->P3. (Optional) Configure the loose node re-optimization function.3 Loose Node Re-optimization Configuration Instance Configuration Description In Figure 2-23. ZXR10#show mpls traffic-eng tunnels Checks whether the re-optimization function is enabled on the tunnel. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables the re-optimization number)#tunnel mpls traffic-eng auto-reoptimize{ function on the active or main-lsp | hsb-lsp} standby LSP. 2. ZXR10(config-mpls-te)#tunnel te_tunnel Enters tunnel interface <tunnel-number> configuration mode. Verify the configurations. an MPLS TE tunnel is established through OSPF-TE. and the explicit path is loosened to P2 first and then P3.Chapter 2 MPLS TE Configuration Steps 1. 2 3 4 ZXR10(config-mpls-te)#reoptimize timers frequency Configures the re-optimization <frequency> frequency.0) ZTE Proprietary and Confidential . Step Command Function 1 ZXR10(config-mpls-te)#reoptimize loose-node Enables the loose node re-optimization function. Figure 2-23 Loose Node Re-optimization Configuration Instance 2-129 SJ-20140731105308-012|2014-10-20 (R1. Command Function ZXR10#show mpls traffic-eng tunnels summary Checks whether the loose node re-optimization function is successfully configured.10. – End of Steps – 2.

2. and P3. Set the interface gei-0/1/0/5 to shutdown on P2.0.3.3 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 2-130 SJ-20140731105308-012|2014-10-20 (R1.1. 3. and set the periodical re-optimization frequency to 30 seconds. configure the explicit path to loosened to P2 first and then P3.255. Set the interface gei-0/1/0/5 to no shutdown on P2.0 0.2 P1(config-mpls-te-expl-path-name)#next-address loose 3. After OSPF neighbors are established and the timer expires.2.3. 6. P2.0.18. and enable periodical re-optimization on the tunnel.0 P1(config-ospf-1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#router-id 1. Configure a loopback address and interface address on P1.255. P2. 2.1 P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#interface gei-0/1/0/1 P1(config-mpls-te-if-gei-0/1/0/1)#exit P1(config-mpls-te)#explicit-path name 1 P1(config-mpls-te-expl-path-name)#next-address loose 2.17.3. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/1 P1(config-if-gei-0/1/0/1)#no shutdown P1(config-if-gei-0/1/0/1)#ip address 19. check whether the tunnel is MBB re-optimized to link 1 and the egress interface is gei-0/1/0/5. Establish OSPF neighbors on P1.0.17.0 P1(config-if-gei-0/1/0/1)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.18.255 area 0.255. and configure the egress gei-0/2/0/2 of P2 to cost so that link 1 is prior to link 2.3. 5.3 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 3. and check whether the tunnel goes through link 2 and whether the egress interface is gei-0/2/0/2. and P3. Configure a TE tunnel on P1. Configure re-optimization at loose node on P2.1.0.1 255. enable the TE function on the OSPF neighbors and interfaces.ZXR10 M6000-S Configuration Guide (MPLS) Configuration Flow 1.0 P1(config-ospf-1)#mpls traffic-eng area 0.1. 4.0) ZTE Proprietary and Confidential .255.0.1.11 255.255 P1(config-if-loopback1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#network 19.0.

22 255.27.0 0.58.0 P2(config-if-gei-0/2/0/2)#no shutdown P2(config-if-gei-0/2/0/2)#exit P2(config)#interface loopback1 P2(config-if-loopback1)#ip address 2.17.0.0.22 255.2 P2(config-mpls-te)#interface loopback1 P2(config-mpls-te-if-loopback1)#exit P2(config-mpls-te)#interface gei-0/1/0/1 P2(config-mpls-te-if-gei-0/1/0/1)#exit P2(config-mpls-te)#interface gei-0/1/0/5 P2(config-mpls-te-if-gei-0/1/0/5)#exit P2(config-mpls-te)#interface gei-0/2/0/2 P2(config-mpls-te-if-gei-0/2/0/2)#exit P2(config-mpls-te)#reoptimize loose-node P2(config-mpls-te)#reoptimize timers frequency 30 Run the following commands on P3: P3(config)#interface gei-0/1/0/2 2-131 SJ-20140731105308-012|2014-10-20 (R1.2.2.255.0.0 P2(config-if-gei-0/1/0/5)#exit P2(config)#interface gei-0/2/0/2 P2(config-if-gei-0/2/0/2)#ip address 29.255.57.0.0.0.255 P2(config-if-loopback1)#exit P2(config)#router ospf 1 P2(config-ospf-1)#network 19.0 P2(config-ospf-1)#network 29.2.255.0 P2(config-if-gei-0/1/0/1)#exit P2(config)#interface gei-0/1/0/5 P2(config-if-gei-0/1/0/5)#no shutdown P2(config-if-gei-0/1/0/5)#ip address 59.Chapter 2 MPLS TE Configuration explicit-path name 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng auto-reoptimize main-lsp Run the following commands on P2: P2(config)#interface gei-0/1/0/1 P2(config-if-gei-0/1/0/1)#no shutdown P2(config-if-gei-0/1/0/1)#ip address 19.0.255 area 0.2 255.0 P2(config-ospf-1)#interface gei-0/2/0/2 P2(config-ospf-1-if-gei-0/2/0/2)#cost 5 P2(config-ospf-1-if-gei-0/2/0/2)#exit P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#router-id 2.58.255.28.255.255.2.0.0.27.22 255.0 0.0) ZTE Proprietary and Confidential .0.28.0.255.0 P2(config-ospf-1)#mpls traffic-eng area 0.17.57.255 area 0.0 P2(config-ospf-1)#network 59.18.0.0.255 area 0.0.255.0 0.18.

33 255.255. P2.3.3.33 255. and P3.255.3.2 index 2 next-address loose 3.0 P3(config-if-gei-0/1/0/2)#no shutdown P3(config-if-gei-0/2/0/2)#exit P3(config)#interface gei-0/2/0/2 P3(config-if-gei-0/2/0/2)#ip address 29.0.0.3 255.57.0.0 0.0 P3(config-ospf-1)#exit P3(config)#mpls traffic-eng P3(config-mpls-te)#router-id 3.255 area 0.3 P3(config-mpls-te)#interface loopback1 P3(config-mpls-te-if-loopback1)#exit P3(config-mpls-te)#interface gei-0/1/0/2 P3(config-mpls-te-if-gei-0/1/0/2)#exit P3(config-mpls-te)#interface gei-0/2/0/2 P3(config-mpls-te-if-gei-0/2/0/2)#exit Configuration Verification 1.0 P3(config-if-gei-0/2/0/2)#no shutdown P3(config-if-gei-0/2/0/2)#exit P3(config)#interface loopback1 P3(config-if-loopback1)#ip address 3.0 P3(config-ospf-1)#mpls traffic-eng area 0.0 0.3.0.1 explicit-path name 1 index 1 next-address loose 2.0.255 area 0.0.3.0.255 P3(config-if-loopback1)#exit P3(config)#router ospf 1 P3(config-ospf-1)#network 59.3 tunnel mpls traffic-eng auto-reoptimize main-lsp tunnel mpls traffic-eng path-option 1 explicit-path name 1 $ interface gei-0/1/0/1 $ interface loopback1 2-132 SJ-20140731105308-012|2014-10-20 (R1.255.57. Run the show running-config mpls-te command to check the MPLS-TE configuration on P1.1.0.27.255. The execution result is displayed as follows: P1(config)#show running-config mpls-te !<mpls-te> mpls traffic-eng router-id 1.27.ZXR10 M6000-S Configuration Guide (MPLS) P3(config-if-gei-0/1/0/2)#ip address 59.0.3.28.255.3 $ tunnel te_tunnel1 tunnel destination ipv4 3.3.58.0) ZTE Proprietary and Confidential .2.58.2.3.28.1.255.0.0 P3(config-ospf-1)#network 29.

3.3.2. Run the show mpls traffic-eng tunnels remote-tunnel command to check whether the egress interface gei-0/1/0/5 is shut down on P2. and whether the tunnel goes through link 2 and the egress interface is gei-0/2/0/2. 147456 OutLabel: gei-0/2/0/2.3.0) ZTE Proprietary and Confidential .3.3 interface gei-0/1/0/2 $ interface gei-0/2/0/2 $ interface loopback1 $ $ !</mpls-te> 2.2 reoptimize loose-node reoptimize timers frequency 30 interface gei-0/1/0/1 $ interface gei-0/1/0/5 $ interface gei-0/2/0/2 $ interface loopback1 $ $ !</mpls-te> P3(config)#show running-config mpls-te !<mpls-te> mpls traffic-eng router-id 3. The execution result is displayed as follows: P2(config-if-gei-0/1/0/5)#shutdown P2(config-if-gei-0/1/0/5)#show mpls traffic-eng tunnels remote-tunnel Name: tunnel_1 (Tunnel1) Destination: 3. 3 2-133 SJ-20140731105308-012|2014-10-20 (R1.3 Status: Signalling: up RSVP Signalling Info : InLabel: gei-0/1/0/1.Chapter 2 MPLS TE Configuration $ $ !</mpls-te> P2(config)#show running-config mpls-te !<mpls-te> mpls traffic-eng router-id 2.2.

18. Tun-Instance 813 RSVP Path Info: Explicit Route: 19.33 3.58.3.3.3.1.3.3 Exclude Route: NULL Record Route: 1.1. Run the show mpls traffic-eng tunnels remote-tunnel command to check the related information. burst= 1000 byte.57.ZXR10 M6000-S Configuration Guide (MPLS) Src 1.1. The tunnel goes through link 1 and the egress interface is gei-0/1/0/5.1.58.1.33 3. burst= 1000 byte.3.1.22 59.18.3.3.27.3. peak rate= 0 kb Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None RSVP Resv Info: Record Route: 3. peak rate= 0 kb History: Tunnel: Time Since Created: 0 day. 5 second Current LSP: Uptime:0 day.27. peak rate= 0 kb History: 2-134 SJ-20140731105308-012|2014-10-20 (R1.28.33(3) Fspec: ave rate= 0 kb.27. Tun-Instance 814 RSVP Path Info: Explicit Route: 19. After OSPF neighbors are established and the timer expires.17.17.1. Tun-ID 1.3(3) 29. MBB occurs on the tunnel.57. Tun-ID 1.28.3.11 Tspec: ave rate= 0 kb.57.11 Tspec: ave rate= 0 kb.0) ZTE Proprietary and Confidential . The execution result is displayed as follows: P2(config-if-gei-0/1/0/5)#show mpls traffic-eng tunnels remote-tunnel Name: tunnel_1 (Tunnel1) Destination: 3. peak rate= 0 kb Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None RSVP Resv Info: Record Route: 3.3. 0 minute.3. Enable the interface gei-0/1/0/5 on P2.3 Status: Signalling: up RSVP Signalling Info : InLabel: gei-0/1/0/1.22 29. Dst 3. burst= 1000 byte.3.33(3) Fspec: ave rate= 0 kb. 0 hour. burst= 1000 byte.1 19.3.22 59.3(3) 59.18.3.3 Exclude Route: NULL Record Route: 1. 3 Src 1. and re-optimization is performed at loose nodes.17. Dst 3.22 29.3.1. 4 second 3. 147457 OutLabel: gei-0/1/0/5.1 19.1.58. 0 hour.28. 0 minute.3.18.1.17.

2-135 SJ-20140731105308-012|2014-10-20 (R1. Regulation is determined when a sampling period ends depending on the sampling data comparison result and whether the tunnel meets the regulation conditions.Chapter 2 MPLS TE Configuration Tunnel: Time Since Created: 0 day.2 Configuring Automatic MPLS TE Bandwidth Regulation This procedure describes how to configure automatic MPLS TE bandwidth regulation. To understand the automatic bandwidth regulation function. and a subscriber's bandwidth is regulated in accordance with the maximum bandwidth collected in an automatic bandwidth regulation period. This value must be lower than the regulation period.11. 0 minute. 0 hour. Regulation period: configured for a TE tunnel to control the rate of regulating a tunnel bandwidth.11. 3 ZXR10(config-mpls-te)#auto-bw adj-now tunnel-id Manually triggers a specific <tnnlid> tunnel to immediately perform automatic bandwidth regulation. you must understand the following two concepts: Sampling period: configured in a global MPLS-TE to control the rate of periodically collecting traffic data on a tunnel. 2 Manually triggers all tunnels ZXR10(config-mpls-te)#auto-bw adj-now all with the automatic bandwidth regulation function to regulate their bandwidths. Steps 1. 2. the bandwidth reserved for a tunnel is closer to the actual service traffic. 0 minute. 44 second Current LSP: Uptime:0 day. 43 second 2. the bandwidth actually used by a tunnel is collected. the maximum bandwidth in a sampling period is recorded.1 Introduction to Automatic Bandwidth Regulation Function of the MPLS TE With the automatic bandwidth regulation function of the MPLS TE.11 Automatic Bandwidth Regulation on an MPLS TE 2. With this function. Configure automatic global sampling of TE bandwidth and real-time tunnel regulation. Step Command Function 1 ZXR10(config-mpls-te)#auto-bw timers [frequency Enables automatic bandwidth <para>] sampling and sets the sampling frequency.0) ZTE Proprietary and Confidential . 0 hour.

<freq>: bandwidth regulation period. the tunnel bandwidth can be regulated. default: 10.Range: 1-10. <freq> 7 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Sets the tunnel bandwidth number)#tunnel mpls traffic-eng auto-bw multiple regulation rate. default: 300. <limit>: specifies the threshold of the overflew bandwidth. Command Function ZXR10#show mpls traffic-eng tunnels Displays tunnel information. Range: 1-4294967295. default: 0. Range: 300-604800. units: kb/s. <multiple>: tunnel bandwidth regulation rate. Verify the configurations. unit: kbps. Range: 10-4294967295. between which. <percent>: specifies the percentage of the overflew bandwidth. <bandwidth>: specifies the overflew bandwidth. <multiple> 8 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Sets the maximum and number)#tunnel mpls traffic-eng auto-bw adj-bw minimum of the tunnel <maxbw>[<minbw>] bandwidth. unit: seconds. <maxbw>: maximum of the bandwidth. Range: 0-4294967295. default: 100.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 4 ZXR10(config-mpls-te)#tunnel te_tunnel Enters Tunnel interface <tunnel-number> configuration mode.0) ZTE Proprietary and Confidential . ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables the automatic number)#tunnel mpls traffic-eng auto-bw bandwidth regulation on a 5 tunnel. <minbw>: minimum of the bandwidth. unit: seconds. range: 60-604800. units: kb/s. <para>: sampling period. Range: 50-100. 6 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Sets the automatic bandwidth number)#tunnel mpls traffic-eng auto-bw frequency regulation period. – End of Steps – 2-136 SJ-20140731105308-012|2014-10-20 (R1. 2. 9 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Configures regulation and number)#tunnel mpls traffic-eng auto-bw overflow detection upon tunnel threshold <percent>[min<bandwidth>] limit <limit> overflow.Range: 1–100.

which can be strictly or dynamically routed. the LSP is re-calculated in accordance with the required bandwidth and a new LSP is formed when the bandwidth regulation period starts. Enable the automatic bandwidth regulation function in global TE mode and set the sampling period to 60 seconds. and the egress interface gei-0/0/0/1 of PE4 has an available bandwidth of 80 M. 2. Establish a common dynamically routed tunnel through ISIS-TE. Figure 2-24 Instance of Automatic Bandwidth Regulation Configuration for the MPLS TE Configuration Flow 1.Chapter 2 MPLS TE Configuration 2. the egress interface gei-0/0/0/1 of PE3 has an available bandwidth of 80 M. with the initial bandwidth of 10 M. 4.0) ZTE Proprietary and Confidential . The new LSP may be different from the original one. When strictly routed. the egress interface gei-0/0/0/1 of PE1 has an available bandwidth of 80 M. When dynamically routed. Enable automatic bandwidth sampling and regulation function in tunnel interface mode and set the automatic bandwidth regulation period to 300 seconds. a new LSP is formed following the strict path when the bandwidth regulation period starts. 3. The egress interface gei-0/0/0/3 of PE1 has an available bandwidth of 40 M.11. Configuration Commands Configuration for PE1: ISIS configuration is omitted.3 Instances of Automatic Bandwidth Regulation Configuration for the MPLS TE Configuration Description Figure 2-24 shows tunnel1 from PE1 to PE2. PE1(config)#interface te_tunnel1 2-137 SJ-20140731105308-012|2014-10-20 (R1.

2.2.2. with the next hop tunnel1. the tunnel establishment path is PE1–>PE2. PE3.2. PE1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 - gei-0/0/0/3 up/up 2.2 PE1(config)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2. The commands related to automatic bandwidth regulation do not need to be configured and are not described in this manual.2.0) ZTE Proprietary and Confidential . PE1(config-mpls-te)#interface gei-0/0/0/3 PE1(config-mpls-te-if)#bandwidth 40000 PE1(config-mpls-te-if)#exit PE1(config-mpls-te)#interface gei-0/0/0/1 PE1(config-mpls-te-if)#bandwidth 80000 PE1(config-mpls-te-if)#exit PE1(config-mpls-te)#tunnel te_tunnel1 PE1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng auto-bw //Enables the automatic bandwidth regulation function on the tunnel. PE1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng auto-bw frequency 300 //Sets the bandwidth regulation period.2. The TEs configured on the PE2. and PE4 are the same as that configured when a common TE tunnel is being established.ZXR10 M6000-S Configuration Guide (MPLS) PE1(config-if)#ip unnumbered loopback1 PE1(config-if)#exit PE1(config)#mpls traffic-eng PE1(config-mpls-te)#auto-bw timers frequency 60 //Sets the sampling period.2 PE1(config-mpls-te-tunnel-te_tunnel1)#exit PE1(config-mpls-te)#exit Configures a static route to the forwarded-to destination address on the PE1. in which. Configuration Verification Run the show mpls traffic-eng tunnels command to check the tunnel establishment information on the PE1. PE1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng auto-bw adj-bw 1000000 10000 PE1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng auto-bw multiple 100 PE1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng bandwidth 10000 PE1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 dynamic PE1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2. The execution result is displayed as follows.2 Status: Admin: up Oper: up Path: valid Signalling: connected 2-138 SJ-20140731105308-012|2014-10-20 (R1.

after a bandwidth regulation period. Tun_Id 1. type dynamic (Basis for Setup) Config Parameters: Bandwidth: 10000 kbps (Global) Priority: 7 ClassType: 0 7 Affinity: 0x0/0x0 Bandwidth: 0 kbps Metric Type: IGP (default) BFD:disable Fast-reroute: enable disconnected down Auto-bw:(300/117) Samplling Bandwidth:49508 Bandwidth Requested:0 //300 s is the configured bandwidth regulation period. and 117 s is the time before bandwidth regulation starts. Tun_Instance 11 RSVP Path Info: Explicit Route: 172.0 RSVP Signalling Info : Src 1. Run the show mpls traffic-eng tunnels te_tunnel command to check the information about the regulated tunnel1 on the PE1.1.2.0) ZTE Proprietary and Confidential .18 2. type dynamic (Basis for Setup) Config Parameters: Bandwidth: 49508 kbps (Global) Priority: 7 ClassType: 0 Affinity: 0x0/0x0 Bandwidth: 49508 kbps Metric Type: IGP (default) BFD:disable 7 Fast-reroute: enable disconnected down Auto-bw:(300/113) Samplling Bandwidth:49508 Adjust Range:0-unconstrained(0) Bandwidth Requested:49508 Adjust Multiple:100 2-139 SJ-20140731105308-012|2014-10-20 (R1.2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.1.17 172. and the path is PE1->PE3->PE4–>PE2. The execution result is displayed as follows: PE1(config)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2. Dst 2. Adjust Range:0-unconstrained(0) AutoRoute:disabled Adjust Multiple:100 AutoRouteMetricType:IGP(default) AutoRouteMetric: 0 Forwarding adjacency is not enabled No-cspf:disable Hot-standby: disabled InLabel:OutLabel:gei-0/0/0/3.2. the bandwidth of tunnel1 is regulated to 49508K.Chapter 2 MPLS TE Configuration Path option: 1.2.2.120.130.120.2.2. Suppose the sampled traffic on tunnel1 is 49508K.1.2.2 Exclude Route: NONE Automatically regulates the tunnel bandwidth in accordance with the sampled traffic on a tunnel.130.

12 TE GR Configuration 2.20.130.0) ZTE Proprietary and Confidential .158 2. The execution result is displayed as follows: PE1(config)#show running-config-interface te_tunnel1 !<if-intf> interface te_tunnel1 ! interface te_tunnel1 ip unnumbered loopback1 ! !</if-intf> !<mpls-te> mpls traffic-eng tunnel te_tunnel 1 tunnel mpls traffic-eng bandwidth 49508 tunnel mpls traffic-eng auto-bw tunnel mpls traffic-eng auto-bw frequency 300 tunnel mpls traffic-eng path-option 1 dynamic tunnel destination ipv4 2.150 172.37 RSVP Signalling Info : Src 1.ZXR10 M6000-S Configuration Guide (MPLS) AutoRoute:disabled AutoRouteMetricType:IGP(default) AutoRouteMetric: 0 Forwarding adjacency is not enabled No-cspf:disable Hot-standby: disabled InLabel:OutLabel:gei-0/0/0/1.21 172.2.2.130.20.1.2.20.1.1 GR Introduction Overview Control-plane failures are divided into the following types: 2-140 SJ-20140731105308-012|2014-10-20 (R1. Dst 2.1.2 $ !</mpls-te> 2.20.20.2.130.2.149 172.22 172. Tun_Instance 12 RSVP Path Info: Explicit Route: 172.2. Tun_Id 1.2 Run the show running-config-interface command to display the changed tunnel bandwidth configuration.130.12.20.130.130.2.157 172.

the flow of processing control-channel failures and node failures. RFC describes the GR flow when multiples nodes of an LSP become faulty. SRC-INSTANCE values. Before a hello message is received from the neighbor. and then re-establishes a hello relationship. l DST-INSTANCE: latest SRC-INSTANCE value carried in the hello message from a neighbor. this value is set to 0. A RESTART CAP object contains an RESTART TIME field and an RECOVER TIME field. this value must be changed. It also defines a hello object and a hello message. the information of the LSR to reboot and whether it supports GR are advertised to the neighboring LSR. The application of the GR technology enables the control plane to recover from one of the above failures.0) ZTE Proprietary and Confidential . Implementation To implement RSVP GR. also called Neighbor_Src_Instance. the downstream nodes send RECOVER PATH messages to the upstream nodes). 3. l SRC-INSTANCE: message sender instance.Chapter 2 MPLS TE Configuration l l Inter-node communication failure: The control-plane communication between nodes is lost. the data plane is still operating. For the remaining problems (for example. this value remains unchanged. RFC defines the actions for the downstream of the nodes that are rebooted (that is. It also defines an optional summary refresh process and an CAPBILITY object. and enables nodes to detect when their neighbors become unreachable or reboot. An hello object contains an SRC-INSTANCE and a DST-INSTANCE. This provides the basics of the RSVP-TE GR technology. the reboot of the head nodes on LSPs is not supported and incomplete PATH information). this value can be set to the system clock. Different neighbors have different When the message sender reboots or loses communication with a neighbor. and an RESTART CAP object. from the time when the control plane reboots to the time when the message sender 2-141 SJ-20140731105308-012|2014-10-20 (R1. Through this technology. l RESTART TIME: indicates the time for a message sender to restart the control plane. but the nodes can still obtain the status of the control plane or forwarding plane. and the LSR still remains in the data forwarding status. RFC defines an extended mechanism for hello messages. l l l l RFC defines an extended hello message. the RFC in IETF define and describe the implementation process of the function. In other cases. The SRC-INSTANCE value should not be set to 0. The neighbor detects the time when the failure occurs and the time when the reboot process is completed. Node failure: Although the RSVP-TE control plane becomes faulty and the status of the control plane is lost. 2. During the implementation. 1. The neighbor assists the LSR that reboots in recovering the control plane status and re-synchronizing the control plane status and data forwarding plane status.

ZXR10 M6000-S Configuration Guide (MPLS) l stops interactions with the neighbor through hello messages. l l This mechanism provides a means to detect node-to-node failures. the handling ways that are the same as those for link-layer communication failures are used. The recovery time begins from the time when the node that reboots re-establishes a neighbor relationship with its neighbor. such as the recovery capability. both upstream 2-142 SJ-20140731105308-012|2014-10-20 (R1. A CAPBILITY object contains three flag bits: l l l RecoveryPath Transmit Enabled (T): The message sender has the capability of sending a RecoveryPath message. To distinguish between the two types of messages. Recovery stage: New neighboring relationships are established between the node that reboots and upstream and downstream node. RECOVER TIME: indicates whether the node that reboots should be kept in the forwarding status. Reboot stage: begins from the time when the node reboots to the time when both upstream and downstream nodes receive new hello messages from the node that reboots. If a control plane failure does not affect the forwarding of data plane messages. When an unreachable failure is detected. Hello messages are primarily used to detect the status of the link with a neighboring node when: à The detection for the status of a link-layer neighboring node becomes invalidated or does not operate in real time. indicating that the message sender has the capability of receiving and processing the SREFRESH message (RecoveryPath=1) in a MESSAGE_ID LIST object. If the node needs not to be kept in the forwarding status. Unless otherwise specified. At the same time. RecoveryPath Desired (R): The message sender desires to receive a Recover Path message. the message sender can reset the RESTART TIME field to 0XFFFFFF (meaning infinite reboot time). the objects in an RECOVER PATH message should be the same as those in the corresponding PATH message (received from the node that reboots). à A link that is not marked is used. and DEST-INSTANCE value. The destination address in the IP header of a RECOVER PATH message must be the same as that in the IP header of the associated RESV message. RECOVER PATH messages use message ID “30”. this field is set to 0. Features A GR is divided into three stages: l l l Stage before the reboot: Both upstream and downstream nodes receive the information carried in the hello messages from the node to reboot.0) ZTE Proprietary and Confidential . SRC-INSTANCE value. Hello messages provide a mechanism for an RSVP node to detect the unreachable failure related to a neighboring node. RecoveryPath Srefresh Capable (S): Both R and S flag bits are set to 1. RECOVER PATH messages use the same format as PATH messages.

The upstream node assists an invalidated node in recovering the associated LSP by carrying a path recovery label in a PATH message. the node that reboots searches for the match with the local LSP status. the recovery process of the LSP is completed. The ERO object in the PATH message should match that in the received RECOVER PATH message. 2. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te)#signalling graceful-restart Enables the graceful-restart function. The GR function is conflicted with the FRR HELLO function. The downstream node assists the invalidated node in recovering from the failure by sending a RECOVER PATH message to the node.Chapter 2 MPLS TE Configuration and downstream nodes can determine the failure occurring on the node that becomes invalidated is a node failure or a control-plane failure. Upon receipt of the RECOVER PATH message from the downstream. 2-143 SJ-20140731105308-012|2014-10-20 (R1. To enable GR. run the following command: Command Function ZXR10(config)#mpls traffic-eng Enables MPLS TE. To enable MPLS TE. it sends a PATH message to the downstream. and the node that reboots should recover from the failure based on other objects in the received RECOVER PATH message. Context GR should be configured for each node that a tunnel passes through. Upon receipt of the PATH message.12. and marks the status of the LSP associated with the forwarding plane to "Refresh". and enters the TE configuration mode. If an exact match is found. Steps 1. 2. the downstream sends an RESV message to the upstream.0) ZTE Proprietary and Confidential . After the node that reboots processes the RESV message.2 Configuring GR This procedure describes how to configure GR. The invalidated node establishes the control-plane status by processing the PATH message (carrying a path recovery label) from the upstream.

range: 4–10. ZXR10(config-mpls-te)#signalling hello Sets the maximum recovery graceful-restart timers recovery-time <recover-time> time (in milliseconds) for the graceful-restart function. To display the configuration results. 3. run the following commands: Command Function ZXR10#debug rsvp hello Enables the debugging of GR. range: 1000–30000. and enable the GR function in the TE configuration mode of P1 and P2.3 GR Configuration Example Scenario Description Figure 2-25 shows a sample network topology. range: 120000–600000. range: 120000–600000. ZXR10#show ip rsvp hello instance summary Displays the summary information about RSVP HELLO instances. To maintain the GR function.0) ZTE Proprietary and Confidential . – End of Steps – 2. ZXR10#show ip rsvp hello instance detail Displays the detailed information about RSVP HELLO instances. ZXR10(config-mpls-te)#signalling hello Sets the maximum restart graceful-restart timers restart-time <restart-time> time (in milliseconds) for the graceful-restart function. It is required to establish a common RSVP tunnel from P1 to P2 by using the OSPF TE-based strict routing mode.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 2 ZXR10(config-mpls-te)#signalling hello Sets the time interval (in graceful-restart refresh interval <interval> milliseconds) for refreshing hello messages.12. 4. 2-144 SJ-20140731105308-012|2014-10-20 (R1. run the following commands: Command Function ZXR10#show ip rsvp hello graceful-restart Displays the GR configuration. ZXR10(config-mpls-te)#signalling hello Sets the maximum number of graceful-restart refresh misses <num> times that hello messages can be lost.

1 2-145 SJ-20140731105308-012|2014-10-20 (R1.0.1.1.168. 3.0.255. 2.1.168.0 0.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.1 0. Establish an OSPF neighbor relationship between the directly-connected interfaces of P1 and P2.0) ZTE Proprietary and Confidential .Chapter 2 MPLS TE Configuration Figure 2-25 GR Configuration Example Configuration Flow 1.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1.1.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.1 255.1. Enable the GR function in the TE configuration mode of P1 and P2.1 P1(config-ospf-1)#network 192.1.1 255.0.255. 4. and enable OSPF TE.255 area 0 P1(config-ospf-1)#network 1.1.255.255. Enable TE on the directly-connected interfaces of P1 and P2.1. Configure the tunnel destination and strict routing mode on P1. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.0.1.

168.0 0.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#signalling graceful-restart Configuration Verification Run the show mpls traffic-eng tunnels brief command on P1 to check whether the tunnel has been established.1 P2(config-ospf-1)#network 192.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.0.1.1.1.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.1.168.0.2 255.255.1.1.0) ZTE Proprietary and Confidential .255.1.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.1.1.168.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#signalling graceful-restart P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.255.1 255.1.1.0.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.1 0.1. The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: 2-146 SJ-20140731105308-012|2014-10-20 (R1.255.1.255 area 0 P2(config-ospf-1)#network 2.0.

Run the show ip rsvp hello instance summary command on P1 to check whether GR has been enabled: P1(config)#show ip rsvp hello instance summary Client I/F Neighbor Type StateLostCnt LSPs GR gei-0/1/0/2 192. Dst_instance 17128690 GR HELLO parameters Refresh Misses Configured:4 Refresh Interval (msec) Configured:10000 Current :10000 Local restart time (msec):120000 Local recovery time (msec):120000 Nbr restart time (msec):120000 Nbr recovery time (msec):0 Lost count:0 intf hello FRR HELLO parameters Fast_hello_period (msec):10000 Fast_hello_miss:4 2-147 SJ-20140731105308-012|2014-10-20 (R1.1.1.1.2 Source 192.168.168.1 - STATE/PROT gei-0/1/0/2 up/up It can be seen that the tunnel is in up status.Chapter 2 MPLS TE Configuration LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAME DESTINATION UP IF DOWN IF tunnel_1 2.1.2 ACTIVE UP0 1 P1(config)#show ip rsvp hello graceful-restart MPLS-TE: Enabled Graceful Restart: Enabled Refresh interval: 10000 msecs Refresh misses: 4 Advertised restart time: 120000 msecs Advertised recovery time: 120000 msecs P1(config)#show ip rsvp hello instance detail Hello Graceful Restart globally enabled Fast-Hello globally disabled Neighbor 192.1.168.1 Clients:Graceful Restart State:UP Type:ACTIVE I/F: gei-0/1/0/2 LSP num:1 Src_instance 19002981.0) ZTE Proprietary and Confidential .

This ensure that.1 TE Tunnel FA Introduction A routing protocol stores the path information related to the forwarding of packets through a database. ZXR10(config-mpls-te-tunnel-te_tunnel- Enables FA and sets the tunnel-number)#tunnel mpls traffic-eng holdtime. When the network topology is very complicated. 2-148 SJ-20140731105308-012|2014-10-20 (R1.2 Configuring TE Tunnel FA This procedure describes how to configure TE tunnel FA. To display the configuration results. If the TE tunnel function is fully utilized by using a TE tunnel as a forwarding entry of a route. the routing protocol has sufficient time to switch over traffic from the TE tunnel to other alternate entities.13 TE Tunnel FA Configuration 2. This process is achieved by using TE tunnel FA. The status of a TE tunnel is advertised to a routing protocol in real time. 2. To configure TE tunnel FA.0) ZTE Proprietary and Confidential . a great amount of system resources are spent in searching for the corresponding information in the database. 2 forwarding-adjacency[<holdtime>] <holdtime>: the delay time (in seconds) for informing the local router that the tunnel is down after the corresponding link is down. the amount of system resources for the packet forwarding can be greatly reduced.13. before the packet forwarding over the TE tunnel stops. If this parameter is set. 2. the local router does not know tunnel flapping.ZXR10 M6000-S Configuration Guide (MPLS) Fast_hello_protect_lsps:0 Fast_hello_del_time (msec):0 Fast_hello_reroute_time (msec):0 2.13. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters tunnel interface <tunnel-number> configuration mode. during the forwarding of packets. run the following commands: Command Function ZXR10#show mpls traffic-eng tunnels Displays detailed information about tunnels. range: 0–4294967295. and the higher-speed forwarding can be achieved. Steps 1.

168.1. Establish a tunnel (Tunnel1) on P1. It is required to establish a common RSVP tunnel from P1 to P2 by using the OSPF TE-based strict routing mode. and establish a reverse tunnel (Tunnel2) on P2.0) ZTE Proprietary and Confidential .1 255.1 255. 3.13.255.255.255. and enable FA on the tunnel. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192. Figure 2-26 FA Configuration Example Configuration Flow 1.255.1.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 2-149 SJ-20140731105308-012|2014-10-20 (R1. Enable TE on the directly-connected interfaces of P1 and P2. Enable FA on two tunnels.Chapter 2 MPLS TE Configuration Command Function ZXR10#show mpls traffic-eng forwarding-adjacency Displays detailed information about FA. – End of Steps – 2.3 TE Tunnel FA Configuration Example Scenario Description Figure 2-26 shows a sample network topology.1. 4. and enable OSPF TE. Establish an OSPF neighbor relationship between the directly-connected interfaces of P1 and P2.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1. 2.

168.255 area 0 2-150 SJ-20140731105308-012|2014-10-20 (R1.1.1 P1(config-ospf-1)#network 192.1.0 0.1.1.1.1.2 255.1.168.0) ZTE Proprietary and Confidential .0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.255.1.1.1 255.168.1 P2(config-ospf-1)#network 192.0.255 area 0 P1(config-ospf-1)#network 1.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.1.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.1.1.1.0.168.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng forwarding-adjacency P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng forwarding-adjacency holdtime 1000 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.255 P2(config-if-loopback2)#exit P2(config)#interface te_tunnel2 P2(config-if-te_tunnel2)#ip unnumbered loopback2 P2(config-if-te_tunnel2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1 0.255.1.0.0.1.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.0 0.255.0.0.1.255.

1.Chapter 2 MPLS TE Configuration P2(config-ospf-1)#network 2.1.0.1 P2(config-mpls-te-expl-path-id-2)#exit P2(config-mpls-te)#tunnel te_tunnel 2 P2(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 1.1.1. type explicit identifier: 2 (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: no path options protected Config Parameters: Bandwidth: 0 kbps (Global) Priority: 7 7 Affinity: 0x0/0x0 Resv-Style: SE Metric Type: IGP (default) Upper Limit: 4294967295 Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled BFD: disabled Auto-bw: disabled 2-151 SJ-20140731105308-012|2014-10-20 (R1.168.1.0) ZTE Proprietary and Confidential .1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#explicit-path identifier 2 P2(config-mpls-te-expl-path-id-2)#next-address strict 192. The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2.0.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.1.1.1.1 P2(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 2 P2(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng forwarding-adjacency P2(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng forwarding-adjacency holdtime 1000 P2(config-mpls-te-tunnel-te_tunnel2)#exit P2(config-mpls-te)#exit Configuration Verification Run the show mpls traffic-eng tunnels te_tunnel 1 command on P1 to check whether the tunnel has been established.1.1 0.

1.1. Tun_Instance 9 RSVP Path Info: Explicit Route: 192. burst= 1000 bytes.1. during the forwarding of packets.1. burst= 1000 bytes.14.1 Up 2.14 TE Tunnel AR Configuration 2.1.errvalue:4) P1(config)#show mpls traffic-eng forwarding-adjacency MPLS TE forwarding-adjacency enabled Destination 2.0) ZTE Proprietary and Confidential . and the higher-speed forwarding can be achieved.168. 56 minutes. Tun_Id 1.errcode:1. If the TE tunnel function is fully utilized by using a TE tunnel as a forwarding entry in the routing table.1. 2-152 SJ-20140731105308-012|2014-10-20 (R1.1.ZXR10 M6000-S Configuration Guide (MPLS) Bidirect: disabled AutoRoute: disabled Forwarding adjacency: holdtime 1000s InLabel: OutLabel: gei-0/1/0/2.1 192.errcode:1.errvalue:4).1. Dst 2. a great amount of system resources are spent in searching for the corresponding information in the database. 39 seconds Last lsp error information: Path error: admission fail(lspid:8. 0 hours.1 1000s 2.1.1. When the network topology is very complicated. peak rate= 0 kbits RSVP Resv Info: Record Route: NULL Fspec: ave rate= 0 kbits.1.1. 3 RSVP Signalling Info : Src 1. Path error: admission fail(lspid:6.errcode:1. 0 hours.2 2.1.1.1 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kbits. 5 minutes.1. Tunnel config changed(lspid:7. peak rate= 0 kbits History: Tunnel: Time since created: 0 days. the amount of system resources spent in forwarding packets can be greatly reduced.1 has 1 tunnels TunnelName Destination State Nexthop Holdtime tunnel_1 2.errvalue:3).1. 22 seconds Prior LSP: path option 1 Current LSP: Uptime:0 days.1 TE Tunnel AR Introduction A routing protocol stores the path information related to the forwarding of packets through a database.168.

2 number)#tunnel mpls traffic-eng autoroute announce 3 ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Specifies the metric value for number)#tunnel mpls traffic-eng autoroute metric the AR. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables AR for the TE tunnel. range: 1–4294967295. other routers store the CR-LSP information into their link databases. ZXR10#show mpls traffic-eng autoroute Displays detailed information about AR.0) ZTE Proprietary and Confidential .14. To display the configuration results. and the CR-LSP can be used.2 Configuring TE Tunnel AR This procedure describes how to configure TE tunnel AR. run the following commands: Command Function ZXR10#show mpls traffic-eng tunnels Displays detailed information about tunnels. – End of Steps – 2-153 SJ-20140731105308-012|2014-10-20 (R1. Steps 1. An FA-enabled router advertises the CR-LSP as a common LSA/LSP to its upstream router while using the CR-LSP as an egress interface. 2. Both of the two features use the principle of involving TE tunnel interfaces in the SPF calculation of IGP. absolute <value1>: sets the absolute metric value of AR. range: 1–4294967295. but the router does not advertise the CR-LSP to the upstream router. relative <value2>: sets the relative metric value of AR. default: absolute. Therefore. other routers do not store the CR-LSP information in their link databases. To configure TE tunnel AR.Chapter 2 MPLS TE Configuration Auto route advertisement has AR and FR features. Therefore. and the CR-LSP cannot be used. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters tunnel interface <tunnel-number> configuration mode. {<value0>| absolute <value1>| relative <value2>} <value0>: sets the default metric type of AR. range: -10 to +10. l l An AR-enabled router uses CR-LSP as an egress interface. 2.

It is required to establish a common RSVP tunnel from P1 to P2 by using the OSPF TE-based strict routing mode and enable AR on the tunnel.1.255.14.255.1.1 255. 2.1.1 P1(config-ospf-1)#network 192.1.1. 3. Figure 2-27 AR Configuration Example Configuration Flow 1.1 0.0) ZTE Proprietary and Confidential .1 255. 4.0.0. Establish a tunnel (Tunnel1) on P1. Establish an OSPF neighbor relationship between the directly-connected interfaces of P1 and P2.168. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.1.0.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1. Enable AR on the tunnel. and enable OSPF TE.168.3 TE Tunnel AR Configuration Example Scenario Description Figure 2-27 shows a sample network topology.255 area 0 P1(config-ospf-1)#network 1. Enable TE on the directly-connected interfaces of P1 and P2.ZXR10 M6000-S Configuration Guide (MPLS) 2.1.1.0 0.0 area 0 2-154 SJ-20140731105308-012|2014-10-20 (R1.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.255.255.0.

1 255.0.1.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.168.1.0.1.1.2 255.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit 2-155 SJ-20140731105308-012|2014-10-20 (R1.1.0 0.255.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.168.0.1.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.Chapter 2 MPLS TE Configuration P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.255.1.1.0.255 area 0 P2(config-ospf-1)#network 2.1.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.0) ZTE Proprietary and Confidential .255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.1.1 P2(config-ospf-1)#network 192.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng autoroute announce P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng autoroute metric absolute 12 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.255.168.1.255.1 0.1.1.1.1.

The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2.ZXR10 M6000-S Configuration Guide (MPLS) Configuration Verification Run the show mpls traffic-eng tunnels te_tunnel 1 command on P1 to check whether the tunnel has been established.1.0) ZTE Proprietary and Confidential .1. 3 RSVP Signalling Info : 2-156 SJ-20140731105308-012|2014-10-20 (R1. type explicit identifier: 1 (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: no path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Upper Limit: 4294967295 Hop Prior: disabled Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy class: default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 Affinity: 0x0/0x0 EBS: 0 byte AutoRoute: enabledAutoRouteMetricType: absoluteAutoRouteMetric: 12 AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.0.1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.0.0 InLabel: OutLabel: gei-0/1/0/2.

during the CSPF-based path selection process.1 192. perform the following steps: 2-157 SJ-20140731105308-012|2014-10-20 (R1.1.1.1.1.15 TE Metric Configuration 2.1.1.1. peak rate= 0 kbits RSVP Resv Info: Record Route: NULL Fspec: ave rate= 0 kbits.1.1. 2.0) ZTE Proprietary and Confidential . Dst 2.15. Steps 1. 19 minutes. 56 seconds Last lsp error information: None log record. peak rate= 0 kbits History: Tunnel: Time since created: 0 days. To configure TE metric.168.1 TE Metric Introduction After TE metric is enabled on an MPLS TE tunnel and the TE metric values are specified for associated interfaces. Tun_Instance 30 RSVP Path Info: Explicit Route: 192.1. burst= 1000 bytes.2 2. 0 hours.1.1 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kbits. The path for the MPLS TE tunnel can be indirectly specified by changing the metric values of associated interfaces.1 has 1 tunnels TunnelName Destination State NexthopMetricType MetricValue tunnel_1 2.15.1. burst= 1000 bytes. 4 seconds Prior LSP: path option 1 Current LSP: Uptime:0 days.Chapter 2 MPLS TE Configuration Src 1. Tun_Id 1. 9 minutes.1.1.168.1.1Absolute 12 2. the path whose total TE metric values of all associated egress interfaces are the smallest is preferentially selected. 0 hours.2 Configuring TE Metric This procedure describes how to configure TE metric.1.1 Up 2. P1(config)#show mpls traffic-eng autoroute MPLS TE autorouting enabled Destination 2. which enables the path selection process to be manageable.

ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters tunnel interface <tunnel-number> configuration mode. run the following commands: Command Function ZXR10#show mpls traffic-eng tunnels Displays detailed information about tunnels. It is required to establish a common RSVP tunnel from P1 to P2 by using the OSPF TE-based strict routing mode and configure TE metric on the tunnel and corresponding interfaces. ZXR10#show mpls traffic-eng interface detail Displays detailed information about MPLS TE interface.15. ZXR10(config-mpls-te-tunnel-te_tunnel- Specifies the TE metric for the tunnel-number)#tunnel mpls traffic-eng tunnel. – End of Steps – 2.3 TE Metric Configuration Example Scenario Description Figure 2-28 shows a sample network topology. range: 1–4294967295. Figure 2-28 TE Metric Configuration Example 2-158 SJ-20140731105308-012|2014-10-20 (R1. range: 1–65535. To display the configuration results.0) ZTE Proprietary and Confidential . 4 ZXR10(config-mpls-te-if-interface-name)#adminis Specifies the TE metric for the trative-weight<value> TE interface. 2 administrative-weight<value> 3 ZXR10(config-mpls-te)#interface <interface-name> Enters the TE interface configuration mode. 2.

1.0 0.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng administrative-weight 12 P1(config-mpls-te-tunnel-te_tunnel1)#exit 2-159 SJ-20140731105308-012|2014-10-20 (R1.255.1. and enable OSPF TE.1. Enable TE on the directly-connected interfaces of P1 and P2.1.255.1 0. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.0. Establish an OSPF neighbor relationship between the directly-connected interfaces of P1 and P2.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.0.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.255.1.Chapter 2 MPLS TE Configuration Configuration Flow 1.1.1 255.0) ZTE Proprietary and Confidential .255.1 255.255 area 0 P1(config-ospf-1)#network 1.1 P1(config-ospf-1)#network 192.0.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1. Configure TE metric on the tunnel and corresponding interfaces.168.1. Establish a tunnel (Tunnel1) on P1.1.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#administrative-weight 7 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192. 2.0.1.168.168. 4. 3.1.1.1.

1.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit Configuration Verification Run the show mpls traffic-eng tunnels te_tunnel 1 command on P1 to check whether the tunnel has been established.1.0.0.2 255.1 0.0. The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2.255.1.1 255.0) ZTE Proprietary and Confidential .1.1.1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. type explicit identifier: 1 (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: no path options protected Config Parameters: Resv-Style: SE Metric Type: TE Upper Limit: 12 Hop Prior: disabled Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled 2-160 SJ-20140731105308-012|2014-10-20 (R1.168.1.0.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.1.255 area 0 P2(config-ospf-1)#network 2.1.1.168.255.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.1.0 0.255.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.1.1 P2(config-ospf-1)#network 192.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.1.255.

Tun_Instance 30 RSVP Path Info: Explicit Route: 192.0. 0 hours.1. peak rate= 0 kbits History: Tunnel: Time since created: 0 days. 56 seconds Last lsp error information: None log record.1. 3 RSVP Signalling Info : Src 1.1.1 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kbits. 4 seconds Prior LSP: path option 1 Current LSP: Uptime:0 days.1.168.1.0 InLabel: OutLabel: gei-0/1/0/2.1. 9 minutes.Chapter 2 MPLS TE Configuration Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy class: default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 Affinity: 0x0/0x0 EBS: 0 byte AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0. 19 minutes.1. burst= 1000 bytes. peak rate= 0 kbits RSVP Resv Info: Record Route: NULL Fspec: ave rate= 0 kbits. P1(config)#show mpls traffic-eng interface detail 2-161 SJ-20140731105308-012|2014-10-20 (R1.1. 0 hours. Tun_Id 1. Dst 2. burst= 1000 bytes.1.1.168.1 192.0) ZTE Proprietary and Confidential .2 2.0.

TE SRLG is generally used for MPLS TE-FRR services. the application of SRLG in MPLS TE prevents the backup path and a protected link being selected to the same SRLG. OSPF or IS-IS floods the SRLG member information. and other information to other network devices. For example. SRLG is widely used during the MPLS TE deployment. a backup path that is not in the same SRLG with the protected link can be automatically calculated and generated. TE information (such as the available bandwidth) of links. all of the optical links belonging to the optical fiber or pipe may also fail.ZXR10 M6000-S Configuration Guide (MPLS) gei-0/1/0/2: State: ENABLE Traffic-eng metric: 7 Authentication: disabled Key: <encrypted> Type: md5 Challenge: disabled Challenge-imp: Not implemented(simulated) Window size: 32 BFD: disabled Backup path: None SRLGs: None Intf Fast-Hello: DISABLE Fast-Hello interval: 10000 Fast-Hello miss: 4 Convergence-Ratio: 100(%) 2. If an optical fiber is faulty. In an MPLS TE network. and the information is used for the CSPF-based calculation. all associated sublinks also fail to operate. which provides better protection. and can be used to optimize the selection of backup paths. some of the interfaces of network devices can be configured to belong to the same SRLG. If the dynamic generation mode is used.0) ZTE Proprietary and Confidential .16. other links may also fail to operate. If an optical fiber or pipe is faulty. During the selection of a backup path. 2-162 SJ-20140731105308-012|2014-10-20 (R1. If the manual generation mode is generated. The SRLG information can be used for the CSPF-based calculation.16 TE SRLG Configuration 2.1 TE SRLG Introduction If one of the links in an SRLG becomes faulty. you should avoid the case that the backup path is in the same SRLG with the protected link.

3 TE SRLG Configuration Example Scenario Description Figure 2-29 shows a sample network topology. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te)#srlg exclude{auto-tunnel-bac Specifies the exclusion kup | facility-frr | hot-standby | one-to-one-frr}{force | mode of SRLG in global preferred} configuration mode. configure the auto backup mode. options: 2 ZXR10(config-mpls-te)#interface <interface-name> l force l preferred Enters the TE interface configuration mode.0) ZTE Proprietary and Confidential . It is required to establish a common RSVP tunnel from P1 to P2 by using the OSPF TE-based strict routing mode.2 Configuring TE SRLG This procedure describes how to configure TE SRLG.16. 2-163 SJ-20140731105308-012|2014-10-20 (R1. To configure MPLS TE SRLG. 2. 3 ZXR10(config-mpls-te-if-interface-name)#srlg<v Specifies the SRLG value alue> for the TE interface. and configure the SRLG value on the egress interface of the primary tunnel. To display the configuration results. run the following commands: Command Function ZXR10#show mpls traffic-eng auto-backup parameter Displays the configurations of the auto-backup tunnel. ZXR10#show mpls traffic-eng interface detail Displays the SRLG configurations of MPLS TE interfaces.Chapter 2 MPLS TE Configuration 2. range: 0–4294967295. – End of Steps – 2. A maximum of three SRLG values can be set on an interface. It is also required to configure SRLG values on the egress interfaces of other links (the force mode is used in this example). Steps 1.16.

1 P1(config-ospf-1)#network 192.1 255.1.0.168. 2.1.1.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.1. 5. 4.1. Enable TE on the directly-connected interfaces of P1 and P2. and enable OSPF TE.255 area 0 2-164 SJ-20140731105308-012|2014-10-20 (R1.1.1.1 255.0.0 P1(config-if-gei-0/1/0/4)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.0 0. and configure the auto backup mode.1 255.1 255.255.255.1.255.1.255.0.168.1. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.1.255.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface gei-0/1/0/3 P1(config-if-gei-0/1/0/3)#no shutdown P1(config-if-gei-0/1/0/3)#ip address 31.0) ZTE Proprietary and Confidential .0 0.0.ZXR10 M6000-S Configuration Guide (MPLS) Figure 2-29 TE SRLG Configuration Example Configuration Flow 1.255.255.0. Configure SRLG values on the egress interfaces of other links.255 area 0 P1(config-ospf-1)#network 32.1. Establish an OSPF neighbor relationship between the directly-connected interfaces of P1 and P2.255.0 0.1.1. Establish a tunnel (Tunnel1) on P1.0 P1(config-if-gei-0/1/0/3)#exit P1(config)#interface gei-0/1/0/4 P1(config-if-gei-0/1/0/4)#no shutdown P1(config-if-gei-0/1/0/4)#ip address 32.0. Configure an SRLG value on the egress interface of the primary tunnel. 3.255 area 0 P1(config-ospf-1)#network 31.

168.0) ZTE Proprietary and Confidential .1.1.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1 0.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface gei-0/1/0/3 P2(config-if-gei-0/1/0/3)#no shutdown P2(config-if-gei-0/1/0/3)#ip address 31.168.1.1.1.2 255.255.255.Chapter 2 MPLS TE Configuration P1(config-ospf-1)#network 1.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.1.1.1.2 255.1 P1(config-mpls-te)#srlg exclude auto-tunnel-backup force P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#auto-tunnel backup P1(config-mpls-te-if-gei-0/1/0/2)#srlg 1 P1(config-mpls-te-if-gei-0/1/0/2)#srlg 2 P1(config-mpls-te-if-gei-0/1/0/2)#srlg 3 /*An interface can have a maximum of three SRLG values*/ P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#interface gei-0/1/0/3 P1(config-mpls-te-if-gei-0/1/0/3)#srlg 1 P1(config-mpls-te-if-gei-0/1/0/3)#exit P1(config-mpls-te)#interface gei-0/1/0/4 P1(config-mpls-te-if-gei-0/1/0/4)#srlg 4 P1(config-mpls-te-if-gei-0/1/0/4)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.0 P2(config-if-gei-0/1/0/3)#exit P2(config)#interface gei-0/1/0/4 2-165 SJ-20140731105308-012|2014-10-20 (R1.0.255.0.255.1.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1.

0.1.0) ZTE Proprietary and Confidential .255.255.0.255 area 0 P2(config-ospf-1)#network 32.0.1.1.1.1.1.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.0 0.1.1 255.ZXR10 M6000-S Configuration Guide (MPLS) P2(config-if-gei-0/1/0/4)#no shutdown P2(config-if-gei-0/1/0/4)#ip address 32.2 255.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#interface gei-0/1/0/3 P2(config-mpls-te-if-gei-0/1/0/3)#exit P2(config-mpls-te)#interface gei-0/1/0/4 P2(config-mpls-te-if-gei-0/1/0/4)#exit Configuration Verification Run the show mpls traffic-eng auto-backup parameter command on P1 to check whether the tunnel has been established.0.168.1.1.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2. The execution result is displayed as follows: P1(config)#show mpls traffic-eng auto-backup parameter MPLS-TE: Enabled The setting of auto-tunnel minID is: 32001 The setting of auto-tunnel maxID is: 33000 Auto-tunnel minID in used is: 33000 Auto-tunnel maxID in used is: 33000 Auto-tunnel backup srlg exclude: Force P1(config)#show mpls traffic-eng interface detail gei-0/1/0/2: State: ENABLE Traffic-eng metric: 0 2-166 SJ-20140731105308-012|2014-10-20 (R1.0.1 P2(config-ospf-1)#network 192.1.255 area 0 P2(config-ospf-1)#network 31.0 P2(config-if-gei-0/1/0/4)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.0.0 0.255.1.1.1 0.255 area 0 P2(config-ospf-1)#network 2.1.0 0.1.0.0.1.255.

Chapter 2 MPLS TE Configuration Authentication: disabled Key: <encrypted> Type: md5 Challenge: disabled Challenge-imp: Not implemented(simulated) Window size: 32 BFD: disabled Backup path: auto-tunnel backup SRLGs: 1 2 3 Intf Fast-Hello: DISABLE Fast-Hello interval: 10000 Fast-Hello miss: 4 gei-0/1/0/3: State: ENABLE Traffic-eng metric: 0 Authentication: disabled Key: <encrypted> Type: md5 Challenge: disabled Challenge-imp: Not implemented(simulated) Window size: 32 BFD: disabled Backup path: None SRLGs: 1 Intf Fast-Hello: DISABLE Fast-Hello interval: 10000 Fast-Hello miss: 4 gei-0/1/0/4: State: ENABLE Traffic-eng metric: 0 Authentication: disabled Key: <encrypted> Type: md5 Challenge: disabled Challenge-imp: Not implemented(simulated) Window size: 32 BFD: disabled Backup path: None SRLGs: 4 Intf Fast-Hello: DISABLE 2-167 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential .

This technology not only helps in selecting the optimal path for a TE tunnel.17. 2.1 - gei-0/1/0/4 up/up P1(config)#show mpls traffic-eng fast-reroute Tunnel head end item information Protected Tunnel LspIDIn-label Out intf/labelFRR intf/label Status Tunnel1545 Tun hd gei-0/1/0/2:3Tu33000:3 ready LSP midpoint frr information: LSP identifierIn-label Out intf/label FRR intf/label Status 2.17 TE Tunnel Reoptimization Configuration 2. 2 ZXR10(config-mpls-te)#reoptimize timers Sets the re-optimization time frequency<timer> interval (in seconds).17.1. the re-optimization technology can be used to re-select a path for the tunnel that has been established and is in up status. Steps 1. Step Command Function 1 ZXR10(config-mpls-te)#reoptimize events link-up Enables re-optimization.ZXR10 M6000-S Configuration Guide (MPLS) Fast-Hello interval: 10000 Fast-Hello miss: 4 P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAMEDESTINATION UP IFDOWN IFSTATE/PROT tunnel_12. 2-168 SJ-20140731105308-012|2014-10-20 (R1.2 Configuring TE Tunnel Re-optimization This procedure describes how to configure TE tunnel re-optimization.0) ZTE Proprietary and Confidential . range: 30–604800.1.1 Introduction to TE Tunnel Reoptimization The optimal path may be not selected during the initial setup stage of a TE tunnel due to some reasons. but also helps in switching back the tunnel to the reasonable primary path after a protection switchover.1 -gei-0/1/0/2 up/up tunnel_33000 2.1. It also uses the MBB technology to ensure that traffic is not lost during the path selection process. Configure re-optimization for a point-to-point TE tunnel. When link conditions are improved.1.

ZXR10(config-mpls-te-mtunnel-mte_tunnel- Enables tunnel tunnel-number)#mtunnel mpls traffic-eng reoptimize re-optimization. Verify the configurations. ZXR10(config-mpls-te-tunnel-te_tunnel- Enables tunnel tunnel-number)#tunnel mpls traffic-eng auto-reoptimize re-optimization.Chapter 2 MPLS TE Configuration Step Command Function 3 ZXR10(config-mpls-te)#reoptimize tunnel{<tunnel-i Enables re-optimization for a d>|all} tunnel or all tunnels. Step Command Function 1 ZXR10(config-mpls-te)#reoptimize events link-up Configures re-optimization upon link up events. unit: seconds. 2. This command is an one-off triggering command. 2 ZXR10(config-mpls-te)#reoptimize timers Sets the re-optimization frequency<timer> period. hsb-lsp: Enables the periodical re-optimization function on the hot-standby LSP. 2-169 SJ-20140731105308-012|2014-10-20 (R1. Configure re-optimization for a point-to-multipoint TE tunnel. all: Manually re-optimizes all point-to-multipoint tunnels. This is an one-off triggering command. 3 4 5 ZXR10(config-mpls-te)#mtunnel mte_tunnel<tunnel- Enters point-to-multipoint number> tunnel configuration mode. configures id>| all } manual re-optimization for one or all point-to-multipoint tunnels. <tunnel-id>: Manually re-optimizes a point-to-multipoint tunnel. { hsb-lsp|main-lsp} <tunnel-id>: ID of the specified tunnel. 4 5 ZXR10(config-mpls-te)#tunnel te_tunnel<tunnel-numb Enters point-to-point tunnel er> configuration mode. 3. all: all tunnels. ZXR10(config-mpls-te)#reoptimize mtunnel {< mtunnel In global mode. range: 30–604800.0) ZTE Proprietary and Confidential . main-lsp: Enables the periodical re-optimization function on the active LSP.

2. a manual re-optimization should be performed.255.168. Figure 2-30 TE Tunnel Re-optimization Configuration Example Configuration Flow 1. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192. Run the shutdown command on the two links corresponding to path-option 1 and path-option 2. and enable OSPF TE.ZXR10 M6000-S Configuration Guide (MPLS) Command Function ZXR10#show mpls traffic-eng tunnels summary Checks the information about re-optimization for point-to-point TE tunnels. and perform a manual optimization.255. 4. and configure three links between P1 and P2.17.3 TE Tunnel Reoptimization Configuration Example Scenario Description Figure 2-30 shows a sample network topology. It is required to establish a tunnel from P1 to P2. After two of the three links are broken. Configure three path-options (1.1 255. – End of Steps – 2. ZXR10#show mpls traffic-eng mtunnels summary Checks the information about re-optimization for point-to-multipoint TE tunnels.0) ZTE Proprietary and Confidential . corresponding to the three links.1. Establish OSPF neighbor relationships on the three links between P1 and P2. Run the no shutdown command on the two links corresponding to path-option 1 and path-option 2. and 3).0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface gei-0/1/0/3 2-170 SJ-20140731105308-012|2014-10-20 (R1. and run the no shutdown command on the tunnel interface to establish a tunnel. 3. 2.

2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#explicit-path identifier 2 P1(config-mpls-te-expl-path-id-2)#next-address strict 31.1.0 P1(config-if-gei-0/1/0/3)#exit P1(config)#interface gei-0/1/0/4 P1(config-if-gei-0/1/0/4)#no shutdown P1(config-if-gei-0/1/0/4)#ip address 32.1.255.0 0.255 area 0 P1(config-ospf-1)#network 1.1.1.1.0 0.1.255 area 0 P1(config-ospf-1)#network 31.1.2 P1(config-mpls-te-expl-path-id-2)#exit P1(config-mpls-te)#explicit-path identifier 3 2-171 SJ-20140731105308-012|2014-10-20 (R1.255.1.1.1.168.1 255.255.1.0 P1(config-if-gei-0/1/0/4)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.0.255 area 0 P1(config-ospf-1)#network 32.Chapter 2 MPLS TE Configuration P1(config-if-gei-0/1/0/3)#no shutdown P1(config-if-gei-0/1/0/3)#ip address 31.0.0.1 0.168.1.0 0.0.1.255.1 255.1.1.1.0.255.1 P1(config-ospf-1)#network 192.0.255.0.0) ZTE Proprietary and Confidential .1 255.0.1.1.1.1 P1(config-mpls-te)#reoptimize events link-up P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#interface gei-0/1/0/3 P1(config-mpls-te-if-gei-0/1/0/3)#exit P1(config-mpls-te)#interface gei-0/1/0/4 P1(config-mpls-te-if-gei-0/1/0/4)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.1.

0.1 255.1.168.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface gei-0/1/0/3 P2(config-if-gei-0/1/0/3)#no shutdown P2(config-if-gei-0/1/0/3)#ip address 31.1 P2(config-ospf-1)#network 192.255.2 P1(config-mpls-te-expl-path-id-3)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.0.0 0.0.1.1.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-mpls-te-expl-path-id-3)#next-address strict 32.0 0.0.1.1.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 2 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 2 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 3 explicit-path identifier 3 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.1.1.2 255.1.1.1.0 P2(config-if-gei-0/1/0/4)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.1.1.255.1.1.255.1 P2(config-mpls-te)#interface gei-0/1/0/2 2-172 SJ-20140731105308-012|2014-10-20 (R1.1 0.0 0.0.255.255.1.1.0.1.1.255 area 0 P2(config-ospf-1)#network 2.0) ZTE Proprietary and Confidential .255.255 area 0 P2(config-ospf-1)#network 31.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.0 P2(config-if-gei-0/1/0/3)#exit P2(config)#interface gei-0/1/0/4 P2(config-if-gei-0/1/0/4)#no shutdown P2(config-if-gei-0/1/0/4)#ip address 32.1.255.255.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.168.0.0.2 255.1.1.1.255 area 0 P2(config-ospf-1)#network 32.2 255.

If tunnel establishment with only TE HOTSTANDBY is enabled.gei-0/1/0/4 up/up Run the no shutdown command on the gei-0/1/0/2 and gei-0/1/0/3 interfaces of P1. and start a manual re-optimization in the TE configuration mode of P1. The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAMEDESTINATION UP IFDOWN IF STATE/PROT tunnel_12.1.1.18.Chapter 2 MPLS TE Configuration P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#interface gei-0/1/0/3 P2(config-mpls-te-if-gei-0/1/0/3)#exit P2(config-mpls-te)#interface gei-0/1/0/4 P2(config-mpls-te-if-gei-0/1/0/4)#exit Configuration Verification Run the shutdown command on the gei-0/1/0/2 and gei-0/1/0/3 interfaces of P1.1 Tunnel Establishment With Only TE HOTSTANDBY When the ZXR10 M6000-S is being deployed. if a TE LSP cannot be established along the active path of a tunnel. which means that an active path and a standby path are configured.1 -gei-0/1/0/2 up/up 2. P1(config)#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process: running RSVP Process: running Forwarding: enabled TUNNEL NAMEDESTINATION UP IFDOWN IF STATE/PROT tunnel_12. and run the show mpls traffic-eng tunnels brief command to check whether the link between the gei-0/1/0/4 interfaces of P1 and P2 is selected as the tunnel. Without this function.0) ZTE Proprietary and Confidential . the tunnel cannot be established even if the TE LSP can be established along the standby path. If a tunnel can be 2-173 SJ-20140731105308-012|2014-10-20 (R1.18 TE HOTSTANDBY Configuration 2. TE LSP establishment is attempted along the active path and the standby path in sequence. TE HOTSTANDBY protection is also deployed. P1(config-mpls-te)#reoptimize tunnel 1 Run the show mpls traffic-eng tunnels brief command on P1 to check whether the link between the gei-0/1/0/2 interfaces of P1 and P2 is selected as the tunnel.1 .1.1.

18. 2.3 TE HOTSTANDBY Function Configuration Instance Configuration Description In Figure 2-31. the standby path is restored and the tunnel can get UP properly and service messages can be properly forwarded. a TE HOTSTANDBY command is configured. – End of Steps – 2.18. the tunnel continuously attempts switching back and finally switches back to the active path once the active path is restored. 2. and then the tunnel mpls traffic-eng reference hot-standby command is configured.0) ZTE Proprietary and Confidential . and another path is established and used to protect the active path of the tunnel. a common RSVP tunnel from P1 to P2 is established in strict routing mode through OSPF TE.2 Configuring the TE HOTSTANDBY Function This procedure describes how to configure the TE HOTSTANDBY function of a TE tunnel. Steps 1. In addition. Command Function ZXR10#show mpls traffic-eng tunnels Displays tunnel information.ZXR10 M6000-S Configuration Guide (MPLS) established along the hot standby path. With this configuration. 2-174 SJ-20140731105308-012|2014-10-20 (R1. Configure the TE HOTSTANDBY function of a TE tunnel. Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters Tunnel interface <tunnel-number> configuration mode. if both the active and standby paths of the TE HSB are down. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Enables the TE number)#tunnel mpls traffic-eng reference hot-standby HOTSTANDBY function 2 of the tunnel. Verify the configurations.

1. Configure a TE HOTSTANDBY command.1 255. 5. 2. Establish OSPF neighbors on the directly-connected interfaces of P1 and P2. 3.255.1.168.255.1 255.168. the standby path is restored and the tunnel can get UP properly and service messages can be properly forwarded.255.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1. Establish Tunnel1 and explicit path 1 on P1. Enable the TE function on the directly-connected interfaces of P1 and P2.255.0) ZTE Proprietary and Confidential .0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface gei-0/2/0/1 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 190.255. so that path 2 can be used to protect path 1. With this configuration. and then configure the tunnel mpls traffi c-eng reference hot-standby command.1 255.Chapter 2 MPLS TE Configuration Figure 2-31 Topological Graph of the Instance for Tunnel Establishment with Only TE HOTSTANDBY Configuration Flow 1.1.1 2-175 SJ-20140731105308-012|2014-10-20 (R1.1. if both the active and standby paths of the TE HSB are down. Configure explicit path 2 on P1 and configure HSB protection for tunnel1.1.1. and enable the TE function on the OSPF neighbors. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.255. 4.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.

168.1.255.0 0.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#explicit-path identifier 2 P1(config-mpls-te-expl-path-id-2)#next-address strict 190.0.1.1.1.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng hot-standby protect 1 explicit-path identifier 2 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng reference hot-standby P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.1.1 0.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#interface gei-0/2/0/1 P1(config-mpls-te-if-gei-0/1/0/1)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.1.2 255.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-ospf-1)#network 192.1.1.0.1 255.2 P1(config-mpls-te-expl-path-id-2)#exit P1(config-mpls-te)#tunnel te_tunnel 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1.168.1.255.168.168.255.0.1.0) ZTE Proprietary and Confidential .168.0.255 area 0 2-176 SJ-20140731105308-012|2014-10-20 (R1.168.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.1.255.255.168.0.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface gei-0/2/0/1 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 190.1.0 0.1 P2(config-ospf-1)#network 192.1.1.255 area 0 P1(config-ospf-1)#network 190.255.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1.1.255 area 0 P1(config-ospf-1)#network 1.0.0.0.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.0 0.2 255.

168.0.0) ZTE Proprietary and Confidential .1.168. burst= 1000 byte.255 area 0 P2(config-ospf-1)#network 2.1 .1 Exclude Route: 192.1.1 0.1 0 0.1.1. 3 RSVP Signalling Info : Src 1. Tun-ID 1.0.1 . Tun-Instance 278 RSVP Path Info: Explicit Route: 190.1 (3) Fspec: ave rate= 0 kb.2 1. burst= 1000 byte.1.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#interface gei-0/2/0/1 P2(config-mpls-te-if-gei-0/2/0/1)#exit Configuration Verification Run the show mpls traffic-eng tunnels te_tunnel 1 hot-standby command to check the information about the tunnel on P1.1.1 Status: Admin: up Oper: up Path: valid Signalling: connected Fast Reroute Protection: disabled Hot-standby Protection: ready Config Parameters: BFD: disabled Hot-standby-lsp Fast-reroute: enabled Hot-standby-lsp Auto-reoptimize: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1.1.0. 190.1. Dst 2.168.1.1.0.168.1.1.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.1.0 InLabel: OutLabel: gei-0/1/0/2.168.1.Chapter 2 MPLS TE Configuration P2(config-ospf-1)#network 190.0.1.168. peak rate= 0 kb P1(config)# show mpls traffic-eng tunnels te_tunnel 1 2-177 SJ-20140731105308-012|2014-10-20 (R1. peak rate= 0 kb RSVP Resv Info: Record Route: 2.1.1.1.0.1.1.1(3) 190.2 Record Route: NULL Tspec: ave rate= 0 kb. The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels te_tunnel 1 hot-standby Name: tunnel_1 (Tunnel3) Destination: 2. 192.

1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. type explicit identifier :1(Basis for Protect) Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: enabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy class: default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: enabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1.1.0.1 Dst 2.1. Tun-ID 1.1.0.ZXR10 M6000-S Configuration Guide (MPLS) Name: tunnel_1 (Tunnel3) Destination: 2.1. Tun-Instance 278 2-178 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential .1. type explicit identifier :2 (Basis for Setup) Actual Bandwidth: 0 kbps Hot-standby protection: protect option: 1.1. 3 RSVP Signalling Info : Src 1.0 InLabel: OutLabel: gei-0/1/0/2.

1 (3) Fspec: ave rate= 0 kb. the device detecting the link or node fault can switch over the data traffic from the faulty active path to the standby path fast to reduce data loss. Because FRR protection is temporary.1. The forwarding information base of each downstream node gets ready successively and then the head node restores data traffic to the active path. 190.1(3) 190.168. 16 second Last LSP Error Information 2.Chapter 2 MPLS TE Configuration RSVP Path Info: Explicit Route: 190.1 Introduction to TE Tunnel WTR To ensure the reliability of the MPLS network. burst= 1000 byte.1.1. During this period. 0 hour.1 Exclude Route: 192.1. This technology uses the capability of the MPLS Traffic Engineering (TE) and provides a fast switchover protection capability for the LSP. 2-179 SJ-20140731105308-012|2014-10-20 (R1.2 Record Route: NULL Tspec: ave rate= 0 kb.1. 8 minute.168.168. after the active path is restored.1.168. When a fault occurs. 57 minute.19. WTR allows data traffic to wait for a period before being switched back to the active path.19.168. Configure the TE WRT time.1. peak rate= 0 kb RSVP Resv Info: Record Route: 2.19 WTR Configuration for a TE Tunnel 2. 1 hour. The MPLS FRR previously establishes a local backup path to protect the LSP being affected by link or node failures. burst= 1000 byte. 192.0) ZTE Proprietary and Confidential . 2. Steps 1.2 Configuring the WTR Function of a TE Tunnel This procedure describes how to configure the WTR function of a TE tunnel. peak rate= 0 kb History: Tunnel: Time Since Created: 0 day. This switchback can be performed immediately or after the Wait To Restore (WTR) time.1.1 . data traffic must be switched back to the active path. 31 second Prior LSP: path option 1 Current LSP: Uptime:0 day. the Fast Reroute (FRR) technology acts an important role in the MPLS network.1 .2 1.1.

the backup tunnel implements protection and traffic is switched over to the backup tunnel. Verify the configurations. 2. Tunnel1 is the active tunnel. <timer>: switchback and deletion delay duration. and P3. If the fault on the active tunnel is cleared. Figure 2-32 TE Tunnel WTR Configuration Instance 2-180 SJ-20140731105308-012|2014-10-20 (R1. Configure the WTR period on P1. Tunnel2 is the backup tunnel.0) ZTE Proprietary and Confidential .ZXR10 M6000-S Configuration Guide (MPLS) Command Function ZXR10(config-mpls-te)#reoptimize timers delay Sets the WTR period before installation-delay-time <timer> switchback in global mode. and Tunnel2 passes through P1 and P3. Tunnel1 passes through P1. P2. two tunnels are established from P1 to P3. Command Function ZXR10#show mpls traffic-eng tunnels summary Checks the WRT duration configured by a user.3 TE Tunnel WTR Configuration Instance Configuration Description In Figure 2-32. When any fault occurs on the active tunnel. traffic is switched back to the active tunnel after a WTR period. and they form an FRR relation.19. unit: seconds. – End of Steps – 2.

and configure a backup tunnel on gei-0/2/1/1 of P1.255. Configure the WTR period on P1.1.255.0) ZTE Proprietary and Confidential .255. 3.255.1 255. Establish two strict paths. Configure a static route to the destination on P1. With this configuration. 2.1.0.1.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#interface te_tunnel2 P1(config-if-te_tunnel2)#ip unnumbered loopback1 P1(config-if-te_tunnel2)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1. P2.0 0.2 255.0 0. One is the active path through P1. and enable the TE function on the OSPF neighbors.1.1.1 255.1. Create an active tunnel and a standby tunnel.0 P1(config-if-gei-0/2/1/3)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1. 5.0.0. 6.1.0 P1(config-if-gei-0/2/1/1)#exit P1(config)#interface gei-0/2/1/3 P1(config-if-gei-0/2/1/3)#no shutdown P1(config-if-gei-0/2/1/3)#ip address 60. Establish OSPF neighbors for the directly-connected interfaces on P1.0.1.1.1. and P3. and P3. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/2/1/1 P1(config-if-gei-0/2/1/1)#no shutdown P1(config-if-gei-0/2/1/1)#ip address 74.1.255. P2. and P3. and enable the FRR facility function on the active tunnel.255 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.1.255 area 0 P1(config-ospf-1)#network 60.0.1 P1(config-ospf-1)#network 1.0 area 0 P1(config-ospf-1)#network 74.0.1 0.255.1.1.1. traffic is forwarded through Tunnel1. and the other is the backup path through P1 and P3. 4.1. P2.1 P1(config-mpls-te)#reoptimize timers delay installation-delay-time 600 2-181 SJ-20140731105308-012|2014-10-20 (R1.Chapter 2 MPLS TE Configuration Configuration Flow 1. Enable the TE function on all interfaces used on P1. with the next hop Tunnel1.

0 P2(config-if-gei-0/2/1/1)#exit P2(config)#interface gei-0/2/1/2 P2(config-if-gei-0/2/1/2)#no shutdown P2(config-if-gei-0/2/1/2)#ip address 120.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-mpls-te)#explicit-path name primary P1(config-mpls-te-expl-path-name)#next-address strict 74.1.1 P1(config-mpls-te-expl-path-name)#next-address strict 120.20.1.0.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name primary P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng record-route P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#tunnel te_tunnel2 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 3.1.1.255.0 area 0 2-182 SJ-20140731105308-012|2014-10-20 (R1.1.1.1.2 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#interface gei-0/2/1/1 P1(config-mpls-te-if-gei-0/2/1/1)#exit P1(config-mpls-te)#interface gei-0/2/1/3 P1(config-mpls-te-if-gei-0/2/1/3)#exit P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 3.1.1.0.1.255.255 te_tunnel1 Run the following commands on P2: P2(config)#interface gei-0/2/1/1 P2(config-if-gei-0/2/1/1)#no shutdown P2(config-if-gei-0/2/1/1)#ip address 74.1 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 explicit-path name back P1(config-mpls-te-tunnel-te_tunnel2)#exit P1(config-mpls-te)#interface gei-0/2/1/1 P1(config-mpls-te-if-gei-0/2/1/1)#backup-path te_tunnel 2 P1(config-mpls-te-if-gei-0/2/1/1)#exit P1(config-mpls-te)#exit P1(config)#ip route 172.2 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#explicit-path name back P1(config-mpls-te-expl-path-name)#next-address strict 60.1 255.1.1.1 P2(config-ospf-1)#network 2.1.0 P2(config-if-gei-0/2/1/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.255.1.2 255.255.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.255.1.1.255.255.1 0.1.255.1.1 255.1 255.1.1.1.0) ZTE Proprietary and Confidential .

255.255 P3(config-if-loopback3)#exit P3(config)#router ospf 1 P3(config-ospf-1)#router-id 3.0 0.0.255 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.0 area 0 P3(config-ospf-1)#network 120.1.1.1.1 255.1.1.1.255 area 0 P3(config-ospf-1)#mpls traffic-eng area 0 P3(config-ospf-1)#exit P3(config)#mpls traffic-eng P3(config-mpls-te)#interface loopback3 P3(config-mpls-te-if-loopback3)#exit P3(config-mpls-te)#router-id 3.0) ZTE Proprietary and Confidential .0 P3(config-if-gei-0/2/1/3)#exit P3(config)#interface loopback3 P3(config-if-loopback3)#ip address 3.1.1 0.255.1.1.1 P3(config-ospf-1)#network 3.0.1.1 P3(config-mpls-te)#interface gei-0/2/1/2 P3(config-mpls-te-if-gei-0/2/1/2)#exit P3(config-mpls-te)#interface gei-0/2/1/3 P3(config-mpls-te-if-gei-0/2/1/3)#exit P3(config-mpls-te)#exit Run the following commands on R2: 2-183 SJ-20140731105308-012|2014-10-20 (R1.0 0.1.2 255.0 0.0.1.1.0.255.1.1 P2(config-mpls-te)#interface gei-0/2/1/1 P2(config-mpls-te-if-gei-0/2/1/1)#exit P2(config-mpls-te)#interface gei-0/2/1/2 P2(config-mpls-te-if-gei-0/2/1/2)#exit P2(config-mpls-te)#exit Run the following commands on P3: P3(config)#interface gei-0/2/1/2 P3(config-if-gei-0/2/1/2)#no shutdown P3(config-if-gei-0/2/1/2)#ip address 120.0 0.255.255 area 0 P2(config-ospf-1)#network 120.1.1.1.255.1.255 area 0 P3(config-ospf-1)#network 60.0.0 P3(config-if-gei-0/2/1/2)#exit P3(config)#interface gei-0/2/1/3 P3(config-if-gei-0/2/1/3)#no shutdown P3(config-if-gei-0/2/1/3)#ip address 60.255.1.Chapter 2 MPLS TE Configuration P2(config-ospf-1)#network 74.1.1.0.2 255.0.0.1.0.0.

ZXR10 M6000-S Configuration Guide (MPLS)
R2(config)#interface gei-0/2/1/1
R2(config-if-gei-0/2/1/1)#no shutdown
R2(config-if-gei-0/2/1/1)#ip address 172.20.1.2 255.255.255.0
R2(config-if-gei-0/2/1/1)#exit

Configuration Verification
Run the show mpls traffic-eng tunnels brief command to check the FRR establishment
information on P1 after the tunnel gets up. The execution result is displayed as follows:
P1#show mpls traffic-eng tunnels brief
Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
TUNNEL NAME

DESTINATION

tunnel_1

3.1.1.1

UP IF
-

DOWN IF
gei-0/2/1/1

STATE/PROT
up/up

tunnel_2

3.1.1.1

-

gei-0/2/1/3

up/up

P1#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel LspID In-label Out intf/label
Tunnel1

86

Tun hd

FRR intf/label Status

gei-0/2/1/1:147456 Tu2:3

ready

LSP midpoint frr information:
LSP identifier

In-label Out intf/label

FRR intf/label Status

Run the show mpls traffic-eng fast-reroute command to check the FRR status on P1 if the
active tunnel is faulty and the traffic is switched over to the standby tunnel, and FRR is in
active status. The execution result is displayed as follows:
P1#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel LspID In-label Out intf/label
Tunnel1

86

Tun hd

FRR intf/label Status

gei-0/2/1/3:147456 Tu2:3

active

LSP midpoint frr information:
LSP identifier

In-label Out intf/label

FRR intf/label Status

After the fault on the active tunnel is cleared, FRR is still active in the WTR period, and
traffic is still forwarded through the standby tunnel. Run the show mpls traffic-eng fast-r
eroute Tunnel head end item information command to check the FRR status on P1. The
execution result is displayed as follows:
P1#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel LspID In-label Out intf/label
Tunnel1

86

Tun hd

FRR intf/label Status

gei-0/2/1/3:147456 Tu2:3

active

LSP midpoint frr information:

2-184
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration
LSP identifier

In-label Out intf/label

FRR intf/label Status

After the WRT period reaches 600 s, the FRR status is restored to ready, and traffic is
forwarded through the active tunnel. Run the show mpls traffic-eng fast-reroute command
to check the FRR status on P1. The execution result is displayed as follows:
P1#show mpls traffic-eng fast-reroute
Tunnel head end item information
Protected Tunnel LspID In-label Out intf/label
Tunnel1

86

Tun hd

FRR intf/label Status

gei-0/2/1/1:147456 Tu2:3

ready

LSP midpoint frr information:
LSP identifier

In-label Out intf/label

FRR intf/label Status

2.20 TE Tunnels Supporting Soft Preemption
2.20.1 TE Tunnels Supporting Soft-Preemption
In an MPLS network, when a TE tunnel is established, it has two attributes, priority upon
establishment and priority after establishment.
Priority upon establishment refers to the priority of a tunnel being established, range: 0–7, 0
is the highest priority. When the resources are insufficient, this priority determines whether
the LSP can preempt the tunnel resources that have been UP.
Priority after establishment refers to the priority when a tunnel is established. Range: 0–7,
in which 0 is the highest priority. This priority is relative to being preempted. The higher
the priority after establishment of the current node, the more difficult its resources can be
preempted.
In general, the priority upon establishment cannot be higher than the priority after
establishment, that is, the value of the priority upon establishment cannot be lower than
that of the Priority after establishment. Otherwise, the tunnel will be in flapping status.
Tunnel preemption includes hard preemption and soft preemption.
Hard preemption: The preempted tunnel is directly disconnected upon preemption.
Therefore, the services bored on the preempted tunnels may be interrupted.
In Figure 2-33, the priority upon establishment of Tunnel1 is higher than the priority after
establishment of Tunnel2 (R1 and R5 links are interrupted).
l
l

The path of Tunnel2 is R2→R1→R4 (in UP status).
The path calculated for Tunnel1 is R0→R1→R4→R5 (in signaling status).

2-185
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)

Figure 2-33 Hard Preemption

Because the bandwidth used between R1 and R4 is insufficient, Tunnel1 preempts the
bandwidth resources of Tunnel2 on the preemption point R1. At this time, Tunnel2 sends
resv-tear to the upstream node at R1 and sends path-tear to the downstream node to tear
the tunnel. After that, Tunnel2 recalculates the path along R2→R3→R5→R4. However,
during Tunnel2 becomes up from down, services bored on Tunnel2 may be interrupted.
Soft preemption: The preempted tunnel is not directly disconnected upon preemption.
Signaling messages are sent to the head node of the tunnel to notify the head node to
perform re-optimization, without going through the link on which preemption occurs. In this
way, the service interruption risk from directly disconnecting a tunnel upon hard preemption
is greatly reduced.
In Figure 2-34, the priority upon establishment of Tunnel1 is higher than the priority after
establishment of Tunnel2 (R1 and R5 links are interrupted).
l
l

The path of Tunnel2 is R2→R1→R4 (in UP status).
The path calculated by Tunnel1 is R0→R1→R4→R5 (in signaling status).

Figure 2-34 Soft Preemption

Because the bandwidth used between R1 and R4 is insufficient, Tunnel1 preempts the
bandwidth resources of Tunnel2 on the preemption point R1. In this case, Tunnel2
2-186
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration

sends a path-err message to the upstream node at R1 to notify the head node R2 of
Tunnel2 to re-optimize Tunnel2, without going through the link R1→R4. The recalculated
path is R2→R3→R5→R4. After Tunnel2 is successfully re-optimized, the previous LSP
(R2→R1→R4) is disconnected, Tunnel2 is not down during preemption and services will
not be interrupted. However, soft preemption cannot completely avoid service interruption
due to preemption. For example, if pre-optimization fails, services may be interrupted.

2.20.2 Configuring a TE Tunnel Supporting Priorities and Soft
Preemption
This procedure describes how to enable a TE tunnel to support priorities and soft
preemption.

Steps
1. Configure a TE tunnel priority.
Step

Command

Function

1

ZXR10(config-mpls-te)#tunnel te_tunnel

Enters Tunnel interface

<tunnel-number>

configuration mode.

2

ZXR10(config-mpls-te-tunnel-te_tunnel-

Configures the setup priority

tunnel-number)#tunnel mpls traffic-eng priority

and hold priority of a tunnel.

<setup-priority><hold-priority>

The highest priority is 0. The
setup priority cannot be higher
than the hold priority.

<setup-priority>: setup priority of a tunnel, range: 0-7.
<hold-priority>: hold priority of a tunnel, range: 0-7.
2. Configure the soft preemption parameters and enable the soft preemption function of
a tunnel.
Step

Command

Function

1

ZXR10(config-mpls-te)#soft-preemption timeout

Sets the LSP keepalive time

<timeout>

for MPLS-TE soft preemption.

ZXR10(config-mpls-te)#tunnel te_tunnel

Enters Tunnel interface

<tunnel-number>

configuration mode.

ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel-

Enables the soft preemption

number)#tunnel mpls traffic-eng soft-preemption

function on a tunnel.

2

3

<timeout>: LSP keepalive time for MPLS-TE soft preemption.Range: 1-300, detault:
30, unit: seconds.
3. Verify the configurations.

2-187
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)

Command

Function

ZXR10#show mpls traffic-eng soft-preemption

Checks the local tunnel soft
preemption configuration, soft
preemption keepalive time, and
information about the tunnels
involved in soft preemption.

ZXR10#show mpls traffic-eng tunnels remote-tunnel

Checks the configuration for

[tunnel-id<tunnel_id> lsp-id<lsp_id> ingress-id <ingress_id>

remote tunnel soft preemption.

egress-id<egress_id>]

– End of Steps –

2.20.3 Instance of TE Tunnels Supporting Soft Preemption
Configuration Description
In Figure 2-35, a TE tunnel (ISIS-TE) is established following IGP-TE. The available
bandwidth of all TE interfaces is 500 M, the reserved bandwidth of Tunnel1 and Tunnel2
is 500 M, and the priority upon establishment of Tunnel2 is higher than the priority after
establishment of Tunnel1.
The path of Tunnel1 (in up status) is P2–>P3–>P5.
The path calculated by Tunnel2 is P1–>P3–>P5 (in signaling status).
Because the bandwidth of the link P3–>P5 is insufficient, Tunnel2 will preempt the
bandwidth of Tunnel1.
Figure 2-35 Instance of TE Tunnels Supporting Soft Preemption

2-188
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration

Configuration Flow
1. Configure a loopback address and interface address on each of six devices.
2. Establish ISIS neighbor relation among interconnected interfaces, enable the TE
function on both ISISs and interfaces, and set an available bandwidth for the dynamic
TE to 500 M.
3. Configure a dynamic TE Tunnel1 on P2 to P5, using dynamic routing, with a reserved
bandwidth of 500 M, the priorities upon and after establishment 7, and the soft preemption function enabled.
4. Configure a dynamic TE Tunnel2 on P1 to P5, using dynamic routing, with a reserved
bandwidth of 500 M, and the priorities upon and after establishment 6.
Because the bandwidth of the link P3–>P5 is insufficient, Tunnel2 will preempt the
bandwidth of Tunnel1. Tunnel1 sends a path-err message on P3 to P2 to notify P2 to
re-optimize Tunnel1, without going through the link P3–>P5. The re-optimized path is
P2–>P4–>P6–>P5.

Configuration Commands
Run the following commands on P1:
Interface configurations:
P1(config)#interface gei-0/2/0/6
P1(config-gei-0/2/0/6)#no shutdown
P1(config-gei-0/2/0/6)#ip address 106.172.1.1 255.255.255.0
P1(config-gei-0/2/0/6)#exit
P1(config)#interface loopback1
P1(config-if-loopback1)#ip address 1.1.1.100 255.255.255.255
P1(config-if-loopback1)#exit
P1(config)#interface te_tunnel2
P1(config-if-te_tunnel2)#ip unnumbered loopback1
P1(config-if-te_tunnel2)#exit
ISIS and ISIS-TE configurations:
P1(config)#router isis 10
P1(config-isis-10)#area 00
P1(config-isis-10)#system-id 0000.1111.1111
P1(config-isis-10)#is-type level-1
P1(config-isis-10)#metric-style wide
P1(config-isis-10)#mpls traffic-eng level-1
P1(config-isis-10)#interface gei-0/2/0/6
P1(config-isis-10-if-gei-0/2/0/6)#ip router isis
P1(config-isis-10-if-gei-0/2/0/6)#exit
P1(config-isis-10)#exit
P1(config)#
MPLS-TE configurations:
P1(config)#mpls traffic-eng
P1(config-mpls-te)#router-id 1.1.1.100

2-189
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
P1(config-mpls-te)#interface loopback1
P1(config-mpls-te-if-loopback1)#exit
P1(config-mpls-te)#interface gei-0/2/0/6
P1(config-mpls-te-if-gei-0/2/0/6)#bandwidth dynamic 1000000 percent 50
P1(config-mpls-te-if-gei-0/2/0/6)#exit
P1(config-mpls-te)#tunnel te_tunnel2
P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 73.73.73.1
P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng bandwidth 500000
P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 dynamic
P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng priority 6 6
P1(config-mpls-te-tunnel-te_tunnel2)#exit
P1(config-mpls-te)#exit

Run the following commands on P2:
Interface configurations:
P2(config)#interface gei-0/1/0/7
P2(config-if-gei-0/1/0/7)#no shutdown
P2(config-if-gei-0/1/0/7)#ip address 107.44.44.4 255.255.255.0
P2(config-if-gei-0/1/0/7)#exit
P2(config)#interface gei-0/1/0/13
P2(config-if-gei-0/1/0/13)#no shutdown
P2(config-if-gei-0/1/0/13)#ip address 1.0.13.4 255.255.255.0
P2(config-if-gei-0/1/0/13)#exit
P2(config)#interface loopback1
P2(config-if-loopback1)#ip address 4.4.4.100 255.255.255.255
P2(config-if-loopback1)#exit
P2(config)#interface te_tunnel1
P2(config-if-te_tunnel1)#ip unnumbered loopback1
P2(config-if-te_tunnel1)#exit
ISIS and ISIS-TE configurations:
P2(config)#router isis 10
P2(config-isis-10)#area 00
P2(config-isis-10)#system-id 0000.4444.4444
P2(config-isis-10)#is-type level-1
P2(config-isis-10)#metric-style wide
P2(config-isis-10)#mpls traffic-eng level-1
P2(config-isis-10)#interface gei-0/1/0/7
P2(config-isis-10-if-gei-0/1/0/7)#ip router isis
P2(config-isis-10-if-gei-0/1/0/7)#exit
P2(config-isis-10)#interface gei-0/1/0/13
P2(config-isis-10-if-gei-0/1/0/13)#ip router isis
P2(config-isis-10-if-gei-0/1/0/13)#exit
P2(config-isis-10)#exit
MPLS-TE configurations:

2-190
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration
P2(config)#mpls traffic-eng
P2(config-mpls-te)#router-id 4.4.4.100
P2(config-mpls-te)#interface loopback1
P2(config-mpls-te-if-loopback1)#exit
P2(config-mpls-te)#interface gei-0/1/0/7
P2(config-mpls-te-if-gei-0/1/0/7)#bandwidth dynamic 1000000 percent 50
P2(config-mpls-te-if-gei-0/1/0/7)#exit
P2(config-mpls-te)#interface gei-0/1/0/13
P2(config-mpls-te-if-gei-0/1/0/13)#bandwidth dynamic 1000000 percent 50
P2(config-mpls-te-if-gei-0/1/0/13)#exit
P2(config-mpls-te)#exit
P2(config)#mpls traffic-eng
P2(config-mpls-te)#tunnel te_tunnel1
P2(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 73.73.73.1
P2(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng bandwidth 500000
P2(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 dynamic
P2(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng soft-preemption
P2(config-mpls-te-tunnel-te_tunnel1)#exit
P2(config-mpls-te)#exit

Run the following commands on P3:
Interface configurations:
P3(config)#interface gei-0/1/0/6
P3(config-if-gei-0/1/0/6)#no shutdown
P3(config-if-gei-0/1/0/6)#ip address 106.172.1.72 255.255.255.0
P3(config-if-gei-0/1/0/6)#exit
P3(config)#interface gei-0/1/0/7
P3(config-if-gei-0/1/0/7)#no shutdown
P3(config-if-gei-0/1/0/7)#ip address 107.44.44.72 255.255.255.0
P3(config-if-gei-0/1/0/7)#exit
P3(config)#interface gei-0/2/0/1
P3(config-if-gei-0/2/0/1)#no shutdown
P3(config-if-gei-0/2/0/1)#ip address 13.13.13.1 255.255.255.0
P3(config-if-gei-0/2/0/1)#exit
P3(config)#interface loopback1
P3(config-if-loopback1)#ip address 72.72.72.1 255.255.255.255
P3(config-if-loopback1)#exit
ISIS and ISIS-TE configurations:
P3(config)#router isis 10
P3(config-isis-10)#area 00
P3(config-isis-10)#system-id 0000.0000.0072
P3(config-isis-10)#is-type

level-1

P3(config-isis-10)#metric-style wide
P3(config-isis-10)#mpls traffic-eng level-1

2-191
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

52.255.72.1 P3(config-mpls-te)#interface loopback1 P3(config-mpls-te-if-loopback1)#exit P3(config-mpls-te)#interface gei-0/1/0/6 P3(config-mpls-te-if-gei-0/1/0/6)#exit P3(config-mpls-te)#interface gei-0/1/0/7 P3(config-mpls-te-if-gei-0/1/0/7)#exit P3(config-mpls-te)#interface gei-0/2/0/1 P3(config-mpls-te-if-gei-0/2/0/1)#bandwidth dynamic 1000000 percent 50 P3(config-mpls-te-if-gei-0/2/0/1)#exit P3(config-mpls-te)#exit P3(config)# Run the following commands on P4: Interface configurations: P4(config)#interface gei-0/1/0/13 P4(config-if-gei-0/1/0/13)#no shutdown P4(config-if-gei-0/1/0/13)#ip address 1.255.5252.255 P4(config-if-loopback1)#exit ISIS and ISIS-TE configurations: P4(config)#router isis 10 P4(config-isis-10)#area 00 P4(config-isis-10)#system-id 0000.255.ZXR10 M6000-S Configuration Guide (MPLS) P3(config-isis-10)#interface gei-0/1/0/6 P3(config-isis-10-if-gei-0/1/0/6)#ip router isis P3(config-isis-10-if-gei-0/1/0/6)#exit P3(config-isis-10)#interface gei-0/1/0/7 P3(config-isis-10-if-gei-0/1/0/7)#ip router isis P3(config-isis-10-if-gei-0/1/0/7)#exit P3(config-isis-10)#interface gei-0/2/0/1 P3(config-isis-10-if-gei-0/2/0/1)#ip router isis P3(config-isis-10-if-gei-0/2/0/1)#exit P3(config-isis-10)#exit MPLS-TE configurations: P3(config)#mpls traffic-eng P3(config-mpls-te)#router-id 72.0.0) ZTE Proprietary and Confidential .52.13.255.72.0 P4(config-if-gei-0/1/0/13)#exit P4(config)#interface gei-0/1/0/15 P4(config-if-gei-0/1/0/15)#no shutdown P4(config-if-gei-0/1/0/15)#ip address 15.73.255.100 255.52.255.52 255.5252 P4(config-isis-10)#is-type level-1 P4(config-isis-10)#metric-style wide 2-192 SJ-20140731105308-012|2014-10-20 (R1.52 255.0 P4(config-if-gei-0/1/0/15)#exit P4(config)#interface loopback1 P4(config-if-loopback1)#ip address 52.

0000.52.255.255.73.1 255.0 P5(config-if-gei-0/1/0/6)#exit P5(config)#interface loopback1 P5(config-if-loopback1)#ip address 73.255.100 P4(config-mpls-te)#interface loopback1 P4(config-mpls-te-if-loopback1)#exit P4(config-mpls-te)#interface gei-0/1/0/13 P4(config-mpls-te-if-gei-0/1/0/13)#exit P4(config-mpls-te)#interface gei-0/1/0/15 P4(config-mpls-te-if-gei-0/1/0/15)#bandwidth dynamic 1000000 percent 50 P4(config-mpls-te-if-gei-0/1/0/15)#exit P4(config-mpls-te)#exit Run the following commands on P5: Interface configurations: P5(config)#interface gei-0/1/0/11 P5(config-if-gei-0/1/0/11)#no shutdown P5(config-if-gei-0/1/0/11)#ip address 13.255.255.73.255 P5(config-if-loopback1)#exit ISIS and ISIS-TE configurations: P5(config)#router isis 10 P5(config-isis-10)#area 00 P5(config-isis-10)#system-id 0000.13.Chapter 2 MPLS TE Configuration P4(config-isis-10)#mpls traffic-eng level-1 P4(config-isis-10)#interface gei-0/1/0/13 P4(config-isis-10-if-gei-0/1/0/13)#ip router isis P4(config-isis-10-if-gei-0/1/0/13)#exit P4(config-isis-10)#interface gei-0/1/0/15 P4(config-isis-10-if-gei-0/1/0/15)#ip router isis P4(config-isis-10-if-gei-0/1/0/15)#exit P4(config-isis-10)#exit MPLS-TE configurations: P4(config)#mpls traffic-eng P4(config-mpls-te)#router-id 52.0 P5(config-if-gei-0/1/0/11)#exit P5(config)#interface gei-0/1/0/6 P5(config-if-gei-0/1/0/6)#no shutdown P5(config-if-gei-0/1/0/6)#ip address 14.1.7301 P5(config-isis-10)#is-type level-1 P5(config-isis-10)#metric-style wide P5(config-isis-10)#mpls traffic-eng level-1 P5(config-isis-10)#interface gei-0/1/0/11 P5(config-isis-10-if-gei-0/1/0/11)#ip router isis P5(config-isis-10-if-gei-0/1/0/11)#exit P5(config-isis-10)#interface gei-0/1/0/6 2-193 SJ-20140731105308-012|2014-10-20 (R1.1.0) ZTE Proprietary and Confidential .255.2 255.1 255.13.52.

255.73.73 255.73.561c.255.0) ZTE Proprietary and Confidential .0 P6(config-if-gei-0/1/0/6)#exit P6(config)#interface loopback1 P6(config-if-loopback1)#ip address 73.73.2 255.1.52.255.255.73.255 P6(config-if-loopback1)#exit ISIS and ISIS-TE configurations: P6(config)#router isis 10 P6(config-isis-10)#area 00 P6(config-isis-10)#system-id 2008.2 2-194 SJ-20140731105308-012|2014-10-20 (R1.1.73.255.73.0 P6(config-if-gei-0/1/0/15)#exit P6(config)#interface gei-0/1/0/6 P6(config-if-gei-0/1/0/6)#no shutdown P6(config-if-gei-0/1/0/6)#ip address 14.2 255.41a2 P6(config-isis-10)#is-type level-1 P6(config-isis-10)#metric-style wide P6(config-isis-10)#mpls traffic-eng level-1 P6(config-isis-10)#interface gei-0/1/0/6 P6(config-isis-10-if-gei-0/1/0/6)#ip router isis P6(config-isis-10-if-gei-0/1/0/6)#exit P6(config-isis-10)#interface gei-0/1/0/15 P6(config-isis-10-if-gei-0/1/0/15)#ip router isis P6(config-isis-10-if-gei-0/1/0/15)#exit P6(config-isis-10)#exit MPLS-TE configurations: P6(config)#mpls traffic-eng P6(config-mpls-te)#router-id 73.ZXR10 M6000-S Configuration Guide (MPLS) P5(config-isis-10-if-gei-0/1/0/6)#ip router isis P5(config-isis-10-if-gei-0/1/0/6)#exit P5(config-isis-10)#exit MPLS-TE configurations: P5(config)#mpls traffic-eng P5(config-mpls-te)#router-id 73.1 P5(config-mpls-te)#interface loopback1 P5(config-mpls-te-if-loopback1)#exit P5(config-mpls-te)#interface gei-0/1/0/11 P5(config-mpls-te-if-gei-0/1/0/11)#exit P5(config-mpls-te)#interface gei-0/1/0/6 P5(config-mpls-te-if-gei-0/1/0/6)#exit P5(config-mpls-te)#exit Run the following commands on P6: Interface configurations: P6(config)#interface gei-0/1/0/15 P6(config-if-gei-0/1/0/15)#no shutdown P6(config-if-gei-0/1/0/15)#ip address 15.73.255.

The execution result is displayed as follows: P2#show mpls traffic-eng tunnels brief Signalling Summary: LSP Tunnels Process:running RSVP Process:running Forwarding:enabled TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT tunnel_1 73.73.1 - gei-0/1/0/7 up/up P2#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 73. type dynamic (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: No path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled 2-195 SJ-20140731105308-012|2014-10-20 (R1.Chapter 2 MPLS TE Configuration P6(config-mpls-te)#interface loopback1 P6(config-mpls-te-if-loopback1)#exit P6(config-mpls-te)#interface gei-0/1/0/15 P6(config-mpls-te-if-gei-0/1/0/15)#exit P6(config-mpls-te)#interface gei-0/1/0/6 P6(config-mpls-te-if-gei-0/1/0/6)#bandwidth dynamic 500000 percent 100 P6(config-mpls-te-if-gei-0/1/0/6)#exit P6(config-mpls-te)#exit Configuration Verification 1.73. Run the show mpls traffic-eng tunnels brief command to check the establishment status (path: P2->P3->P5) of Tunnel1 on P2 before configuring Tunnel2 on P1.0) ZTE Proprietary and Confidential .73.1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.73.

In this way.ZXR10 M6000-S Configuration Guide (MPLS) Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 500000 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: enabled Soft Preemption Status: not pending Addresses of preempting links: 0. The calculated path is P2–>P4–>P6–>P5.44. Tun-Instance 2 RSVP Path Info: Explicit Route: 107. Tun-ID 1. peak rate= 500000 kb RSVP Resv Info: Record Route: NULL Fspec: ave rate= 500000 kb. After receiving the path-err message. Dst 73. Path error: admission fail(lspid:9.100.errvalue:7). 0 hour.errcode:1. Clear mpls rsvp(lspid:10. Tunnel1 sends a path-err message from P3 to P2.4 107.44.44.72 13.73.errvalue:2).73.13.13. the original LSP (P2–>P3–>P5) is disconnected.73.73.44. 41 second Prior LSP: path option 1 Current LSP: Uptime:0 day. 40 second Last LSP Error Information: Clear mpls rsvp(lspid:2.1 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 500000 kb. and Tunnel1 will 2-196 SJ-20140731105308-012|2014-10-20 (R1.0. P2 re-optimizes Tunnel1.errcode:1.errcode:1.0. After Tunnel2 is configured on P1.1. Tunnel1 is re-optimized. burst= 0 byte. burst= 0 byte.4.1 13.13. 0 minute.0) ZTE Proprietary and Confidential .13.2 73. 147458 RSVP Signalling Info : Src 4. 0 hour. 2. without going through the link P3–>P5. 37 minute. peak rate= 500000 kb History: Tunnel: Time Since Created: 0 day.errvalue:7).0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/7.4.

Chapter 2 MPLS TE Configuration never get down during preemption. type dynamic (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: No path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Upper Limit: 4294967295 Hop Prior: disabled Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 500000 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: enabled Soft Preemption Status: not pending Addresses of preempting links: 0.1 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. Therefore.0 Without-CSPF: disabled 2-197 SJ-20140731105308-012|2014-10-20 (R1. services bored on Tunnel1 will not be interrupted.73.0. P2#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 73.73. Run the show mpls traffic-eng tunnels te_tunnel 1 command on P2 to check the path after re-optimization (P2–>P4–>P6–>P5).0.0) ZTE Proprietary and Confidential .

21. peak rate= 500000 kb 2.0.1 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 500000 kb.1 Equal Load Sharing on the TE-ECMP ECMP configures multiple TE tunnels with the same source and destination addresses to a load sharing group.ZXR10 M6000-S Configuration Guide (MPLS) InLabel: OutLabel: gei-0/1/0/13. per-packet indicates per packet.13. Dst 73.1.73. 2-198 SJ-20140731105308-012|2014-10-20 (R1.1. 128 sharing groups can be configured.73. burst= 0 byte.1.1.52 15. Configure equal load sharing on the TE-ECMP.100. At present.73.52 15. Tun-ID 1.2 Configuring Equal Load Sharing on the TE-ECMP This procedure describes how to configure equal load sharing on the TE-ECMP. Step Command Function 1 ZXR10(config)#te-ecmp-group <te-ecmp-id> Configures a TE-ECMP load sharing group in global mode. 2. peak rate= 500000 kb RSVP Resv Info: Record Route: NULL Fspec: ave rate= 500000 kb. Tun-Instance 3 RSVP Path Info: Explicit Route: 1. 212993 RSVP Signalling Info : Src 4.4 1.52.21.73.4.73 14.21 Equal Load Sharing on the TE-ECMP 2.4.73.13. 2 3 ZXR10(config-te-ecmp-group-te-ecmp-id)#tunnel Binds the TE tunnel to the <tunnel-id> TE-ECMP load sharing group. {per-stream | per-packet}>: per-stream indicates per flow.0. ZXR10(config-te-ecmp-group-te-ecmp-id)#load-sha Sets the load sharing policy ring policy {per-stream | per-packet} for the load sharing group to per flow or per packet. burst= 0 byte.2 14.0) ZTE Proprietary and Confidential . Steps 1.73.1 73. A load sharing policy (per-flow or per-packet) is configured for the group as needed. <te-ecmp-id>: TE-ECMP load sharing group ID.52.1.

3 Instance of Equal Load Sharing Configuration on the TE-ECMP Configuration Description In Figure 2-36. define the per-packet policy. Enable the TE function on the directly-connected interfaces of P1 and P2.Chapter 2 MPLS TE Configuration 2.0) ZTE Proprietary and Confidential . 3. and bind Tunnel1 and Tunnel2 to the load sharing group. 4. Establish OSPF neighbors on the directly-connected interfaces of P1 and P2. Configuration Commands Run the following commands on P1: P1(config)#interface gei-0/1/0/2 2-199 SJ-20140731105308-012|2014-10-20 (R1. Command Function ZXR10#show te-ecmp-group {all|id} Checks the configured load sharing group and the information about the binding relation with the TE tunnel. and the two tunnels are bound to the load sharing group in accordance with the per packet policy. Verify the configurations. Establish Tunnel1 and Tunnel2 on P1 in the same way. – End of Steps – 2. 2. two common RSVP tunnels are established from P1 to P2 in strict routing mode through OSPF TE. all: indicates all configured sharing groups. id: indicates a sharing group. and enable the TE function on the OSPF neighbors. Figure 2-36 Instance of Equal Load Sharing Configuration on the TE-ECMP Configuration Flow 1. Configure a load sharing group.21.

1 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel mpls traffic-eng path-option 1 2-200 SJ-20140731105308-012|2014-10-20 (R1.255 area 0 P1(config-ospf-1)#network 1.1.ZXR10 M6000-S Configuration Guide (MPLS) P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#ip address 192.255.0 0.255.255.1.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#explicit-path identifier 2 P1(config-mpls-te-expl-path-id-1)#next-address strict 190.255.1.0.168.168.168.0.1 255.1.0.168.1.1.0) ZTE Proprietary and Confidential .0 0.1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path identifier 1 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#tunnel te_tunnel 2 P1(config-mpls-te-tunnel-te_tunnel2)#tunnel destination ipv4 2.1 0.1.0 P1(config-if-gei-0/1/0/2)#exit P1(config)#interface gei-0/2/0/2 P1(config-if-gei-0/2/0/2)#no shutdown P1(config-if-gei-0/2/0/2)#ip address 190.1 P1(config-mpls-te)#interface gei-0/1/0/2 P1(config-mpls-te-if-gei-0/1/0/2)#exit P1(config-mpls-te)#interface gei-0/2/0/2 P1(config-mpls-te-if-gei-0/2/0/2)#exit P1(config-mpls-te)#explicit-path identifier 1 P1(config-mpls-te-expl-path-id-1)#next-address strict 192.0 P1(config-if-gei-0/2/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.1.1.255 area 0 P1(config-ospf-1)#network 190.1.1.1.1.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 1.0.255.1.1.1.255.2 P1(config-mpls-te-expl-path-id-1)#exit P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1.1.0.0.1 255.1 P1(config-ospf-1)#network 192.168.168.1 255.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#interface te_tunnel2 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#router-id 1.

255.1.0.255.0) ZTE Proprietary and Confidential .0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback2 P2(config-mpls-te-if-loopback2)#exit P2(config-mpls-te)#router-id 2.1 P2(config-ospf-1)#network 192.255.168.1.255.1.255 area 0 P2(config-ospf-1)#network 2.1 P2(config-mpls-te)#interface gei-0/1/0/2 P2(config-mpls-te-if-gei-0/1/0/2)#exit P2(config-mpls-te)#interface gei-0/2/0/2 P2(config-mpls-te-if-gei-0/2/0/2)#exit Configuration Verification Run the show te-ecmp-group 1 command to check the information about the tunnel ECMP group.255 area 0 P2(config-ospf-1)#network 190.2 255.255.1.1 0.0.0 0.255.168.1.2 255.0.1.1.0.0 P2(config-if-gei-0/2/0/2)#exit P2(config)#interface loopback2 P2(config-if-loopback2)#ip address 2.0.1.Chapter 2 MPLS TE Configuration explicit-path identifier 2 P1(config-mpls-te-tunnel-te_tunnel2)#exit P1(config-mpls-te)#exit P1(config)#te-ecmp-group 1 P1(config-te-ecmp-group-1)#load-sharing policy per-packet P1(config-te-ecmp-group-1)#tunnel 1 P1(config-te-ecmp-group-1)#tunnel 2 P1(config-te-ecmp-group-1)#exit Run the following commands on P2: P2(config)#interface gei-0/1/0/2 P2(config-if-gei-0/1/0/2)#no shutdown P2(config-if-gei-0/1/0/2)#ip address 192.1 255.1.0 0.1.168.168.0 P2(config-if-gei-0/1/0/2)#exit P2(config)#interface gei-0/2/0/2 P2(config-if-gei-0/2/0/2)#no shutdown P2(config-if-gei-0/2/0/2)#ip address 190.255 P2(config-if-loopback2)#exit P2(config)#router ospf 1 P2(config-ospf-1)#router-id 2.1. The execution result is displayed as follows: P1(config)#show te-ecmp-group 1 TE-ECMP group 1 2-201 SJ-20140731105308-012|2014-10-20 (R1.1.0.

or displaying some excluded link types for paths with some types of traffic. 2-202 SJ-20140731105308-012|2014-10-20 (R1.22 TE Affinity 2. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Configures three affinity number)#tunnel mpls traffic-eng affinity { exclude-any | attribute constraints in include-any | include-all } bit-position <value> accordance with the affinity bit position. range: 0–31. 2. At most three types of affinity commands (32 commands) are supported by a TE tunnel.22. At most 32 affinity attribute bits can be configured for an interface. Steps 1.1 TE Affinity Introduction TE Color is an abstract TE link attribute. 2 ZXR10(config-mpls-te-if-interface-name)#affinity attribute bit-position <value> Sets the affinity attribute bit position of a TE interface.22. this attribute implements the routing policy for some services and achieves the network engineering purpose. range: 0–31. Step Command Function 1 ZXR10(config-mpls-te)#interface <interface-name> Enters TE interface configuration mode.ZXR10 M6000-S Configuration Guide (MPLS) Load-sharing policy: per-packet Member tunnel: 1 Member tunnel: 2 2. Configure the value of the MPLS TE affinity. By limiting some types of traffic for some types of links.0) ZTE Proprietary and Confidential . 3 4 ZXR10(config-mpls-te)#tunnel te_tunnel Enters Tunnel interface <tunnel-number> configuration mode. Verify the configurations.2 Configuring the TE Affinity This procedure describes how to configure the TE affinity of a TE tunnel. 2.

2. 25. P3. Enable the TE function of the loopback interfaces of P1. and exclude-any. and enable the TE function on the OSPF neighbors. Configure OSPF neighbors for P1.Chapter 2 MPLS TE Configuration Command Function ZXR10#show mpls traffic-eng interface detail [< interface name Displays the affinity configuration >] on an interface. 2. P2. and configure the router-id of the TE as the loopback interface address. including include-any. P3. 4. and configure the following affinity attributes for the egress interfaces of P1. Figure 2-37 TE Affinity Configuration Instance The head node notifies the affinity constraint of the tunnel to downstream nodes through the flag of the SESSION_ATTRIBUTE object in RSVP-PATH.0) ZTE Proprietary and Confidential . A tunnel can be established successfully only when the affinity attributes of all egress interfaces meet the tunnel affinity constraint. egress-id<egress_id>] – End of Steps – 2. Configure the interfaces connecting P1. include-all. Enable the TE function on interfaces of P1. P1: gei-0/1/0/1: 0. ZXR10#show mpls traffic-eng tunnels [te_tunnel <tunnel_id>] Displays the local tunnel affinity configuration. and P4. 30 2-203 SJ-20140731105308-012|2014-10-20 (R1. and the tunnel is configured with affinity constraint. P3. P3. the egress interface is configured to have the affinity attribute. and P4. P2. Configuration Flow 1. ZXR10#show mpls traffic-eng tunnels remote-tunnel Displays the remote tunnel [tunnel-id<tunnel_id> lsp-id<lsp_id> ingress-id <ingress_id> affinity configuration. 21. P2. 3. P2. and P4.3 TE Affinity Configuration Instance Configuration Description Figure 2-37 shows a TE tunnel established among P1-P2-P3-P4 through an IGP-TE. P2.22. and P3. and the corresponding loopback interface addresses. and P4.

1 255. exclude-any 30. After tunnel 1 gets up. 25.0. 21. with the destination address P4 and dynamic routing.0. and gei-0/1/0/6 on P3. check whether the egress interfaces meet the tunnel affinity constraint.255.1 255. 25 gei-0/2/0/2: 6.0 P1(config-if-gei-0/1/0/1)#no shutdown P1(config-if-gei-0/1/0/1)#exit P1(config)#interface gei-0/1/0/2 P1(config-if-gei-0/1/0/2)#ip address 2.1. Configure tunnel 1 on P1.ZXR10 M6000-S Configuration Guide (MPLS) gei-0/1/0/2: 0.101 255.1. gei-0/2/0/1 on P2.0) ZTE Proprietary and Confidential .1.0. 6.255.255.101.255 P1(config-if-loopback1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#network 1.101. 21. include-any 2. 28 5.1. Configuration Commands Run the following commands on P1: P1#configure terminal P1(config)#interface gei-0/1/0/1 P1(config-if-gei-0/1/0/1)#ip address 1. and configure affinity constraint conditions include-any 0. include-all 21.1.255. The egress interfaces are in the following sequence: gei-0/1/0/2 on P1.1. 25 gei-0/1/0/6: 0. and exclude-any 31.101 P1(config-mpls-te)#interface gei-0/1/0/1 P1(config-mpls-te-if-gei-0/1/0/1)#affinity attribute bit-position 0 P1(config-mpls-te-if-gei-0/1/0/1)#affinity attribute bit-position 2 P1(config-mpls-te-if-gei-0/1/0/1)#affinity attribute bit-position 21 P1(config-mpls-te-if-gei-0/1/0/1)#affinity attribute bit-position 25 P1(config-mpls-te-if-gei-0/1/0/1)#affinity attribute bit-position 30 2-204 SJ-20140731105308-012|2014-10-20 (R1.1. 21.1 0.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 101.1.255.0 area 0 P1(config-ospf-1)#network 2.0 P1(config-if-gei-0/1/0/2)#no shutdown P1(config-if-gei-0/1/0/2)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 101. 21.1 0.101. include-all 25.101. 25 P3: gei-0/1/0/3: 0. 2. 25 P2: gei-0/2/0/1: 2.0.255.

Chapter 2 MPLS TE Configuration
P1(config-mpls-te-if-gei-0/1/0/1)#exit
P1(config-mpls-te)#interface gei-0/1/0/2
P1(config-mpls-te-if-gei-0/1/0/2)#affinity attribute bit-position 0
P1(config-mpls-te-if-gei-0/1/0/2)#affinity attribute bit-position 21
P1(config-mpls-te-if-gei-0/1/0/2)#affinity attribute bit-position 25
P1(config-mpls-te-if-gei-0/1/0/2)exit
P1(config-mpls-te)#exit
P1(config)#interface te_tunnel1
P1(config-if-te_tunnel1)#exit
P1(config)#mpls traffic-eng
P1(config-mpls-te)#tunnel te_tunnel1
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 104.104.104.104
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 dynamic
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng affinity include-any
bit-position 0
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng affinity include-any
bit-position 2
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng affinity include-all
bit-position 21
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng affinity include-all
bit-position 25
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng affinity exclude-any
bit-position 30
P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng affinity exclude-any
bit-position 31

Run the following commands on P2:
P2#configure terminal
P2(config)#interface gei-0/1/0/1
P2(config-if-gei-0/1/0/1)#ip address 1.1.1.2 255.255.255.0
P2(config-if-gei-0/1/0/1)#no shut
P2(config-if-gei-0/1/0/1)#exit
P2(config)#interface gei-0/2/0/1
P2(config-if-gei-0/2/0/1)#ip address 9.1.1.2 255.255.255.0
P2(config-if-gei-0/2/0/1)#no shut
P2(config-if-gei-0/2/0/1)#exit
P2(config)#interface gei-0/1/0/2
P2(config-if-gei-0/1/0/2)#ip address 2.1.1.2 255.255.255.0
P2(config-if-gei-0/1/0/2)#no shut
P2(config-if-gei-0/1/0/2)#exit
P2(config)#interface gei-0/2/0/2
P2(config-if-gei-0/2/0/2)#ip address 15.1.1.2 255.255.255.0
P2(config-if-gei-0/2/0/2)#no shut
P2(config-if-gei-0/2/0/2)#exit

2-205
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
P2(config)#interface loopback1
P2(config-if-loopback1)#ip address 102.102.102.102 255.255.255.255
P2(config-if-loopback1)#exit
P2(config)#router ospf 1
P2(config-ospf-1)#network 1.1.1.2 0.0.0.0 area 0
P2(config-ospf-1)#network 9.1.1.2 0.0.0.0 area 0
P2(config-ospf-1)#network 2.1.1.2 0.0.0.0 area 0
P2(config-ospf-1)#network 15.1.1.2 0.0.0.0 area 0
P2(config-ospf-1)#mpls traffic-eng area 0
P2(config-ospf-1)#exit
P2(config)#mpls traffic-eng
P2(config-mpls-te)#interface loopback1
P2(config-mpls-te-if-loopback1)#exit
P2(config-mpls-te)#router-id 102.102.102.102
P2(config-mpls-te)#interface gei-0/2/0/1
P2(config-mpls-te-if-gei-0/2/0/1)#affinity attribute bit-position 2
P2(config-mpls-te-if-gei-0/2/0/1)#affinity attribute bit-position 21
P2(config-mpls-te-if-gei-0/2/0/1)#affinity attribute bit-position 25
P2(config-mpls-te-if-gei-0/2/0/1)#exit
P2(config-mpls-te)#interface gei-0/2/0/2
P2(config-mpls-te-if-gei-0/2/0/2)#affinity attribute bit-position 6
P2(config-mpls-te-if-gei-0/2/0/2)#affinity attribute bit-position 21
P2(config-mpls-te-if-gei-0/2/0/2)#affinity attribute bit-position 25
P2(config-mpls-te-if-gei-0/2/0/2)#exit
P2(config-mpls-te)#interface gei-0/1/0/1
P2(config-mpls-te-if-gei-0/1/0/1)#exit
P2(config-mpls-te)#interface gei-0/1/0/2
P2(config-mpls-te-if-gei-0/1/0/2)#exit
P2(config-mpls-te)#

Run the following commands on P3:
P3#configure terminal
P3(config)#interface gei-0/1/0/2
P3(config-if-gei-0/1/0/2)#ip address 9.1.1.4 255.255.255.0
P3(config-if-gei-0/1/0/2)#no shut
P3(config-if-gei-0/1/0/2)#exit
P3(config)#interface gei-0/1/0/5
P3(config-if-gei-0/1/0/5)#ip address 15.1.1.4 255.255.255.0
P3(config-if-gei-0/1/0/5)#no shut
P3(config-if-gei-0/1/0/5)#exit
P3(config)#interface gei-0/1/0/3
P3(config-if-gei-0/1/0/3)#ip address 13.1.1.4 255.255.255.0
P3(config-if-gei-0/1/0/3)#no shut
P3(config-if-gei-0/1/0/3)#exit

2-206
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration
P3(config)#interface gei-0/1/0/6
P3(config-if-gei-0/1/0/6)#ip address 17.1.1.4 255.255.255.0
P3(config-if-gei-0/1/0/6)#no shut
P3(config-if-gei-0/1/0/6)#exit
P3(config)#interface loopback1
P3(config-if-loopback1)#ip address 103.103.103.103 255.255.255.255
P3(config-if-loopback1)#exit
P3(config)#router ospf 1
P3(config-ospf-1)#network 9.1.1.4 0.0.0.0 area 0
P3(config-ospf-1)#network 15.1.1.4 0.0.0.0 area 0
P3(config-ospf-1)#network 13.1.1.4 0.0.0.0 area 0
P3(config-ospf-1)#network 17.1.1.4 0.0.0.0 area 0
P3(config-ospf-1)#mpls traffic-eng area 0
P3(config-ospf-1)#exit
P3(config)#mpls traffic-eng
P3(config-mpls-te)#interface loopback1
P3(config-mpls-te-if-loopback1)#exit
P3(config-mpls-te)#router-id 103.103.103.103
P3(config-mpls-te)#interface gei-0/1/0/3
P3(config-mpls-te-if-gei-0/1/0/3)#affinity attribute bit-position 0
P3(config-mpls-te-if-gei-0/1/0/3)#affinity attribute bit-position 2
P3(config-mpls-te-if-gei-0/1/0/3)#affinity attribute bit-position 25
P3(config-mpls-te-if-gei-0/1/0/3)#exit
P3(config-mpls-te)#interface gei-0/1/0/6
P3(config-mpls-te-if-gei-0/1/0/6)#affinity attribute bit-position 0
P3(config-mpls-te-if-gei-0/1/0/6)#affinity attribute bit-position 21
P3(config-mpls-te-if-gei-0/1/0/6)#affinity attribute bit-position 25
P3(config-mpls-te-if-gei-0/1/0/6)#affinity attribute bit-position 28
P3(config-mpls-te-if-gei-0/1/0/6)#exit
P3(config-mpls-te)#interface gei-0/1/0/2
P3(config-mpls-te-if-gei-0/1/0/2)#exit
P3(config-mpls-te)#interface gei-0/1/0/5
P3(config-mpls-te-if-gei-0/1/0/5)#exit
P3(config-mpls-te)#

Run the following commands on P4:
P4#configure terminal
P4(config)#interface gei-0/1/0/3
P4(config-if-gei-0/1/0/3)#ip address 13.1.1.5 255.255.255.0
P4(config-if-gei-0/1/0/3)#no shut
P4(config-if-gei-0/1/0/3)#exit
P4(config)#interface gei-0/1/0/5
P4(config-if-gei-0/1/0/5)#ip address 17.1.1.5 255.255.255.0
P4(config-if-gei-0/1/0/5)#no shut

2-207
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
P4(config-if-gei-0/1/0/5)#exit
P4(config)#interface loopback1
P4(config-if-loopback1)#ip address 104.104.104.104 255.255.255.255
P4(config-if-loopback1)#exit
P4(config)#router ospf 1
P4(config-ospf-1)#network 13.1.1.5 0.0.0.0 area 0
P4(config-ospf-1)#network 17.1.1.5 0.0.0.0 area 0
P4(config-ospf-1)#mpls traffic-eng area 0
P4(config-ospf-1)#exit
P4(config)#mpls traffic-eng
P4(config-mpls-te)#interface loopback1
P4(config-mpls-te-if-loopback1)#exit
P4(config-mpls-te)#router-id 104.104.104.104
P4(config-mpls-te)#interface gei-0/1/0/3
P4(config-mpls-te-if-gei-0/1/0/3)#exit
P4(config-mpls-te)#interface gei-0/1/0/5
P4(config-mpls-te-if-gei-0/1/0/5)#exit
P4(config-mpls-te)#

Configuration Verification
1. Run the show this !<mpls-te> command to check the configuration result after
configuring the affinity attribute on the interface of P1. The execution result is
displayed as follows:
P1(config-mpls-te-if-gei-0/1/0/1)#show this
!<mpls-te>
affinity attribute bit-position 0
affinity attribute bit-position 2
affinity attribute bit-position 21
affinity attribute bit-position 25
affinity attribute bit-position 30
!</mpls-te>

2. Check the interface information on P1, in which the Affinity attributes(Bit position)
field displays the configured affinity attribute.
P1#show mpls traffic-eng interface detail gei-0/1/0/1
gei-0/1/0/1:
State:
ENABLE
Traffic-eng metric: 0
Authentication: disabled
Key:

<encrypted>

Type:

md5

Challenge:

disabled

Challenge-imp: Not implemented(simulated)

2-208
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration
Window size:

32

BFD: disabled
Backup path:
None
SRLGs: None
Affinity attributes(Bit position):
0,2,21,25,30
DSCP: None
Intf Fast-Hello: DISABLE
Fast-Hello interval: 10000
Fast-Hello miss: 4
Convergence-Ratio: 100(%)

3. Run the show this !<mpls-te> command to check the configuration result after
configuring the affinity constraint on the tunnel of P1. The execution result is displayed
as follows:
P1(config-mpls-te-tunnel-te_tunnel1)#show this
!<mpls-te>
tunnel destination ipv4 104.104.104.104
tunnel mpls traffic-eng affinity exclude-any bit-position 30
tunnel mpls traffic-eng affinity exclude-any bit-position 31
tunnel mpls traffic-eng affinity include-any bit-position 0
tunnel mpls traffic-eng affinity include-any bit-position 2
tunnel mpls traffic-eng affinity include-all bit-position 21
tunnel mpls traffic-eng affinity include-all bit-position 25
tunnel mpls traffic-eng path-option 1 dynamic
!</mpls-te>

4. Check the tunnel information on P1, in which the Affinity(Bit position) field displays
the configured affinity constraint.
P1#show mpls traffic-eng tunnels te_tunnel 1
Name: tunnel_1
(Tunnel1) Destination: 104.104.104.104
Status:
Admin: up

Oper: up

Path:

valid

Signalling: connected

Path option: 1, type dynamic (Basis for Setup)
Actual Bandwidth: N/A
Hot-standby protection:
No path options protected
Config Parameters:
Resv-Style: SE
Metric Type: IGP (default)
Hop Prior: disabled

Upper Limit: 4294967295
Upper Limit: -

Record-Route: disabled
Facility Fast-reroute: disabled
Detour Fast-reroute: disabled
Bandwidth Protection: disabled

2-209
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
Hot-standby-lsp Fast-reroute: disabled
BFD: disabled
Policy Class: Default
Track Name:
Auto-reoptimize: disabled
Hot-standby-lsp Auto-reoptimize: disabled
Reference Hot-standby: disabled
Tunnel-Status: enabled
Bandwidth: 0 kbps (Global) Priority: 7
CBS: 0 byte

EIR: 0 kbps

7

EBS: 0 byte

Affinity(Bit position):
Exclude-any: 30-31
Include-any: 0,2
Include-all: 21,25
AutoRoute: disabled
AUTO-BW: disabled
Forwarding-adjacency: disabled
Co-routed Bidirect: disabled
Associated Bidirect: disabled
Rate-limit: disabled
Crankback: disabled
Soft Preemption: disabled
Soft Preemption Status: not pending
Addresses of preempting links: 0.0.0.0
Without-CSPF: disabled
InLabel: OutLabel: gei-0/1/0/2, 147457
RSVP Signalling Info :
Src 101.101.101.101, Dst 104.104.104.104, Tun-ID 1, Tun-Instance 8
RSVP Path Info:
Explicit Route: 2.1.1.1 2.1.1.2 9.1.1.2 9.1.1.4 17.1.1.4 17.1.1.5
104.104.104.104
Exclude Route: NULL
Record Route: NULL
Tspec: ave rate= 0 kb, burst= 1000 byte, peak rate= 0 kb
RSVP Resv Info:
Record Route: NULL
Fspec: ave rate= 0 kb, burst= 1000 byte, peak rate= 0 kb
History:
Tunnel:
Time Since Created: 0 day, 0 hour, 5 minute, 8 second
Prior LSP: path option 1
Current LSP: Uptime:0 day, 0 hour, 2 minute, 23 second
Last LSP Error Information:

2-210
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

Chapter 2 MPLS TE Configuration

5. Run the show ip ospf database opaque-area self-originate command to check the
notified affinity attribute of the IGP-TE database interface on P1. The execution result
is displayed as follows:
P1#show ip ospf database opaque-area self-originate
OSPF Router with ID (101.101.101.101) (Process ID 1)
Type-10 Opaque Link Area Link States

(Area 0.0.0.0)

LS age: 282
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 1.0.0.0
Opaque Type: 1
Opaque ID: 0
Advertising Router: 101.101.101.101
LS Seq Number: 0x80000004
Checksum: 0xe320
Length: 28
Fragment number : 0
MPLS TE router ID : 101.101.101.101
Number of Links : 0
LS age: 779
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 1.0.0.1
Opaque Type: 1
Opaque ID: 1
Advertising Router: 101.101.101.101
LS Seq Number: 0x8000000f
Checksum: 0x71d1
Length: 124
Fragment number : 1
Link connected to Broadcast network
Link ID : 1.1.1.2
Interface Address : 1.1.1.1
Neighbor Interface Address : 0.0.0.0
Admin Metric : 0
Maximum bandwidth : 12500000
Maximum reservable bandwidth : 2500000
Number of Priority : 8
Priority 0 : 2500000

Priority 1 : 2500000

Priority 2 : 2500000

Priority 3 : 2500000

Priority 4 : 2500000

Priority 5 : 2500000

Priority 6 : 2500000

Priority 7 : 2500000

Affinity Bit : 0x42200005
Number of Links : 1
LS age: 1122

2-211
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

ZXR10 M6000-S Configuration Guide (MPLS)
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 1.0.0.2
Opaque Type: 1
Opaque ID: 2
Advertising Router: 101.101.101.101
LS Seq Number: 0x80000003
Checksum: 0xb223
Length: 124
Fragment number : 2
Link connected to Broadcast network
Link ID : 2.1.1.2
Interface Address : 2.1.1.1
Neighbor Interface Address : 0.0.0.0
Admin Metric : 0
Maximum bandwidth : 12500000
Maximum reservable bandwidth : 0
Number of Priority : 8
Priority 0 : 0

Priority 1 : 0

Priority 2 : 0

Priority 3 : 0

Priority 4 : 0

Priority 5 : 0

Priority 6 : 0

Priority 7 : 0

Affinity Bit : 0x2200001
Number of Links : 1

6. After the tunnel of P1 gets up, run the show mpls traffic-eng tunnels te_tunnel 1
command to check whether all egress interfaces of the tunnel meet the tunnel affinity
constraint.
Because only gei-0/1/0/2 of P1, gei-0/2/0/1 of P2, and gei-0/1/0/6 of P3 meet the affinity
attribute, the tunnel will not go along other paths.
P1#show mpls traffic-eng tunnels te_tunnel 1
Name: tunnel_1
(Tunnel1) Destination: 104.104.104.104
Status:
Admin: up

Oper: up

Path:

valid

Signalling: connected

Path option: 1, type dynamic (Basis for Setup)
Actual Bandwidth: N/A
Hot-standby protection:
No path options protected
Config Parameters:
Resv-Style: SE
Metric Type: IGP (default)
Hop Prior: disabled

Upper Limit: 4294967295
Upper Limit: -

Record-Route: disabled

2-212
SJ-20140731105308-012|2014-10-20 (R1.0)

ZTE Proprietary and Confidential

104. peak rate= 0 kb History: Tunnel: Time Since Created: 0 day. burst= 1000 byte.1.1 2.4 17.2 9. 5 minute.Chapter 2 MPLS TE Configuration Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 0 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: 30-31 Include-any: 0. Tun-ID 1.104. 8 second Prior LSP: path option 1 2-213 SJ-20140731105308-012|2014-10-20 (R1. 0 hour.104.2 9. burst= 1000 byte.1.1.1.101.1.2 Include-all: 21.101. Dst 104.104.1.104 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 0 kb.104.1.25 AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0. 147457 RSVP Signalling Info : Src 101.1.1.1. peak rate= 0 kb RSVP Resv Info: Record Route: NULL Fspec: ave rate= 0 kb.1.0.1.0.0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/2.101.5 104.4 17.0) ZTE Proprietary and Confidential . Tun-Instance 8 RSVP Path Info: Explicit Route: 2.

0) ZTE Proprietary and Confidential . the TE LSP selects an active member link of the SG interface to reserve a bandwidth and forwards traffic. Traffic is forwarded strictly through a member interface and not shared among all member interfaces. Step Command Function 1 ZXR10(config-mpls-te)#interface <interface-name> Enters TE interface configuration mode. posgroup. Configure TE tunnel re-optimization. – End of Steps – 2-214 SJ-20140731105308-012|2014-10-20 (R1. 2 minute.2 Configuring Binding Interfaces Supporting TE Bandwidth Reservation This procedure describes how to enable a binding interface to support TE bandwidth reservation.23.23 Binding Interfaces Supporting TE Bandwidth Reservation 2. and multilink interfaces. 23 second Last LSP Error Information: 2.ZXR10 M6000-S Configuration Guide (MPLS) Current LSP: Uptime:0 day. Verify the configurations.23. 2. Similar binding interfaces include the smartgroup.1 Binding Interfaces Supporting TE Bandwidth Reservation If a binding interface supports TE bandwidth reservation. Steps 1. 0 hour. 2. Command Function ZXR10#show mpls traffic-eng interface detail [< interface name Checks whether the TE >] bandwidth management mode is enabled on the bound interface. 2 ZXR10(config-mpls-te-if-interface-name)#te-tr Enables the TE bandwidth unk management mode on the bound interface.

23. In the network. Configuration Commands Run the following commands on P1: P1(config)#interface smartgroup1 P1(config-if-smartgroup1)#exit P1(config)#lacp P1(config-lacp)#interface smartgroup1 P1(config-lacp-sg-if-smartgroup1)#lacp mode 802. 2. 3. configure a 10 M reserved bandwidth for the tunnel and configure the smartgroup1 interface as the egress of the TE tunnel. two interfaces on P1 and P2 are bound to the smartgroup binding interface.3 Configuration Instance for Binding Interfaces Supporting TE Bandwidth Reservation Configuration Description In Figure 2-38. Configure the routing protocol OSPF on P1 and P2. Configure the MPLS-TE on P1 and P2. and the bandwidth to 10 M. the MPLS TE tunnel is established through OSPF-TE. 5. Set the bandwidth reservation management mode of the smartgroup1 interface to te-trunk.0) ZTE Proprietary and Confidential . Configure the smartgroup binding interface. the tunnel path is P1-P2. and enable the TE function on the smartgroup1 interface. Configure the TE tunnel tunnel1. Figure 2-38 Configuration Instance for Binding Interfaces Supporting TE Bandwidth Reservation Configuration Flow 1. 4. and the egress of the tunnel is the smartgroup binding interface.Chapter 2 MPLS TE Configuration 2.3ad P1(config-lacp-sg-if-smartgroup1)#exit P1(config-lacp)#interface gei-0/1/0/1 P1(config-lacp-member-if-gei-0/1/0/1)#smartgroup 1 mode active P1(config-lacp-member-if-gei-0/1/0/1)#exit P1(config-lacp)#interface gei-0/1/0/2 P1(config-lacp-member-if-gei-0/1/0/2)#smartgroup 1 mode active P1(config-lacp-member-if-gei-0/1/0/2)#exit P1(config-lacp)#exit 2-215 SJ-20140731105308-012|2014-10-20 (R1. and bind gei-0/1/0/1 and gei-0/1/0/2 to the smartgroup1 interface on P1 and P2.

0.18.0 P1(config-ospf-1)#mpls traffic-eng area 0.22 P1(config-mpls-te-expl-path-name)#exit P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 2.1.255 P1(config-if-loopback1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#router-id 1.255.255 area 0.2.255.18.0.17.11 255.1.0 0.17.0.2.3ad P2(config-lacp-sg-if-smartgroup1)#exit P2(config-lacp)#interface gei-0/1/0/1 2-216 SJ-20140731105308-012|2014-10-20 (R1.0.0.255.ZXR10 M6000-S Configuration Guide (MPLS) P1(config)#interface smartgroup1 P1(config-if-smartgroup1)#ip address 19.1.0) ZTE Proprietary and Confidential .255.2 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 explicit-path name 1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng bandwidth 10000 P1(config-mpls-te-tunnel-te_tunnel1)#exit P1(config-mpls-te)#interface smartgroup1 P1(config-mpls-te-if-smartgroup1)#te-trunk P1(config-mpls-te-if-smartgroup1)#bandwidth 10000 P1(config-mpls-te-if-smartgroup1)#exit P1(config-mpls-te)#exit Run the following commands on P2: P2(config)#interface smartgroup1 P2(config-if-smartgroup1)#exit P2(config)#lacp P2(config-lacp)#interface smartgroup1 P2(config-lacp-sg-if-smartgroup1)#lacp mode 802.0 P1(config-if-smartgroup1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#network 19.1.0.1 P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#interface smartgroup1 P1(config-mpls-te-if-smartgroup1)#exit P1(config-mpls-te)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#ip unnumbered loopback1 P1(config-if-te_tunnel1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#explicit-path name 1 P1(config-mpls-te-expl-path-name)#next-address strict 19.0 P1(config-ospf-1)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 1.17.1 255.18.

0.0 0.255 P2(config-if-loopback1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#router-id 2.18.255.2.0) ZTE Proprietary and Confidential .0 P2(config-if-smartgroup1)#exit P2(config)#router ospf 1 P2(config-ospf-1)#network 19.2 255.22 255.0.2 P2(config-mpls-te)#interface loopback1 P2(config-mpls-te-if-loopback1)#exit P2(config-mpls-te)#interface smartgroup1 P2(config-mpls-te-if-smartgroup1)#exit P2(config-mpls-te)# Configuration Verification 1. The execution result is displayed as follows: P1(config)#show rsvp bandwidth interface 2-217 SJ-20140731105308-012|2014-10-20 (R1.255 area 0. The execution result is displayed as follows: P1(config)#show lacp 1 internal Smartgroup:1 Flags: * .2.18.Port is in Active mode P .17.Port is requested in Slow LACPDUs F .0.Port is Active member Port S .0 P2(config-ospf-1)#mpls traffic-eng area 0. Run the show lacp 1 internal command to check the binding interface information on P1.255. Run the show rsvp bandwidth interface command to check the bandwidth reservation information of the TE interface on P1.2.Port is in Passive mode Actor Agg LACPDUs Port[Flags] State Interval Pri Port Oper Port Key State Machine RX Mux Machine -------------------------------------------------------------------------------gei-0/1/0/2[SA*] ACTIVE 30 32768 0x111 0x3d CURRENT COLL&DIST gei-0/1/0/1[SA*] ACTIVE 30 32768 0x111 0x3d CURRENT COLL&DIST 2.0.0.255.17.2.0 P2(config-ospf-1)#exit P2(config)#interface loopback1 P2(config-if-loopback1)#ip address 2.Chapter 2 MPLS TE Configuration P2(config-lacp-member-if-gei-0/1/0/1)#smartgroup 1 mode active P2(config-lacp-member-if-gei-0/1/0/1)#exit P2(config-lacp)#interface gei-0/1/0/2 P2(config-lacp-member-if-gei-0/1/0/2)#smartgroup 1 mode active P2(config-lacp-member-if-gei-0/1/0/2)#exit P2(config-lacp)#exit P2(config)#interface smartgroup1 P2(config-if-smartgroup1)#no shutdown P2(config-if-smartgroup1)#ip address 19.255.0.Port is requested in Fast LACPDUs A .

type dynamic (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: No path options protected Config Parameters: Resv-Style: SE Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: disabled 2-218 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential .2.2 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1.ZXR10 M6000-S Configuration Guide (MPLS) config: Reserved bandwidth is defined for the future TE-LSP (kbps) maxAvail: Maximum bandwidth can be allocated (kbps) used: Bandwidth is allocated for the existed TE-LSP (kbps) Interface: gei-0/1/0/1 Static perflow: 0 Static percent: 0 Dynamic perflow:0 Dynamic percent:40 Config MaxAvail Used Static reserve 0 0 0 10000 10000 10000 Dynamic reserve Interface: gei-0/1/0/2 Static perflow: 0 Static percent: 0 Dynamic perflow:0 Dynamic percent:40 Config MaxAvail Used Static reserve 0 0 0 10000 0 0 Dynamic reserve Interface: smartgroup1 Static perflow: 0 Static percent: 0 Dynamic perflow:0 Dynamic percent:40 Config MaxAvail Used Static reserve 0 0 0 10000 10000 10000 Dynamic reserve 3.2. The execution result is displayed as follows: P1(config)#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 2. Run the show mpls traffic-eng tunnels te_tunnel 1 command on P1 to check which member interface of the smartgroup1 interface is the egress on the tunnel.

17.18. Dst 2. 3 RSVP Signalling Info : Src 1. 3 hour.0) ZTE Proprietary and Confidential . Tun-ID 1.0 Without-CSPF: disabled InLabel: OutLabel: smartgroup1(gei-0/1/0/2). 0 hour. burst= 0 byte.0. peak rate= 10000 kb History: Tunnel: Time Since Created: 0 day.2.18. 2 minute.Chapter 2 MPLS TE Configuration Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 10000 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1.2. Tun-Instance 321 RSVP Path Info: Explicit Route: 19. burst= 0 byte. 10 minute.2 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 10000 kb.0.1.1. 29 second 2-219 SJ-20140731105308-012|2014-10-20 (R1.11 19.2.17. peak rate= 10000 kb RSVP Resv Info: Record Route: NULL Fspec: ave rate= 10000 kb.2. 3 second Prior LSP: path option 1 Current LSP: Uptime:0 day.2.22 2.

errcode:1.24 RSVP-TEs Supporting Resource Reservation 2.2 Configuring RSVP-TE Supporting Resource Reservation This procedure describes how to enable a TE tunnel to support resource reservation. This function configures a tunnel to dynamically support both the FF and SE modes. If the FF style is configured on a tunnel first. 2. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Sets the tunnel to support FF number)#tunnel mpls traffic-eng resv-style {ff | se} (ff) or SE (se) style. resources are reserved for every transmitting end.errcode:66. The FF style and the FRR function are mutually exclusive. Default: 2 se. 2. 2. Shared Explicit (SE): in which. 2-220 SJ-20140731105308-012|2014-10-20 (R1.1 Resource Reservation in FF Mode on the RSVP-TE Resource reservation refers to reserving resources for different transmitting ends in the same session.errvalue:0). Enable a TE tunnel to support resource reservation. If the FRR function is enabled first on a tunnel.24. Tunnel config changed(lspid:1. Steps 1. Step Command Function 1 ZXR10(config-mpls-te)#tunnel te_tunnel Enters Tunnel interface <tunnel-number> configuration mode. the FRR function cannot be configured.0) ZTE Proprietary and Confidential . Verify the configurations. The output information shows that the member interface gei-0/1/0/2 of smartgroup1 is selected as the egress interface of the tunnel. the FF style cannot be configured.errvalue:3).24.ZXR10 M6000-S Configuration Guide (MPLS) Last LSP Error Information: Resv tear:resv tear(lspid:4. resources are shared among specified transmitting ends. The ZXR10 M6000-S supports two reservation modes: l l Fixed Filter (FF): in which.

3 Instance for Resource Reservation in FF Mode on the RSVP-TE Configuration Description Figure 2-39 shows a configuration instance. dynamic routing mode. the resource reservation mode must be set to SE. and resource reservation mode of FF. 5. Figure 2-39 Instance for Resource Reservation Configuration on the RSVP-TE After a resource reservation mode is successfully configured. and configure the router-id of the TE as the loopback interface address. To enable a tunnel to support FRR or multiple LSPs of the same tunnel to share the bandwidth. Configure TE tunnel 1 on P1. P2. 3. 2. and P3. in which a tunnel is established among P1-P2-P3 through the IGP-TE. Configure OSPF neighbors for P1. 2-221 SJ-20140731105308-012|2014-10-20 (R1. P2. with the destination address P3. a reserved bandwidth is configured for the tunnel. Enable the TE function on the loopback interfaces of P1. an available bandwidth is configured for the egress interface. and the resource reservation mode configured for the tunnel is SE (default) or FF. Configure the interfaces connecting P1. and P3.Chapter 2 MPLS TE Configuration Command Function ZXR10#show mpls traffic-eng tunnels Displays tunnel information.24. and the corresponding loopback interface addresses.0) ZTE Proprietary and Confidential . and enable the TE function on the OSPF neighbors. If you modify the mode of a tunnel. and P3. – End of Steps – 2. P2. A tunnel supports only one resource reservation mode. 4. Configuration Flow 1. the tunnel will be cleared and re-established. and configure an available bandwidth of 20 M for the egress interfaces of P1 and P2. P2. Enable the TE function on the physical interfaces of P1. you can check whether the resource reservation mode in the tunnel information is correct on the head node. reserved bandwidth of 20 M. and P3.

103.ZXR10 M6000-S Configuration Guide (MPLS) Note: When the FRR function is configured in tunnel 1.0 P1(config-if-gei-0/1/0/1)#no shutdown P1(config-if-gei-0/1/0/1)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 101.1.0) ZTE Proprietary and Confidential .101.101. Configuration Commands Run the following commands on P1: P1#configure terminal P1(config)#interface gei-0/1/0/1 P1(config-if-gei-0/1/0/1)#ip address 1.255.1.255.101 P1(config-mpls-te)#interface gei-0/1/0/1 P1(config-mpls-te-if-gei-0/1/0/1)#bandwidth dynamic 20000 P1(config-mpls-te-if-gei-0/1/0/1)#exit P1(config-mpls-te)#exit P1(config)#interface te_tunnel1 P1(config-if-te_tunnel1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#tunnel te_tunnel1 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel destination ipv4 103.0 P2(config-if-gei-0/1/0/1)#no shutdown 2-222 SJ-20140731105308-012|2014-10-20 (R1.255.255.1.1 0.103. the system prompts that the FRR function is conflicting with the FF resource reservation mode.101.255 P1(config-if-loopback1)#exit P1(config)#router ospf 1 P1(config-ospf-1)#network 1.1.101 255.2 255.1 255.101.1.255.255.103 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng bandwidth 20000 P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng path-option 1 dynamic P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng resv-style ff Run the following commands on P2: P2#configure terminal P2(config)#interface gei-0/1/0/1 P2(config-if-gei-0/1/0/1)#ip address 1.0.0 area 0 P1(config-ospf-1)#mpls traffic-eng area 0 P1(config-ospf-1)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit P1(config-mpls-te)#router-id 101.0.1.

255.2 255.255.1.1.255 P3(config-if-loopback1)#exit P3(config)#router ospf 1 P3(config-ospf-1)#network 9.0 P3(config-if-gei-0/1/0/2)#no shutdown P3(config-if-gei-0/1/0/2)#exit P3(config)#interface loopback1 P3(config-if-loopback1)#ip address 103.103.0.2 0.1.1.0.0.255.102.0.1.1.255.0 P2(config-if-gei-0/2/0/1)#no shutdown P2(config-if-gei-0/2/0/1)#exit P2(config)#interface loopback1 P2(config-if-loopback1)#ip address 102.102.103 255.1.1.1.255 P2(config-if-loopback1)#exit P2(config)#router ospf 1 P2(config-ospf-1)#network 1.4 255.0) ZTE Proprietary and Confidential .102 255.2 0.0 area 0 P2(config-ospf-1)#mpls traffic-eng area 0 P2(config-ospf-1)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#interface loopback1 P2(config-mpls-te-if-loopback1)#exit P2(config-mpls-te)#router-id 102.1.103.Chapter 2 MPLS TE Configuration P2(config-if-gei-0/1/0/1)#exit P2(config)#interface gei-0/2/0/1 P2(config-if-gei-0/2/0/1)#ip address 9.255.102.4 0.103 P3(config-mpls-te)#interface gei-0/1/0/2 P3(config-mpls-te-if-gei-0/1/0/2)#exit P3(config-mpls-te)# 2-223 SJ-20140731105308-012|2014-10-20 (R1.0.102.103.255.0 area 0 P3(config-ospf-1)#mpls traffic-eng area 0 P3(config-ospf-1)#exit P3(config)#mpls traffic-eng P3(config-mpls-te)#interface loopback1 P3(config-mpls-te-if-loopback1)#exit P3(config-mpls-te)#router-id 103.0 area 0 P2(config-ospf-1)#network 9.0.102 P2(config-mpls-te)#inter gei-0/1/0/1 P2(config-mpls-te-if-gei-0/1/0/1)#exit P2(config-mpls-te)#inter gei-0/2/0/1 P2(config-mpls-te-if-gei-0/2/0/1)#bandwidth dynamic 20000 P2(config-mpls-te-if-gei-0/2/0/1)#exit P2(config-mpls-te)# Run the following commands on P3: P3#configure terminal P3(config)#interface gei-0/1/0/2 P3(config-if-gei-0/1/0/2)#ip address 9.255.103.255.

type dynamic (Basis for Setup) Actual Bandwidth: N/A Hot-standby protection: No path options protected Config Parameters: Resv-Style: FF Metric Type: IGP (default) Hop Prior: disabled Upper Limit: 4294967295 Upper Limit: - Record-Route: disabled Facility Fast-reroute: disabled Detour Fast-reroute: disabled Bandwidth Protection: disabled Hot-standby-lsp Fast-reroute: disabled BFD: disabled Policy Class: Default Track Name: Auto-reoptimize: disabled Hot-standby-lsp Auto-reoptimize: disabled Reference Hot-standby: disabled Tunnel-Status: enabled Bandwidth: 20000 kbps (Global) Priority: 7 CBS: 0 byte EIR: 0 kbps 7 EBS: 0 byte Affinity(Bit position): Exclude-any: None 2-224 SJ-20140731105308-012|2014-10-20 (R1.103 Status: Admin: up Oper: up Path: valid Signalling: connected Path option: 1. Run the following command to check the configuration of a tunnel.103.103 tunnel mpls traffic-eng bandwidth 20000 tunnel mpls traffic-eng path-option 1 dynamic tunnel mpls traffic-eng resv-style ff !</mpls-te> 2. Run the following command to check the tunnel information on P1. P1#show mpls traffic-eng tunnels te_tunnel 1 Name: tunnel_1 (Tunnel1) Destination: 103. ff in the displayed result indicates that the resource reservation mode is FF.0) ZTE Proprietary and Confidential .103.ZXR10 M6000-S Configuration Guide (MPLS) Configuration Verification 1.103.103. P1(config-mpls-te-tunnel-te_tunnel1)#show this !<mpls-te> tunnel destination ipv4 103. Resv-Style: FF in the displayed result indicates that the resource reservation mode FF is correct.

2 9. 0 hour. 0 minute.1.1.errcode:1. 2-225 SJ-20140731105308-012|2014-10-20 (R1. 147457 RSVP Signalling Info : Src 101. Tun-ID 1. a conflict prompt is displayed. 0 minute.4 103.1 1.103. Tun-Instance 2 RSVP Path Info: Explicit Route: 1.101.103.0.1.1.103 Exclude Route: NULL Record Route: NULL Tspec: ave rate= 20000 kb. 0 hour. peak rate= 20000 kb History: Tunnel: Time Since Created: 0 day.1. 3.1.101.0 Without-CSPF: disabled InLabel: OutLabel: gei-0/1/0/1. Dst 103.0.103.errvalue:3).103. burst= 0 byte. 3 second Last LSP Error Information: Tunnel config changed(lspid:1.0) ZTE Proprietary and Confidential . No that when you configure the FRR with the resource reservation mode set to FF.101. 31 second Prior LSP: path option 1 Current LSP: Uptime:0 day. burst= 0 byte.2 9. for example: P1(config-mpls-te-tunnel-te_tunnel1)#tunnel mpls traffic-eng fast-reroute facility %Error 90953: MPLS-TE resv-style FF and FRR are mutually exclusive.Chapter 2 MPLS TE Configuration Include-any: None Include-all: None AutoRoute: disabled AUTO-BW: disabled Forwarding-adjacency: disabled Co-routed Bidirect: disabled Associated Bidirect: disabled Rate-limit: disabled Crankback: disabled Soft Preemption: disabled Soft Preemption Status: not pending Addresses of preempting links: 0.1.103.1. peak rate= 20000 kb RSVP Resv Info: Record Route: NULL Fspec: ave rate= 20000 kb.

2-226 SJ-20140731105308-012|2014-10-20 (R1.ZXR10 M6000-S Configuration Guide (MPLS) This page intentionally left blank.0) ZTE Proprietary and Confidential .

..........................3-1 Configuring MPLS OAM . and then configure the corresponding command to receive and detect MPLS OAM packets........................................3-4 3........ Administration and Maintenance (OAM) technology provides a set of mechanisms for failure detection on MPLS network.2 Configuring MPLS OAM This procedure describes how to configure MPLS OAM...... it will send Backward Defect Indication (BDI) packets to notify the LSP source node through the reversed tunnel to implement protection handover.. run the following command: 3-1 SJ-20140731105308-012|2014-10-20 (R1...........0) ZTE Proprietary and Confidential ...... The egress node detects the packets periodically.......................1 MPLS OAM Overview MPLS Operation...... Before the configuration of MPLS OAM. MPLS OAM aims at the connectivity detection of single LSP........... To enable MPLS OAM globally.. Through MPLS OAM........ Steps 1.. and then enable OAM to send the detection packets............ Network administrators need to configure MPLS OAM function manually........... it is necessary to establish the detecting tunnel and the reversed tunnel...................... It is also necessary to configure MPLS OAM function on the egress node of the detecting tunnel...... The transit nodes transmit the packets transparently.......... the source end sending/the destination end detecting.............3-1 MPLS OAM Configuration Example......Chapter 3 MPLS OAM Configuration Table of Contents MPLS OAM Overview ............................ When the destination end detects a failure... detection function on the Constraint-based Routing Label Switched Path (CR-LSP) forwarding plane can be realized. 3........... The ingress node sends OAM connectivity detection packets (Connectivity Verification (CV)/Fast Failure Detection (FFD)) periodically......... It is necessary to configure MPLS OAM function on the ingress node of the detecting tunnel and the packet type....

options: l 3. To display the configuration results. To enable MPLS OAM on a tunnel. run the following commands: Command Function ZXR10#show mpls oam information local_tunnel Displays information about all local tunnels. <interval>: time interval (in milliseconds) for sending MPLS OAM detection packets.3 l 10 l 20 l 50 l 100 l 200 l 500 3. perform the following steps: Step Command Function 1 ZXR10(config-mpls-oam)#local te_tunnel < tunnel-id> Enables MPLS OAM on the ingress <ingress-id> local tunnel.ZXR10 M6000-S Configuration Guide (MPLS) Command Function ZXR10(config)#mpls oam Enables MPLS OAM globally. range: 0–7. and enters MPLS OAM global configuration mode. <tunnel-id>[share] type {cv |ffd frequence <interval>} exp <exp-priority>: priority of MPLS OAM detection packets. 3-2 SJ-20140731105308-012|2014-10-20 (R1. ype ffd frequence <interval >[ exp <exp-priority>] 3 ZXR10(config-mpls-oam-te_tunnel-tunnel-id)#m Enables MPLS OAM (the pls oam enable ingress node starts to send detection packets). ZXR10#show mpls oam statistics local_tunnel {all | cv | Displays information about all packets ffd | bdi |fdi} or the specified packets over all local tunnels. 4 ZXR10(config-mpls-oam)#egress te_tunnel Enables MPLS OAM on the <tunnel-id> ingress <ingress-id> backward-tunnel tail node of the tunnel.0) ZTE Proprietary and Confidential . ZXR10(config-mpls-oam-te_tunnel-tunnel-id)#t Configures the type and ype cv [ exp <exp-priority>] priority of MPLS OAM 2 ZXR10(config-mpls-oam-te_tunnel-tunnel-id)#t detection packets. 2. ZXR10#show mpls oam information remote_tunnel Displays information about all remote tunnels.

l To clear packet statistics. There is no output result of the commands to clear statistics of packets. l To debug MPLS OAM-related functions. run the following commands: Command Function ZXR10(config-mpls-oam)#statistics {all | cv | ffd | Collects statistics on MPLS OAM fdi | bdi} packets on all tunnels. ZXR10#show mpls oam statistics remote_tunnel Displays statistical information about all <ingress-id> ingress <ingress-id>{all | cv | ffd | bdi | fdi} packets or the specified packets over the specified remote tunnel. ZXR10(config-mpls-oam-te_tunnel-tunnel- Collects statistics on MPLS OAM id)#statistics {all | cv | ffd | fdi | bdi} packets on the specified local tunnel. run related show commands to display the sending and receiving statistical information about OAM packets on the tunnels where MPLS OAM is enabled. ZXR10(config-mpls-oam)#statistics remote_tunnel Collects statistics on MPLS OAM <tunnel-id> ingress <ingress-id>{all | cv | ffd | bdi| packets on the specified remote fdi} tunnel. run the following commands: 3-3 SJ-20140731105308-012|2014-10-20 (R1. ZXR10#show debug mpls-oam 4. After the commands are executed. ZXR10#show mpls oam statistics remote_tunnel {all | cv Displays statistical information about all | ffd | bdi | fdi} packets or the specified packets over all remote tunnels. After the commands are executed. ZXR10#clear mpls oam statistics remote_tunnel Clears the statistical information about <tunnel-id> ingress <ingress-id>{all | cv | ffd | fdi the specified packets on the specified | bdi} remote static tunnel. and the information is collected again.Chapter 3 MPLS OAM Configuration Command Function ZXR10#show mpls oam statistics local_tunnel Displays statistical information about <tunnel-id> ingress <ingress-id>{all | cv | ffd | bdi |fdi} all packets or specified packets of a specific local tunnel. l To collect packet statistics. the result of the packet statistics displayed by using related show commands are cleared. There is no output result of the commands to collect packet statistics. Displays the debugging switch state.0) ZTE Proprietary and Confidential . run the following commands: Command Function ZXR10#clear mpls oam statistics local_tunnel Clears the statistics information about <tunnel-id> ingress <ingress-id>{all | cv | ffd | fdi the specified packets on the specified | bdi} local static tunnel. Maintain MPLS OAM.

– End of Steps – 3. Configuration Commands Run the following commands to configure head node PE1: 3-4 SJ-20140731105308-012|2014-10-20 (R1.3 MPLS OAM Configuration Example Scenario Description Figure 3-1 shows a sample network topology. Enables the debugging of MPLS OAM FDI ZXR10#debug mpls oam fdi packets. and Tunnel1002 is the reverse tunnel. Enables the debugging of MPLS OAM CV ZXR10#debug mpls oam cv packets. Enables the debugging of MPLS OAM BDI ZXR10#debug mpls oam bdi packets.0) ZTE Proprietary and Confidential .ZXR10 M6000-S Configuration Guide (MPLS) Command Function ZXR10#debug mpls oam all Enables the debugging of all MPLS OAM functions. Figure 3-1 MPLS OAM Configuration Example Configuration Flow Set Tunnel1001 to the detecting tunnel. Tunnel1001 is the detection tunnel. Enable MPLS OAM to detect the local tunnels on the head node of Tunnel1001. Enable MPLS OAM to detect the remote tunnels on the tail node of Tunnel1001. set Tunnel1002 to the reversed tunnel. It is required to establish two tunnels between PE1 to PE2.

81 egress 4.255.81.81 255.3.81.81.81.255.82.255 3-5 SJ-20140731105308-012|2014-10-20 (R1.81.82.1/24 PE1(config-if-gei-0/3/0/4)#exit PE1(config)#interface loopback1 PE1(config)#ip address 4.3.82.0) ZTE Proprietary and Confidential .3.82 255.81.255.82 PE1(config-mpls-te-static-te_tunnel1001)#lsp 1 PE1(config-mpls-te-static-te_tunnel1001-lsp)#out-seg-info out-port gei-0/3/0/4 out-label 3 next-hop 81.3 PE1(config-mpls-oam-te_tunnel-1001)#mpls oam enable PE1(config-mpls-oam-te_tunnel-1001)#exit PE1(config-mpls-oam)#exit Run the following commands to configure tail node PE2: PE2(config)#interface gei-0/3/1/2 PE2(config-if-gei-0/3/1/2)#no shutdown PE2(config-if-gei-0/3/1/2)#ip address 81.5.255.5.3.255.82.2 255.3.3.255 PE1(config-if-loopback1)#exit PE1(config)#interface te_tunnel1001 PE1(config-if-te_tunnel1001)#ip unnumbered loopback1 PE1(config-if-te_tunnel1001)#exit PE1(config)#mpls traffic-eng PE1(config-mpls-te)#interface loopback1 PE1(config-mpls-te-if-loopback1)#exit PE1(config-mpls-te)#router-id 4.81 PE1(config-mpls-oam-te_tunnel-1001)#type ffd frequence 3.81.255.81 PE1(config-mpls-te)#interface gei-0/3/0/4 PE1(config-mpls-te-if-gei-0/3/0/4)#exit PE1(config-mpls-te)#static te_tunnel1001 PE1(config-mpls-te-static-te_tunnel1001)#role ingress type unidirectional PE1(config-mpls-te-static-te_tunnel1001)#ingress-tunnel-id 1001 ingress 4.2/24 PE2(config-if-gei-0/3/1/2)#exit PE2(config)#interface loopback1 PE2(config-if-loopback1)#ip address 4.Chapter 3 MPLS OAM Configuration PE1(config)#interface gei-0/3/0/4 PE1(config-if-gei-0/3/0/4)#no shutdown PE1(config-if-gei-0/3/0/4)#ip address 81.2 PE1(config-mpls-te-static-te_tunnel1001-lsp)#exit PE1(config-mpls-te-static-te_tunnel1001)#exit PE1(config-mpls-te)#exit PE1(config)#ip route 85.81.255 te_tunnel1001 Run the following commands to configure the MPLS OAM: PE1(config)#mpls oam PE1(config-mpls-oam)#local te_tunnel 1001 ingress 4.

82 PE2(config-mpls-te-static-te_tunnel91001)#lsp 1 PE2(config-mpls-te-static-te_tunnel91001-lsp)#in-seg-info in-port gei-0/3/1/2 in-label 3 PE2(config-mpls-te-static-te_tunnel91001-lsp)#exit PE2(config-mpls-te-static-te_tunnel91001)#exit PE2(config-mpls-te)#exit Run the following commands to configure the MPLS OAM: PE2(config)#mpls oam PE2(config-mpls-oam)#egress te_tunnel 1002 ingress 4.82.ZXR10 M6000-S Configuration Guide (MPLS) PE2(config-if-loopback1)#exit PE2(config)#interface te_tunnel91001 PE2(config-if-te_tunnel91001)#ip unnumbered loopback1 PE2(config-if-te_tunnel91001)#exit PE2(config)#mpls traffic-eng PE2(config-mpls-te)#router-id 4.1. The execution result is displayed as follows: PE1#show mpls oam information local_tunnel Local tunnel Num : 1 State init Num : 0 State up Num : 0 State down Num : 0 TunnelId : 1001 LspId : 1 IngressId : 4. refer to Chapter 4.81.81. P2(config)#mpls oam P2(config-mpls-oam)#egress te_tunnel 2 ingress 1.82 PE2(config-mpls-te)#interface loopback1 PE2(config-mpls-te-if-loopback1)#exit PE2(config-mpls-te)#interface gei-0/3/1/2 PE2(config-mpls-te-if-gei-0/3/1/2)#exit PE2(config-mpls-te)#static te_tunnel91001 PE2(config-mpls-te-static-te_tunnel91001)#role egress type unidirectional PE2(config-mpls-te-static-te_tunnel91001)#ingress-tunnel-id 1001 ingress 4.81 egress 4.82.81.82.1.3 Run the following commands on P2 (for the basic static tunnel configuration.81.0) ZTE Proprietary and Confidential . A basic static tunnel has been established in this example).2 backward-tunnel 1 share type ffd frequence 3.3 Configuration Verification Run the show mpls oam information local_tunnel command to check whether the local MPLS OAM of a tunnel is enabled on PE1.81 Node-Role : Head 3-6 SJ-20140731105308-012|2014-10-20 (R1.82 backward-tunnel 1001 share type ffd frequence 3.82.82.82.

82. Frequency: 3.82.82. Priority: 0 BkTunnel : 0 Share : No Enable : Yes Trans-State : OK(hex:0000) Detect-State : OK(hex:0000) Run the show mpls oam information remote_tunnel command to check whether the remote MPLS OAM of a tunnel is enabled on PE2.82 Node-Role : Tail Ascription : No Packet : FFD. Priority: 0 BkTunnel : 1001 Share : Yes Enable : Yes Trans-State : dInitStat(hex:ffff) Detect-State : dInitStat(hex:ffff) PE2#show mpls oam statistics remote_tunnel al Tunnelid: 1002.Chapter 3 MPLS OAM Configuration Ascription : Yes Packet : FFD. Frequency: 3.0) ZTE Proprietary and Confidential . Ingressid: 4.82 CV : 0 FFD: 0 BDI: 0 FDI: 0 3-7 SJ-20140731105308-012|2014-10-20 (R1.3. The execution result is displayed as follows: PE2#show mpls oam information remote_tunnel Remote tunnel Num : 1 State init Num : 1 State up Num : 0 State down Num : 0 TunnelId : 1002 LspId : 1 IngressId : 4.82.3.

3-8 SJ-20140731105308-012|2014-10-20 (R1.ZXR10 M6000-S Configuration Guide (MPLS) This page intentionally left blank.0) ZTE Proprietary and Confidential .

......................... protection handover can be implemented immediately through MPLS OAM detection. It is not necessary to trigger the static tunnel through MPLS signaling or interact with control packets....... It is configured manually by network administrators....1 Static Tunnel Overview A static tunnel is a tunnel configured manually by network administrators.. that is...... the static tunnel costs few resources and it is suitable for the networks with small scale and simple topology.. This is the principle that should be complied with.... In addition..... Shared bidirectional tunnels can be implemented by enabling a static TE tunnel to forward data in both forward and backward directions......... transit nodes and tail node.......1 Associated Bidirectional Tunnels for a Static TE Tunnel Two types of bidirectional tunnels are provided: Shared and Associated..... for associated bidirectional tunnels..4-4 4. a static tunnel cannot be established by using label distribution protocol to distributing labels dynamically............... Associated bidirectional tunnels refer to two unidirectional tunnels (with the same tail nodes but in reverse directions) bound together to implement the functions of a bidirectional tunnel.......... The LSRs on the static tunnel are not aware of the whole tunnel... Associated bidirectional tunnels have an advantage over shared bidirectional tunnels... The value of the out-label on the previous node should equal to the value of the in-label on the following node............. Therefore. 4-1 SJ-20140731105308-012|2014-10-20 (R1. When the active tunnel has a fault..0) ZTE Proprietary and Confidential ...... including the head node. associated bidirectional tunnels can be implemented with only the support of the head and tail nodes.. network administrators need to distribute labels for the LSRs manually.. The connectivity of a static tunnel can be detected by MPLS OAM.. signaling expansion is not needed and resources areseparatelyy reserved...4-1 Configuring a Static Tunnel .... The two reverse paths of associated bidirectional tunnels are not necessary to be overlapped.... Therefore. The binding relation is perceived only at two ends.............. However......... It is necessary to configure static tunnel commands on the LSRs of the whole tunnel...... the static tunnel is a local concept........ When configuring a static tunnel... 4. Only when the configuration on each node of the tunnel is correct will the services be forwarded properly on the tunnel....1...............Chapter 4 Static Tunnel Configuration Table of Contents Static Tunnel Overview.......

in RDM mode. and preemption is necessary to ensure the bandwidth of the CT. General models include the following: l MAM The Maximum Allocation Model (MAM) maps a BC to another CT. Figure 4-1 MAM In MAM mode. For details. which is less visual. Bandwidth limit model indicates the relation between a CT and the BC. no priority configuration is needed for LSPs with different CT traffics. an important problem is how to distribute the bandwidth among different CTs.0) ZTE Proprietary and Confidential . Percentage of the link bandwidth used by a CT or a group of CTs is call Bandwidth Constraint (BC). see Figure 4-1. l RDM The Russian Dolls Model allows different CTs to share a bandwidth and improves the bandwidth usage in MAM mode. This mode is suitable for networks in which preemption is not allowed. that is. In addition.2 Static TE Tunnels Supporting DS-TE To calculate the available bandwidth for a node. For details. However. different CTs cannot be separated.ZXR10 M6000-S Configuration Guide (MPLS) 4. Therefore. the CTs cannot share the unused bandwidth. simple distribution of a link bandwidth among different CTs.1. a BC is mapped to one or more CTs. different CTs can be completely separated. In the simple and visual MAM mode. in RDM mode. which cannot be used to bear other CTs and is wasted. 4-2 SJ-20140731105308-012|2014-10-20 (R1. see Figure 4-2.

If a static tunnel supports the DS-TE function. and a doll (BC2) smaller than BC1 can be put inside BC1. 4. 4-3 SJ-20140731105308-012|2014-10-20 (R1. The shared bandwidth does not need CAC verification but needs QoS reservation. QoS reservation is needed. in which 0 indicates the lowest level and 7 indicates the highest level.BC7 refers to a link bandwidth with a fixed proportion and can be reserved only for CT7 traffic. To configure a common bandwidth. CT6. and so on. In MAM model. Two resource reservation modes are configured for sharing tunnels: Reservation and non-reservation. To configure a shared tunnel. BC6 refers to a link bandwidth with a proportion larger than BC7 and can be reserved for both CT7 and CT6 traffic. and CT5. l Reservation: A static tunnel LSP can be configured with a common bandwidth and a shared tunnel.0) ZTE Proprietary and Confidential . In RDM model.1.3 Reserved Bandwidth Sharing on Static TE Tunnels Static tunnels can share resources by specifying an ID of the bandwidth-shared tunnel and a shared bandwidth (including CIR/CBS/PIR/EBS). BCn only ensures the bandwidth of CTn. different BCs can share a bandwidth. but BCn preferentially ensures the bandwidth of CTn. a CT and bandwidth can be configured on a static LSP. CAC verification is needed. and the CT range is 0-7. BC0 refers to the entire link bandwidth and can be shared by all CTs. BC7 is the smallest one. Similarly. ensure that they match TE-CLASS-MAP and a sufficient static BC bandwidth is configured on the interface. without CAC verification.Chapter 4 Static Tunnel Configuration Figure 4-2 RDM CT7 refers to the traffic having a most strict QoS requirement.To configure a CT and bandwidth on a static LSP. a small doll (BC1) can be put inside a bigger one (BC0). and so on. This is similar to Russian dolls. and CT0 refers to Best Effort Traffic. BC5 can be shared by CT7.

2. 4. ZXR10(config-mpls-te-if)#bandwidth Configures the bandwidth for [{static|dynamic}]<bandwidth value> the TE interface. type: static or dynamic) reserved for the TE interface. 2 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the type and role id)#role {ingress | transmit | egress} type {unidirectional | of the MPLS TE static tunnel. Steps 1.ZXR10 M6000-S Configuration Guide (MPLS) l Non-reservation: Only a common bandwidth can be configured for a static tunnel LSP. Step Command Function 1 ZXR10(config-mpls-te)#static te-tunnel <tunnel-id> Enters static tunnel interface configuration mode. 4-4 SJ-20140731105308-012|2014-10-20 (R1. 2 ZXR10(config-mpls-te)#interface <interface-name> Enables TE on an interface. interface <interface-name>: name of the TE interface. ingress <lsr-id>: router-ID of the ingress node of the tunnel. perform the following steps: Step Command Function 1 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Enters LSP mode of the static id)#lsp <1-1> tunnel.0) ZTE Proprietary and Confidential . egress <lsr-id>: router-ID of the egress node of the tunnel. To enable MPLS TE globally and on the specified interface.2 Configuring a Static Tunnel This procedure describes how to configure a static tunnel. perform the following steps: Step Command Function 1 ZXR10(config)#mpls traffic-eng Enables MPLS TE and enters TE configuration mode. 3. bidirectional} 3 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the ingress and id)#ingress-tunnel-id <tunnel-id> ingress <lsr-id> egress nodes of the MPLS TE egress <lsr-id> static tunnel. To configure a static tunnel in static tunnel LSP configuration mode. range: 1–4294967295. without applying for resource CAC. bandwidth [{static|dynamic}]<bandwidth value>: maximum bandwidth (in kbps. Configure a Static Tunnel in static tunnel interface configuration mode.

or 16–1048575. burst <committed-burst-size>: committed burst size for the tunnel LSP. range: 0. 3.1 Configuring Bidirectional BFD for a Static Tunnel This procedure describes how to configure the bidirectional BFD function of a static tunnel. id-lsp)#rvs-out-seg-info out-port <interface-name> out-label <label>[next-hop <ip-address>][bandwidth <bandwidth>[burst <committed-burst-size>][peak <peak-in formation-rate>][excess-burst <excess-burst-size>]] in-lable <label>: value of the in-label for the ingress node of the tunnel. Configure the BFD function for a TE static tunnel on both the head and tail nodes. ZXR10(config-mpls-te-static-te_tunnel-tunnelid-lsp)#out-seg-info out-port <interface-name> out-label <label>[next-hop <ip-address>][bandwidth <bandwidth>[burst <committed-burst-size>][peak <peak-in formation-rate>][excess-burst <excess-burst-size>]] 3 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the forwarding id-lsp)#rvs-in-seg-info in-port <interface-name> in-label information about the <label> bidirectional MPLS TE static ZXR10(config-mpls-te-static-te_tunnel-tunnel- tunnel. 4-5 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential . bandwidth <bandwidth>: committed bandwidth for the tunnel LSP. excess-burst <excess-burst-size>: excess burst size for the tunnel LSP. range: 0. To display the configuration result. peak <peak-information-rate>: peak rate for the tunnel LSP. Steps 1. out-lable <label>: value of the out-label for the egress node of the tunnel. – End of Steps – 4. or displays information about the specified static tunnel. 3. 4.Chapter 4 Static Tunnel Configuration Step Command Function 2 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the forwarding id-lsp)#in-seg-info in-port <interface-name> in-label information about the MPLS <label> TE static tunnel. run the following command: Command Function ZXR10#show mpls traffic-eng static [tunnel-id Displays information about all static <tunnel-id>] tunnels.2. or 16–1048575.

Command Function ZXR10#show mpls traffic-eng static tunnel-id tunnel-number Displays tunnel information. range: 0-4294967295. Steps 1. Step Command Function 1 ZXR10(config-mpls-te)#static te_tunnel Enters static Tunnel interface <tunnel-number> configuration mode. Configure the FA function on a static tunnel.Range: 3-50. Verify the configurations. unit: seconds. <multiplier>: Specifies the multiplier of the detection timeout period. <tunnel-number>: Tunnel ID of the static tunnel node. <min-receive-interval>: Specifies an expected minimum interval for receiving messages.Range: 10-990.Range: 10-990. unit: ms. 2. unit: ms. <min-receive-interval> multiplier <multiplier> <min-send-interval>: Specifies an expected minimum interval for sending messages.0) ZTE Proprietary and Confidential .2. ZXR10(config-mpls-te.static-te_tunnel- Enables the FA function of tunnel-number)#forwarding-adjacency [holdtime the tunnel or enables the FA <tunnel-down-holdtime>] function and configure the 2 value of the holdtime field. <holdtime>: After the tunnel is down due to link failures. a holdtime duration is needed to notify te route that the tunnel is down and disable the route to perceive the tunnel flapping. – End of Steps – 4. 2 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Enables the BFD function of number)#bfd interval <min-send-interval> min-rx a static tunnel. Verify the configurations. 2.2 Configuring the FA Function on a Static Tunnel This procedure describes how to configure the FA function on a static tunnel.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 1 ZXR10(config-mpls-te)#static te_tunnel Enters Tunnel interface <tunnel-number> configuration mode. 4-6 SJ-20140731105308-012|2014-10-20 (R1.

Steps 1. 2 3 {<value0>| absolute <value1>| relative <value2>} <value0>: Sets the value of the default metric type of the AR function. The default metric type is absolute. – End of Steps – 4.static-te_tunnel-tunnel- Enables the AR function of a number)#autoroute announce tunnel. – End of Steps – 4. Configure an associated bidirectional tunnel for a static TE tunnel. Verify the configurations.2.0) ZTE Proprietary and Confidential . Steps 1. ZXR10(config-mpls-te.2. range: 1-4294967295.Chapter 4 Static Tunnel Configuration Command Function ZXR10#show mpls traffic-eng forwarding-adjacency Checks the FA details. 2. and its value range is 1-4294967295. absolute <value1>: Explicitly sets the value of an absolute AR metric.3 Configuring the AR Function for a Static Tunnel This procedure describes how to configure the FR function of a static tunnel. ZXR10(config-mpls-te-tunnel-te_tunnel-tunnel- Sets the metric value of the number)#tunnel mpls traffic-eng autoroute metric AR function. range: -10 to +10. Step Command Function 1 ZXR10(config-mpls-te)#static te_tunnel Enters static Tunnel interface <tunnel-number> configuration mode. 4-7 SJ-20140731105308-012|2014-10-20 (R1. Configure the AR function of a static tunnel.4 Configuring an Associated Bidirectional Tunnel for a Static TE Tunnel This procedure describes how to configure an associated bidirectional tunnel for a static TE tunnel. relative <value2>: Explicitly sets the value of a relative AR metric. Command Function ZXR10#show mpls traffic-eng autoroute Checks the AR details.

[bc6 <bandwidth value>]. and the percentages bandwidth value>][{[bc0 <bandwidth value>]. 2 3 ZXR10(config-mpls-te)#bandwidth model Configures the ds-te {mpls-te|extend-mam|mam|rdm|non-te} bandwidth model. 4 ZXR10(config-mpls-te)#interface <interface-name> Enables the MPLS TE function on the specified interface. Steps 1.[bc4 <bandwidth value>].[bc2 <bandwidth value>].[bc7 <bandwidth value>]}][percent <percent value>] 4-8 SJ-20140731105308-012|2014-10-20 (R1. ZXR10(config-mpls-te-if)#bandwidth Sets a TE interface bandwidth.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 1 ZXR10(config-mpls-te)#static te-tunnel <tunnel-id> Enters static tunnel interface configuration mode.[bc1 of dynamic and static <bandwidth value>]. 2. Command Function ZXR10#show mpls traffic-eng static [tunnel-id <tunnel-id>] Displays tunnel information. [{static|dynamic}]<bandwidth value>[<perflow a BC. – End of Steps – 4. Step Command Function 1 ZXR10(config)#mpls traffic-eng Enables the MPLS TE function and enters TE configuration mode.[bc3 bandwidths.[bc5 <bandwidth value>]. <bandwidth value>].2. Enable the DS-TE function and distribute a BC for the interface TE bandwidth on global and specified interfaces. For a static priority value> tunnel.5 Configuring a Static TE Tunnel Supporting DS-TE This procedure describes how to configure the DS-TE function of a static TE tunnel. <preemption priority value> can be set to 0 only at present. ZXR10(config-mpls-te)#ds-te te-class <te-class map Configures the TE-CLASS id> class-type <class type value> priority <preemption mapping relation. 2 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures a ID for the id)#associate-tunnel {tunnl-id} associated access tunnel.0) ZTE Proprietary and Confidential . Verify the configurations.

<te-class map id>: user-defined te-class. Step Command Function 1 ZXR10(config-mpls-te)#static te-tunnel <tunnel-id> Enters static tunnel interface configuration mode. range: 1–4294967295. range: 1–4294967295. unit: kbps. dynamic: dynamic reservation type. bc6 <bandwidth value>: bc6 bandwidth of the interface. range: 1–4294967295. range: 1–4294967295. static: static reservation type. unit: kbps. The default value is determined based on the product specifications. non-te: non-model model. unit: kbps. range: 1–4294967295.Chapter 4 Static Tunnel Configuration mpls-te: common TE model. bc7 <bandwidth value>: bc7 bandwidth of the interface. bc5 <bandwidth value>: bc5 bandwidth of the interface. bc3 <bandwidth value>: bc3 bandwidth of the interface. <bandwidth value>: maximum bandwidth that an interface supports TE. range: 1–4294967295. 2. range: 0–1. unit: kbps. <perflow bandwidth value>: bandwidth per flow that the interface supports. non ds-te model. range: 1–4294967295. bc0 <bandwidth value>: bc0 bandwidth of the interface.0) ZTE Proprietary and Confidential . <percent value>: percentage of the used interface bandwidth. range: 1–4294967295. range: 1-4294967295. unit: kbps. Configure a static tunnel in interface configuration mode of the static tunnel. unit: kbps. bc2 <bandwidth value>: bc2 bandwidth of the interface. rdm: Russian Doll Model. range: 1–4294967295. unit: kbps. man: maximum reservation model. The default dynamic and static percentages are both 40. extend-mam: expanded maximum reservation model. range: 0–7. 4-9 SJ-20140731105308-012|2014-10-20 (R1. interface <interface-name>: TE interface name. unit: kbps. bc4 <bandwidth value>: bc4 bandwidth of the interface. <class type value>: user-defined classtype. unit: kbps. unit: kbps. bc1 <bandwidth value>: bc1 bandwidth of the interface. range: 0–100.

ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 2 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the type and role id)#role {ingress | transmit | egress} type {unidirectional | of a static MPLS TE tunnel. 0. 3. Configure the CT bandwidth required for configuring a static tunnel in static tunnel LSP configuration mode. ingress <lsr-id>: Router-ID of the tunnel head node. bidirectional} 3 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the head and tail id)#ingress-tunnel-id <tunnel-id> ingress <lsr-id> nodes of a static MPLS TE egress <lsr-id> tunnel. Step Command Function 1 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Enters static tunnel LSP id)#lsp <1-1> mode. out-label <label>: output label value for a tunnel node. range: 0–7. egress <lsr-id>: Router-ID of the tunnel tail node.0) ZTE Proprietary and Confidential . or. 4-10 SJ-20140731105308-012|2014-10-20 (R1. static label range: 16–1048575. ZXR10(config-mpls-te-static-te_tunnel-tunnelid-lsp)#out-seg-info out-port <interface-name> out-label <label>[next-hop <ip-address>] 3 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the tunnel going id-lsp)#out-seg-ct class-type <ct> bandwidth out the CT in forward direction. 3. 3. <ct>: class-type value of a DS-TE tunnel. 2 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures forwarding id-lsp)#in-seg-info in-port <interface-name> in-label messages on a static MPLS <label> TE tunnel. id-lsp)#rvs-out-seg-info out-port <interface-name> out-label <label>[next-hop <ip-address>] 5 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures the tunnel going id-lsp)#rvs-out-seg-ct class-type <ct> bandwidth out the CT in backward <ct-bandwidth> direction. <ct-bandwidth> 4 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Configures forwarding id-lsp)#rvs-in-seg-info in-port <interface-name> in-label messages on a static MPLS <label> TE tunnel with bidirectional ZXR10(config-mpls-te-static-te_tunnel-tunnel- nodes. in-label <label>: input label value for a tunnel node. 0. static label range: 16–1048575. or.

Configure the reserved bandwidth sharing model on a static TE tunnel. ZXR10(config-mpls-te-static-te_tunnel-tunnel- Specifies a forward bandwidth id-lsp)#out-seg-info out-port <out-port> out-label of a tunnel sharing <out-label>[bandwidth-share <tunnel-name>] tunnel-name in forward direction. Command Function ZXR10#show mpls traffic-eng static [tunnel-id <tunnel-id>] Shows the information about all static tunnels or a single static tunnel with the specified tunnel-id. Step Command Function 1 ZXR10(config-mpls-te)#static te-tunnel <tunnel-id> Enters static tunnel interface configuration mode. Verify the configurations. 2 ZXR10(config-mpls-te-static-te_tunnel-tunnelid)#bandwidth reserve mode< reserve | no-reserve> Configures the sharing mode of a specified tunnel to the reservation or non reservation mode. – End of Steps – 4.2. Steps 1. Configure a shared tunnel in static tunnel LSP configuration mode.Chapter 4 Static Tunnel Configuration <ct-bandwidth>: bandwidth corresponding to the CT. range: 1–4294967295. 4. Step 1 2 Command Function ZXR10(config-mpls-te-static-te_tunnel-tunnel- Enters static tunnel LSP id)#lsp <1-1> mode. 3 ZXR10(config-mpls-te-static-te_tunnel-tunnel- Specifies the backward id-lsp)#rvs-out-seg-info out-port <out-port> out-label bandwidth of a tunnel sharing <out-label>[bandwidth-share <tunnel-name>] tunnel-name in backward direction. unit: kbps. 2. 4-11 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential .6 Configuring Reserved Bandwidth Sharing on Static TE Tunnels This procedure describes how to configure the reserved bandwidth sharing function of a static TE tunnel.

– End of Steps – 4-12 SJ-20140731105308-012|2014-10-20 (R1. Command Function ZXR10#show mpls traffic-eng static [tunnel-id <tunnel-id>] Displays tunnel information. Verify the configurations.0) ZTE Proprietary and Confidential .ZXR10 M6000-S Configuration Guide (MPLS) 3.

...... transit node failures........ Supporting the setting of the protection switching time: In the case where the total length of the link is not greater than 1200 kilometers and the hold-off time is set to 0.... and provide the packet transport technology with telecommunication-grade OAM and protection.. the WTR function.............. and PTV services) and mobile backhaul (data services-oriented) bring new requirements and challenges to the transport network.............. operation mode (returning the execution result or not). execution of MMLs................ The PTN is required to transport packet services effectively....0) ZTE Proprietary and Confidential ........... and processing of various priority-based switching requirements....... PTN) gradually becomes a trend in the telecommunications industry...................... provide auto protection for links and nodes..... à Supporting the handlings of various failures (such as physical link failures. A tunnel protection group is used to configure and maintain the protection relationship between a primary tunnel and a backup tunnel.... and meet the following general requirements: l l l l Supporting the handlings of link or node failures... and SD failures). and other functions. Supporting the setting of the hold-off time: When the protection mode is specified for the bottom-layer network of the PTN... The packetization of the transport network (that is....... the protection mode of the PTN should support 5-1 SJ-20140731105308-012|2014-10-20 (R1... à Supporting the execution of MMLs providing lockout....................5-1 Configuring a Tunnel Protection Group. forced switchover............ VPN........ VP/VC SF...1 Tunnel Protection Group Overview Tunnel Protection Group Introduction Packet services (such as the transport of VoIP.....Chapter 5 Tunnel Protection Group Configuration Table of Contents Tunnel Protection Group Overview .. and WTR time............. Supporting the configurations of the switching mode (unidirectional or bidirectional)......................5-9 5...... the service impact time caused by a protection switching should not be greater than 50 ms (except for the SD-triggered protection switching)...5-6 Tunnel Protection Group Configuration Example .

and APS signalling is needed for coordination.0) ZTE Proprietary and Confidential . unidirectional switching and bidirectional switching.ZXR10 M6000-S Configuration Guide (MPLS) the setting of the hold-off time (50 or 100 ms). The working services (the protected services) are bridged to the working connection and the protection connection permanently at the source end of the protection group. 1+1 Linear Protection In 1+1 structure. Figure 5-1 shows the structure of unidirectional 1+1 linear protection switching. the destination end for the protection) APS information. To prevent single point of failures. Bidirectional protection can prevent one-way faults in both directions. Bidirectional switching mechanism is similar to unidirectional switching mechanism. only the services in the affected direction are switched to the protection path. the backup tunnel is specially used for the primary tunnel. the selector at the destination end of the protection group performs the protection switching completely on the basis of the local (that is. There are two switching types of 1+1 linear protection. Services are sent to the destination end of the protection domain on the primary tunnel and the backup tunnel at the same time. and the selectors at both ends are independent of each other. For unidirectional switching. The operational types of 1+1 linear protection can be revertive or non-revertive. The primary tunnel and the backup tunnel are bridged at the source end of the protection group. This can avoid a conflict between PTN protection and bottom-layer network protection. 5-2 SJ-20140731105308-012|2014-10-20 (R1. the working connection and the protection connection are isolated. In unidirectional protection mode. The destination end chooses to receive the services from the primary tunnel or the backup tunnel based on the rules (such as defect index) defined in advance.

Chapter 5 Tunnel Protection Group Configuration Figure 5-1 Structure of Unidirectional 1+1 Linear Protection Switching If a fault occurs on the working connection (in the transport direction from Node A to Node Z).0) ZTE Proprietary and Confidential . the fault will be detected on Node Z at the destination end in the protection domain. 5-3 SJ-20140731105308-012|2014-10-20 (R1. Then the selector of Node Z will switch the services to the protection connection. as shown in Figure 5-2.

5-4 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential . The protected working services are transmitted by the working connection or the protection connection. In unidirectional protection mode. the selectors at the source end and the destination end together perform the protection switching based on the local or near-end information and the APS protocol information from the other end or a remote end. The switching type of 1:1 linear protection is bidirectional. the backup tunnel is special for the primary tunnel. To prevent single-point invalidation. the services in both the affected and unaffected directions are switched to the protection path. the working connection and the protection connection are isolated. Figure 5-3 shows the structure of unidirectional 1:1 linear protection switching. Bidirectional switching needs APS to coordinate the two ends of the connection. The selection of the primary tunnel and the backup tunnel is decided by some mechanism.ZXR10 M6000-S Configuration Guide (MPLS) Figure 5-2 Unidirectional 1+1 Linear Protection Switching (Signal Failure) 1:1 Linear Protection In 1:1 structure. That is.

An APS protection switching request is sent from Node A to Node Z. the fault will be detected on Node A. Then the APS protocol triggers protection switching. as shown in Figure 5-4. 3. 5-5 SJ-20140731105308-012|2014-10-20 (R1. 4. The procedure is described below. 5. Service packets are transmitted over the backup tunnel. Related APS messages are sent from Node Z to Node A to advertise related switching information. Node A detects the fault. 2. 1. When Node Z confirms that the priority of the switching protection request is valid. 6.Chapter 5 Tunnel Protection Group Configuration Figure 5-3 Unidirectional 1:1 Linear Protection Switching (Expressed in Single Direction) If a fault occurs on the working connection in the direction from Node Z to Node A.0) ZTE Proprietary and Confidential . The selector of Node A is bridged to backup tunnel A-Z. Node Z merges it selector into the backup tunnel A-Z.

Step Command Function 1 ZXR10(config)#tunnel-group<group-id> Configures a tunnel protection group and enters tunnel protection group mode.2 Configuring a Tunnel Protection Group This procedure describes how to configure a tunnel protection group.ZXR10 M6000-S Configuration Guide (MPLS) Figure 5-4 Unidirectional 1:1 Protection Switching (Primary Tunnel Z-A Failure) 5. Default: 32768. and the maximum value depends on the product specifications. The minimum value is 1.0) ZTE Proprietary and Confidential . ZXR10(config-tunnel-group-id)#protect-type 1:1 Sets the protection type to {bidirectional | unidirectional} receiving {both | selective} 1:1 in tunnel protection group mode. Steps 1. Configure a linear tunnel protection group. <group-id> is the tunnel protection group ID configured for a user. 2 ZXR10(config-tunnel-group-id)#protect-type 1+1 Sets the protection type to {bidirectional | unidirectional} receiving {both | selective} 1+1 in tunnel protection group mode. 5-6 SJ-20140731105308-012|2014-10-20 (R1.

<tunnel-id>: tunnel instance ID. An intermediate node tunnel cannot be added to a linear tunnel protection group as a working tunnel. when modifying the working tunnel. this command can be omitted.0) ZTE Proprietary and Confidential . ensure that the ingress and egress interfaces of the working tunnel are the same as those of the protection tunnel. 1:1: 1:1 protection type 1+1: 1+1 protection type unidirectional: unidirectional protection bidirectional: bidirectional protection selective: Messages are received in a selected direction. 5-7 SJ-20140731105308-012|2014-10-20 (R1. both: Messages are received in both directions. 5 ZXR10(config-tunnel-group-id)#protect-tunnel Sets a protection tunnel for a <tunnel-id> tunnel protection group. ensure that the ingress and egress interfaces of the working tunnel are the same as those of the protection tunnel. Configure a ring network tunnel protection group. For a linear tunnel protection group. whose range depends on the product specifications. when modifying a working tunnel. For a linear tunnel protection group. For ring protection. 6 ZXR10(config-tunnel-group-id)#protect-strategy aps Sets the protection policy of a linear tunnel protection group to aps. An intermediate node tunnel cannot be added to a linear tunnel protection group as a protection tunnel. 2.Chapter 5 Tunnel Protection Group Configuration Step Command Function 4 ZXR10(config-tunnel-group-id)#working-tunnel Sets the working tunnel of the <tunnel-id> tunnel protection group.

Default: 32768. this command must be configured. The minimum value is 1. This command can be configured only after a protection segment is 5-8 SJ-20140731105308-012|2014-10-20 (R1. <group-id> is the tunnel protection group ID configured for a user. ZXR10(config-tunnel-group-id)#protect-tunnel Sets a protection tunnel of a <tunnel-id> tunnel protection group. a protection tunnel can only be a ring tunnel.ZXR10 M6000-S Configuration Guide (MPLS) Step Command Function 1 ZXR10(config)#tunnel-group <group-id> Configures a tunnel protection group and enters tunnel protection group mode. This command can be configured only after a working tunnel and protection tunnel are configured for a ring tunnel group. 3 4 ZXR10(config-tunnel-group-id)#working-tunnel Sets a working tunnel for a <tunnel-id> tunnel protection group. 2 ZXR10(config-tunnel-group-id)#protect-type ring Sets the protection type to ring in tunnel protection group mode.0) ZTE Proprietary and Confidential . this command can be omitted. For a ring network tunnel protection group. 6 ZXR10(config-tunnel-group-id)#working-tail-aps-id Sets the destination node <aps-id> apsid for the working tunnel of the ring network protection group. For linear protection. For inter-ring services. and the maximum value depends on the product specifications. this command can be omitted. 5 ZXR10(config-tunnel-group-id)#protect-section Configures a protection <sectionid> segment for a ring network tunnel protection group. For linear protection.

3 Tunnel Protection Group Configuration Example Configuration Description The network topology of a static TE tunnel protection group is shown in Figure 5-5. range: 1–4000. Command Function ZXR10#show tunnel-group all Displays the information about all tunnel protection groups that have been configured successfully. and Tunnel1003 is the reversed tunnel. whose range depends on the product specifications. set Tunnel1002 to the backup tunnel and set Tunnel1003 to the reversed tunnel. <tunnel-id>: tunnel instance ID. Enable MPLS OAM on the header node of Tunnel1001 and Tunnel1002 to detect the local tunnel. ZXR10#show tunnel-group <group-id> Displays the information about the specified tunnel protection group. 3. – End of Steps – 5. Enable MPLS OAM on the tail node of 5-9 SJ-20140731105308-012|2014-10-20 (R1. Display the configuration results. < aps-id >: range: 1–127. Figure 5-5 Tunnel Protection Group Configuration Example Configuration Flow Set Tunnel1001 to the active tunnel.0) ZTE Proprietary and Confidential . <sectionid> is the section ID. Tunnel1001 is the active tunnel. Tunnel1002 is the backup tunnel.Chapter 5 Tunnel Protection Group Configuration Step Command Function configured for the ring tunnel group.

255.81.255.1.81.9.81.81.0 P1(config-if-gei-0/3/0/6)#no shutdown P1(config-if-gei-0/3/0/6)#exit P1(config)#interface loopback1 P1(config-if-loopback1)#ip address 4.81 P1(config-mpls-te)#interface loopback1 P1(config-mpls-te-if-loopback1)#exit 5-10 SJ-20140731105308-012|2014-10-20 (R1.81 P1(config-mpls-oam-te_tunnel-1001)#type ffd frequence 500 exp 0 P1(config-mpls-oam-te_tunnel-1001)#mpls oam enable P1(config-mpls-oam-te_tunnel-1001)#exit P1(config-mpls-oam)#local te_tunnel 1002 ingress 4.1 255.1 255.0 P1(config-if-gei-0/3/0/2)#no shutdown P1(config-if-gei-0/3/0/2)#exit P1(config)#interface gei-0/3/0/6 P1(config-if-gei-0/3/0/6)#ip address 81.255. Configure tunnel protection group information on the header node and the tail node.81.255.5.255.255 P1(config-if-loopback1)#exit P1(config)#interface te_tunnel1001 P1(config-if-te_tunnel1001)#ip unnumbered loopback1 P1(config-if-te_tunnel1001)#exit P1(config)#interface te_tunnel1002 P1(config-if-te_tunnel1002)#ip unnumbered loopback1 P1(config-if-te_tunnel1002)#exit P1(config)#interface te_tunnel97535 P1(config-if-te_tunne97535)#ip unnumbered loopback1 P1(config-if-te_tunne97535)#exit P1(config)#mpls oam P1(config-mpls-oam)#local te_tunnel 1001 ingress 4.0 P1(config-if-xgei-0/0/0/2)#no shutdown P1(config-if-xgei-0/0/0/2)#exit P1(config)#interface gei-0/3/0/2 P1(config-if-gei-0/3/0/2)#ip address 81.81 255.9.1.81.81 P1(config-mpls-oam-te_tunnel-1002)#type ffd frequence 500 exp 0 P1(config-mpls-oam-te_tunnel-1002)#mpls oam enable P1(config-mpls-oam-te_tunnel-1002)#exit P1(config-mpls-oam)#exit P1(config)#mpls traffic-eng P1(config-mpls-te)#router-id 4.0) ZTE Proprietary and Confidential .5.81.ZXR10 M6000-S Configuration Guide (MPLS) Tunnel1001 and Tunnel1002 to detect the remote tunnel.255.81.255.255. Configuration Commands The configuration of the header node P1: P1(config)#interface xgei-0/0/0/2 P1(config-if-xgei-0/0/0/2)#ip address 81.1 255.

5.52.81.1.52.81.52.52 egress 4.52.81 P1(config)#tunnel-group 1 P1(config-tunnel-group-1)#protect-type 1+1 unidirectional receiving selective P1(config-tunnel-group-1)#working-tunnel 1001 P1(config-tunnel-group-1)#protect-tunnel 1002 Configuration of the tail node P2: P2(config)#interface xgei-0/3/0/21 5-11 SJ-20140731105308-012|2014-10-20 (R1.2 P1(config-mpls-te-static-te_tunnel1002-lsp)#exit P1(config-mpls-te-static-te_tunnel1002)#exit P1(config-mpls-te)#static te_tunnel97535 P1(config-mpls-te-static-te_tunnel97535)#role egress type unidirectional P1(config-mpls-te-static-te_tunnel97535)#ingress-tunnel-id 1003 ingress 4.0) ZTE Proprietary and Confidential .81.Chapter 5 Tunnel Protection Group Configuration P1(config-mpls-te)#interface gei-0/3/0/2 P1(config-mpls-te-if-gei-0/3/0/2)#exit P1(config-mpls-te)#interface gei-0/3/0/6 P1(config-mpls-te-if-gei-0/3/0/6)#exit P1(config-mpls-te)#interface xgei-0/0/0/2 P1(config-mpls-te-if-xgei-0/0/0/2)#exit P1(config-mpls-te)#static te_tunnel1001 P1(config-mpls-te-static-te_tunnel1001)#role ingress type unidirectional P1(config-mpls-te-static-te_tunnel1001)#ingress-tunnel-id 1001 ingress 4.81.5.1.52.2 P1(config-mpls-te-static-te_tunnel1001)#exit P1(config-mpls-te)#static te_tunnel1002 P1(config-mpls-te-static-te_tunnel1002)#role ingress type unidirectional P1(config-mpls-te-static-te_tunnel1002)#ingress-tunnel-id 1002 ingress 4.52 P1(config-mpls-te-static-te_tunnel1001)#lsp 1 P1(config-mpls-te-static-te_tunnel1001-lsp)#out-seg-info out-port xgei-0/0/0/2 out-label 3 next-hop 81.52.81 egress 4.81 P1(config-samgr)#track 1002 mpls-oam tunnel-id 1002 ingress-id 4.81.81 P1(config-mpls-te-static-te_tunnel97535)#lsp 1 P1(config-mpls-te-static-te_tunnel97535-lsp)#in-seg-info in-port gei-0/3/0/6 in-label 3 P1(config-mpls-te-static-te_tunnel97535-lsp)#exit P1(config-mpls-te-static-te_tunnel97535)#exit Tunnel protection group configuration: P1(config)#samgr P1(config-samgr)#track 1001 mpls-oam tunnel-id 1001 ingress-id 4.81.81.81.52 P1(config-mpls-te-static-te_tunnel1002)#lsp 1 P1(config-mpls-te-static-te_tunnel1002-lsp)#out-seg-info out-port gei-0/3/0/2 out-label 3 next-hop 81.81.81 egress 4.81.

52.52.81.81.52 P2(config-mpls-te)#interface xgei-0/3/0/21 P2(config-mpls-te-if-xgei-0/3/0/21)#exit P2(config-mpls-te)#interface gei-0/3/0/5 P2(config-mpls-te-if-gei-0/3/0/5)#exit P2(config-mpls-te)#interface gei-0/3/0/9 P2(config-mpls-te-if-gei-0/3/0/9)#exit P2(config-mpls-te)#static te_tunnel1003 P2(config-mpls-te-static-te_tunnel1003)#role ingress type unidirectional P2(config-mpls-te-static-te_tunnel1003)#ingress-tunnel-id 1003 ingress 4.52.81.9.255.255.255.81 backward-tunnel 1003 share type ffd frequence 500 P2(config-mpls-oam)#exit P2(config)#mpls traffic-eng P2(config-mpls-te)#router-id 4.9.81.1.2 255.81 backward-tunnel 1003 share type ffd frequence 500 P2(config-mpls-oam)#egress te_tunnel 1002 ingress 4.2 255.255.9.5.5.52.52.255.0 P2(config-if-xgei-0/3/0/21)#exit P2(config)#interface gei-0/3/0/5 P2(config-if-gei-0/3/0/5)#no shutdown P2(config-if-gei-0/3/0/5)#ip address 81.52 egress 4.52.81.0) ZTE Proprietary and Confidential .2 255.1 P2(config-mpls-te-static-te_tunnel1003-lsp)#exit 5-12 SJ-20140731105308-012|2014-10-20 (R1.ZXR10 M6000-S Configuration Guide (MPLS) P2(config-if-xgei-0/3/0/21)#no shutdown P2(config-if-xgei-0/3/0/21)#ip address 81.52 255.0 P2(config-if-gei-0/3/0/5)#exit P2(config)#interface gei-0/3/0/9 P2(config-if-gei-0/3/0/9)#no shutdown P2(config-if-gei-0/3/0/9)#ip address 81.0 P2(config-if-gei-0/3/0/9)#exit P2(config)#interface loopback1 P2(config-if-loopback1)#ip address 4.255 P2(config-if-loopback1)#exit P2(config)#interface te_tunnel65536 P2(config-if-te_tunnel65536)#ip unnumbered loopback1 P2(config-if-te_tunnel65536)#exit P2(config)#interface te_tunnel65537 P2(config-if-te_tunnel65537)#ip unnumbered loopback1 P2(config-if-te_tunnel65537)#exit P2(config)#interface te_tunnel1003 P2(config-if-te_tunnel1003)#ip unnumbered loopback1 P2(config-if-te_tunnel1003)#exit P2(config)#mpls oam P2(config-mpls-oam)#egress te_tunnel 1001 ingress 4.255.255.255.1.81 P2(config-mpls-te-static-te_tunnel1003)#lsp 1 P2(config-mpls-te-static-te_tunnel1003-lsp)#out-seg-info out-port gei-0/3/0/9 out-label 3 next-hop 81.81.9.

52.52.81 egress 4.52. Name: tunnel_1001 Status: Admin Status: up Protocol Status: up Actual Bandwidth: N/A Associated Bidirect: disabled Basic Config Parameters: Ingress-TnnlID:1001 IngressID:4.52 P2(config-mpls-te-static-te_tunnel65536)#lsp 1 P2(config-mpls-te-static-te_tunnel65536-lsp)#in-seg-info in-port xgei-0/3/0/21 in-label 3 P2(config-mpls-te-static-te_tunnel65536-lsp)#exit P2(config-mpls-te-static-te_tunnel65536)#exit P2(config-mpls-te)#static te_tunnel65537 P2(config-mpls-te-static-te_tunnel65537)#role egress type unidirectional P2(config-mpls-te-static-te_tunnel65537)#ingress-tunnel-id 1002 ingress 4.81 egress 4.81.81.52.0) ZTE Proprietary and Confidential .52.81.81.81 P2(config-samgr)#track 1002 mpls-oam tunnel-id 1002 ingress-id 4.52 P2(config-mpls-te-static-te_tunnel65537)#lsp 1 P2(config-mpls-te-static-te_tunnel65537-lsp)#in-seg-info in-port gei-0/3/0/5 in-label 3 P2(config-mpls-te-static-te_tunnel65537-lsp)#exit P2(config-mpls-te-static-te_tunnel65537)#exit Tunnel protection group configuration: P2(config)#samgr P2(config-samgr)#track 1001 mpls-oam tunnel-id 1001 ingress-id 4.Chapter 5 Tunnel Protection Group Configuration P2(config-mpls-te-static-te_tunnel1003)#exit P2(config-mpls-te)#static te_tunnel65536 P2(config-mpls-te-static-te_tunnel65536)#role egress type unidirectional P2(config-mpls-te-static-te_tunnel65536)#ingress-tunnel-id 1001 ingress 4.81.52.52 Role: Ingress Policy Class: Default Track Name: Tunnel-Status: enabled Perf Switch: off 5-13 SJ-20140731105308-012|2014-10-20 (R1. The tunnel is in up state.81.81.81.81 P2(config-samgr)#exit P2(config)#tunnel-group 1 P2(config-tunnel-group-1)#protect-type 1+1 unidirectional receiving selective P2(config-tunnel-group-1)#working-tunnel 65536 P2(config-tunnel-group-1)#protect-tunnel 65537 P2(config-tunnel-group-1)#exit Configuration Verification Check the information of tunnel on the P1 router.81.81 Tunnel Type: Unidirect EgressID:4.81.

1.52 Role: Ingress Policy Class: Default Track Name: Tunnel-Status: enabled Perf Switch: off SD Switch: disable AutoRoute: disabled Forwarding adjacency: disabled Rate-limit: disabled BFD: disabled Convergence-Ratio: Bandwidth Reserve Mode: reserve Binded LSP 1 Positive Forward Info: in-port: in-label: prev-hop:- 5-14 SJ-20140731105308-012|2014-10-20 (R1.2 bandwidth: 0 burst: 0 peak: 0 excess-burst: 0 Share tunnel: 0 Name: tunnel_1002 Status: Admin Status: up Protocol Status: up Actual Bandwidth: N/A Associated Bidirect: disabled Basic Config Parameters: Ingress-TnnlID:1002 IngressID:4.ZXR10 M6000-S Configuration Guide (MPLS) SD Switch: disable AutoRoute: disabled Forwarding adjacency: disabled Rate-limit: disabled BFD: disabled Convergence-Ratio: Bandwidth Reserve Mode: reserve Binded LSP 1 Positive Forward Info: in-port: in-label: prev-hop:out-port: xgei-0/0/0/2 out-label: 3 next-hop: 81.0) ZTE Proprietary and Confidential .52.81.81.52.81 Tunnel Type: Unidirect EgressID:4.1.

81 Role: Egress Policy Class: N/A Track Name: Tunnel-Status: enabled Perf Switch: off SD Switch: disable Forwarding adjacency: disabled Rate-limit: disabled Convergence-Ratio: Bandwidth Reserve Mode: reserve Binded LSP 1 Positive Forward Info: in-port: gei-0/3/0/6 in-label: 3 prev-hop:out-port: out-label: next-hop: 0.5.0.0 bandwidth: 0 burst: 0 peak: 0 excess-burst: 0 Share tunnel: 0 Check the information of tunnel on the P2 router.0.2 bandwidth: 0 burst: 0 peak: 0 excess-burst: 0 Share tunnel: 0 Name: tunnel_97535 Status: Admin Status: up Protocol Status: up Actual Bandwidth: N/A Associated Bidirect: disabled Basic Config Parameters: Ingress-TnnlID:1003 IngressID:4.81.Chapter 5 Tunnel Protection Group Configuration out-port: gei-0/3/0/2 out-label: 3 next-hop: 81. Name: tunnel_65536 Status: Admin Status: up Protocol Status: up Actual Bandwidth: N/A Associated Bidirect: disabled 5-15 SJ-20140731105308-012|2014-10-20 (R1. The tunnel is in up state.5.81.52.52 Tunnel Type: Unidirect EgressID:4.52.0) ZTE Proprietary and Confidential .

0.0 bandwidth: 0 burst: 0 peak: 0 excess-burst: 0 Share tunnel: 0 Name: tunnel_65537 Status: Admin Status: up Protocol Status: up Actual Bandwidth: N/A Associated Bidirect: disabled Basic Config Parameters: Ingress-TnnlID:1002 IngressID:4.52.52.81 Tunnel Type: Unidirect EgressID:4.52.52 Role: Egress Policy Class: N/A Track Name: Tunnel-Status: enabled Perf Switch: off SD Switch: disable Forwarding adjacency: disabled Rate-limit: disabled Convergence-Ratio: Bandwidth Reserve Mode: reserve Binded LSP 1 Positive Forward Info: in-port: xgei-0/3/0/21 in-label: 3 prev-hop:out-port: out-label: next-hop: 0.81.0) ZTE Proprietary and Confidential .ZXR10 M6000-S Configuration Guide (MPLS) Basic Config Parameters: Ingress-TnnlID:1001 IngressID:4.81.81.52 Role: Egress Policy Class: N/A Track Name: Tunnel-Status: enabled Perf Switch: off SD Switch: disable Forwarding adjacency: disabled Rate-limit: disabled Convergence-Ratio: Bandwidth Reserve Mode: reserve Binded LSP 1 Positive Forward Info: 5-16 SJ-20140731105308-012|2014-10-20 (R1.81 Tunnel Type: Unidirect EgressID:4.52.81.0.

52.0.52.Chapter 5 Tunnel Protection Group Configuration in-port: gei-0/3/0/5 in-label: 3 prev-hop:out-port: out-label: next-hop: 0.1 bandwidth: 0 burst: 0 peak: 0 excess-burst: 0 Share tunnel: 0 Check the configuration of tunnel protection group on P1.81.52 Tunnel Type: Unidirect EgressID:4.81 Role: Ingress Policy Class: Default Track Name: Tunnel-Status: enabled Perf Switch: off SD Switch: disable AutoRoute: disabled Forwarding adjacency: disabled Rate-limit: disabled BFD: disabled Convergence-Ratio: Bandwidth Reserve Mode: reserve Binded LSP 1 Positive Forward Info: in-port: in-label: prev-hop:out-port: gei-0/3/0/9 out-label: 3 next-hop: 81.0) ZTE Proprietary and Confidential .0 bandwidth: 0 burst: 0 peak: 0 excess-burst: 0 Share tunnel:0 Name: tunnel_1003 Status: Admin Status: up Protocol Status: up Actual Bandwidth: N/A Associated Bidirect: disabled Basic Config Parameters: Ingress-TnnlID:1003 IngressID:4. 5-17 SJ-20140731105308-012|2014-10-20 (R1.9.81.9.0.

state: OK Protection tunnel: 1002. P2#show tunnel-group 1 Tunnel group 1 Protection type: 1+1 unidirectional receiving selective Protection strategy: unknown Protection section: 0 Working tunnel: 65536.ZXR10 M6000-S Configuration Guide (MPLS) P1#show tunnel-group 1 Tunnel group 1 Protection type: 1+1 unidirectional receiving selective Protection strategy: unknown Protection section: 0 Working tunnel: 1001.state: OK Working tunnel tail aps id: 0 Switch: no 5-18 SJ-20140731105308-012|2014-10-20 (R1.state: OK Working tunnel tail aps id: 0 Switch: no Check the configuration of tunnel protection group on P2.state: OK Protection tunnel: 65537.0) ZTE Proprietary and Confidential .

.................. When a fault occurs on a link.......... which brings serious loss..6-9 6.................... refer to Section 5.....................1 APS Overview APS Introduction With the wide use and application of network..... packets are still forwarded on the backup tunnel instead of the primary tunnel............. when there is a link fault............... packets are forwarded on the primary tunnel....0) ZTE Proprietary and Confidential .....6-1 Configuring APS........................ The flow is described below......Chapter 6 APS Configuration Table of Contents APS Overview ..... In this way........... and coordinates the protection switching mechanism of the switching selectors at both ends. For detailed information........ thus ensuring normal communication... The peer device gives a protection switching reply through a response message... Non-revertive mode: When the primary tunnel recovers... APS Protection Modes APS switching supports two protection modes: revertive mode and non-revertive mode........................... services can be quickly switched to a link that is working properly.....6-5 APS Configuration Example ....... l Revertive mode Figure 6-1 shows the APS message interaction procedure of the revertive mode. The following scenarios describe the APS principle by the interactions of some typical APS messages.. APS sends a protection switching request through an APS protocol message............ The demand for network bandwidth is increasing rapidly................ 6-1 SJ-20140731105308-012|2014-10-20 (R1... APS is a redundancy protection technology....................1 “Tunnel Protection Group Overview”............. l l Revertive mode: Once the primary tunnel recovers...... A short network interruption may affect a lot of services....................... various value-added services are deployed on network............... APS Protection Modes There are two kinds of APS protection modes: 1+1 linear protection and 1:1 linear protection..

the east send an APS NR message to the peer to switch the traffic back to the primary tunnel. The traffic transmitted through the tunnel from the west to the east is interrupted. 5. 6. When the traffic sending from the west to the east recovers. It sends an APS WTR message to the peer. and sends an APS SP message to the peer. the east reports SF recovery and becomes WTR state.ZXR10 M6000-S Configuration Guide (MPLS) 1. 4. 2. There is no fault detected by both ends of the tunnel. The east end generates an SF alarm. it also switches packet sending and receiving to the backup tunnel. Then the east switches packet sending and receiving to the backup tunnel. Service traffic is forwarded on the primary tunnel. During the WTR period. When the WTR timer expires. the traffic is still forwarded on the backup tunnel. Figure 6-1 Working Flow of the Revertive Mode 6-2 SJ-20140731105308-012|2014-10-20 (R1. When the west receives the SF message from the peer.0) ZTE Proprietary and Confidential . 3.

2. When the west receives the SF message from the peer. it also switches packet sending and receiving to the backup tunnel. The flow is described below. 5. When the traffic sending from the west to the east recovers.0) ZTE Proprietary and Confidential . 1. the east reports SF recovery. The east generates an SF alarm. The traffic forwarded by the tunnel from the west to the east is intermitted. There is no fault detected by both ends of the tunnel.Chapter 6 APS Configuration • • l NR: No Request r/b: request signal/bridge signal • • WTR: Wait To Restore service DNR: Do-Not-Revert • • SF: Signal Failure W->E: west to east direction Non-revertive mode Figure 6-2 shows the APS message interaction procedure when the non-revertive mode is used. and sends an APS SP message to the peer. Service traffic is forwarded on the primary tunnel. The traffic is still forwarded on the backup tunnel. 4. The east clears SF state and switches to NR normal state. it does change its state. When the west receives the DNR message. 6-3 SJ-20140731105308-012|2014-10-20 (R1. 3. It sends a DNR message to the peer. Then the east switches packet sending and receiving to the backup tunnel.

see Figure 6-4. In a tunnel protection group. When no fault occurs or no request is received. protection can be implemented at the following two layers: l l Tunnel protection can be deployed at the tunnel layer. If a fault occurs or a request is received. A PW protection group can be deployed at the PW layer. traffic is forwarded through the primary tunnel.0) ZTE Proprietary and Confidential . APS determines which tunnel 6-4 SJ-20140731105308-012|2014-10-20 (R1. a protection relationship is established between two tunnel members. see Figure 6-3.ZXR10 M6000-S Configuration Guide (MPLS) Figure 6-2 Working Flow of the Non-Revertive Mode • • NR: No Request r/b: request signal/bridge signal • • WTR: Wait To Restore service DNR: Do-Not-Revert • • SF: Signal Failure W->E: west to east direction APS Applications Through the APS deployment.

APS instances have similar attributes (for example. and the PE1→PE2 tunnel is configured as the backup tunnel. a protection relationship is established between the two PW entities. Figure 6-4 PW Protection Group Application 6. which ensures that the traffic from PE1 to PE2 is not interrupted. 6-5 SJ-20140731105308-012|2014-10-20 (R1. Figure 6-3 Tunnel Protection Group Application In a PW protection group.2 Configuring APS Protection groups can be configured at each network layer. The PE1→P→PE2 tunnel is configured as the primary tunnel. the revertive mode and hold-off time). Protection relationship is established between the two tunnel groups.0) ZTE Proprietary and Confidential . The closed protection mode (such as a tunnel protection group) or the protection mode shown in Figure 6-4 can be used. When a fault occurs on PW1. This group contains PE1→P→PE2 (indicated by the solid lines) and PE1→PE (indicated by the broken line) tunnels . When the primary tunnel becomes faulty. and PW2 is the protection entity. APS switches over the traffic to the backup tunnel after a calculation. Figure 6-3 shows a tunnel protection group. the corresponding APS instance is configured. The corresponding APS instance is configured. Figure 6-4 shows that PW1 is the working entity. The primary tunnel and backup tunnel may pass through different P nodes (recommended). corresponding to different APS instances. but these attributes must be set in different configuration modes. but they must pass through the same PE node. APS can determine which PW is selected to forward the traffic as needed.Chapter 6 APS Configuration should be selected to forward the traffic. Moreover.

2. and other parameters cannot be set. 3 ZXR10(config-aps-linear-protect)#tunnel-group Enters the configuration mode <group-id> of the APS instance for the tunnel protection group. To configure an APS instance. To set the attributes of the APS instance. 2 Enters APS linear protection ZXR10(config-aps)#linear-protect mode. perform the following steps: Step Command Function 1 ZXR10(config)#aps Enters APS configuration mode.0) ZTE Proprietary and Confidential . Such a protection group is automatically created by TECP. perform the following steps: Step Command Function 1 ZXR10(config-aps-linear-protect-tunnel- Sets the hold-off time (in group1)#hold-off <0-100> 100 milliseconds) for APS switching. range: 0–100.ZXR10 M6000-S Configuration Guide (MPLS) Protection groups can be established at the LSP layer. 6. 2 ZXR10(config-aps-linear-protect-tunnel- Sets the revertive mode of group1)#revertive-mode {non-revertive | revertive wtr APS.1 Configuring APS for a Tunnel Protection Group This procedure describes how to configure APS for a tunnel protection group. the default parameter settings are used to create the corresponding APS instance. When a protection policy object of the tunnel protection group is generated. The following show how to change the attributes of the APS instance. {default |<1-12>}} 6-6 SJ-20140731105308-012|2014-10-20 (R1. The group-id parameter is in a range of 1 to 32768. Steps 1. Context The APS instance configuration of a tunnel protection group is independent of the tunnel protection group configuration.2.

options: l remote (enabling the sending and receiving of packets) l local (disabling the sending and receiving of packets) However. the WTR time (in minutes. that is. 3. The <dwTgId> parameter is in a range of 1 to 32768. default: 5) should be specified. range: 0–12. APS can calculate the status of the tunnel protection group only when being in restore-run status. APS switching can be configured only when APS is in restore-run status. run the following command: Command Function ZXR10(config)#show aps linear-protect [{tunnel-group Displays the statuses of the <dwTgId>|pw-protector <pw-name>|lsp-group <dwLspgId>}] APS instances for all tunnel protection groups or the status of the specified APS instance. Version 20 and later versions do not support the sending and receiving of APS packets. 6-7 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential . APS does not take effect. group1)#active-state { restore-run | pause } options: l restore-run l pause ZXR10(config-aps-linear-protect-tunnel- Configures manual APS group1)#switch {clear | lockout | force-switch | switching. 4 5 ZXR10(config-aps-linear-protect-tunnel- Configures the APS status. APS does not calculate the status of the tunnel protection group when being in pause status.Chapter 6 APS Configuration Step Command Function 3 ZXR10(config-aps-linear-protect-tunnel- Enables or disables the group1)#protect-mode {remote | local } sending and receiving of APS packets. To display the configuration result. manual-switch | exercise} When the revertive mode of APS is set to revertive-mode. tunnel-group: displays the status of the APS instance for the tunnel protection group (its ID is specified by <dwTgId>). This command is reserved to be compatible with other versions only. The revertive mode of APS can be changed only when APS is in pause status.

When a protection policy object of the PW protection group is generated. 3 ZXR10(config-aps-linear-protect)#pw-protector Enters the configuration mode <pw-name> of the PW protection group.ZXR10 M6000-S Configuration Guide (MPLS) pw-protector: displays the status of the APS instance for the PW protection group (its name is specified by <pw-name>). perform the following steps: Step Command Function 1 ZXR10(config)#aps Enters APS configuration mode. The following show how to change the attributes of the APS instance.2. the default parameter settings are used to create the corresponding APS instance. Context The APS instance configuration of a PW protection group is independent of the PW protection group configuration. 2. The <dwLspgId> parameter is in a range of 1 to 4096. – End of Steps – 6. range: 0-100. To set the attributes of the APS instance. The pw-name parameter is in a range of 1 to 32768. {default |<1-12>}} 6-8 SJ-20140731105308-012|2014-10-20 (R1. The backup PW protection group has the same name as the primary PW protection group. 2 ZXR10(config-aps-linear-protect-pwprotector- Sets the revertive mode of pw1)#revertive-mode {non-revertive | revertive wtr APS. 2 Enters APS linear protection ZXR10(config-aps)#linear-protect mode. perform the following steps: Step Command Function 1 ZXR10(config-aps-linear-protect-pwprotector- Sets the hold-off time (in pw1)#hold-off <0-100> 100 milliseconds) for APS switching.0) ZTE Proprietary and Confidential . Steps 1. To configure an APS instance. lsp-group : displays the status of the APS instance for the PW protection group (its ID is specified by <dwLspgId>).2 Configuring APS for a PW Protection Group This procedure describes how to configure APS for a PW protection group.

3. default: 5) should be specified. Refer to Section 6. 3. range: 0-12. the WTR time (in minutes. | exercise} When the revertive mode of APS is set to revertive-mode. TP-OAM should be enabled on the tunnels. APS can calculate the status of the tunnel protection group only when being in restore-run status. The revertive mode of APS can be changed only when APS is in pause status. To detect the connectivity of the two tunnels.0) ZTE Proprietary and Confidential .Chapter 6 APS Configuration Step Command Function 3 ZXR10(config-aps-linear-protect-pwprotector- Enables or disables the pw1)#protect-mode {remote | local } sending and receiving of APS packets. APS does not take effect. Upon detecting an alarm.1 APS Configuration Example (Tunnel Protection Group) Scenario Description A protection relationship should be configured between the two tunnels in a tunnel protection group. APS does not calculate the status of the tunnel protection group when being in pause status. – End of Steps – 6.1 Configuring APS for a Tunnel Protection Group. APS switching can be configured only when APS is in restore-run status. two valid tunnels should be configured before the tunnel protection group is created. APS calculates the 6-9 SJ-20140731105308-012|2014-10-20 (R1. and then the entity module sends a notification to the tunnel protection group module. The tunnel protection group informs APS. that is. pw1)#active-state { restore-run | pause } options: l restore-run l pause ZXR10(config-aps-linear-protect-pwprotector- Configures manual APS pw1)#switch {clear | lockout | force-switch | manual-switch switching.2. Therefore. TP-OAM notifies the corresponding entity module of the alarm. options: l remote (enabling the sending and receiving of packets) l local (disabling the sending and receiving of packets) 4 5 ZXR10(config-aps-linear-protect-pwprotector- Configures the APS status. Display the configuration results.3 APS Configuration Example 6.

PE1 and PE2 are directly-connected. 4.255. Configure tunnels. Figure 6-5 shows a sample network topology.255. 6.1.1 255. Configure an APS instance.5. 2. Figure 6-5 APS Configuration Example (Tunnel Protection Group) Configuration Flow 1. Tunnel1 should be configured to be the primary tunnel (indicated by the solid line).81.5. Configure a tunnel protection group. Configure the IP addresses of interfaces.0) ZTE Proprietary and Confidential . Configuration Commands Run the following commands on PE1 (head node of the two tunnels): /*Run the following commands to configure the IP addresses of interfaces:*/ PE1(config)#interface xgei-0/0/0/2 PE1(config-if-xgei-0/0/0/2)#ip address 81. and Tunnel2 should be configured to be the backup tunnel (indicated by the broken line).0 PE1(config-if-xgei-0/0/0/2)#no shutdown PE1(config-if-xgei-0/0/0/2)#exit PE1(config)#interface gei-0/3/0/2 PE1(config-if-gei-0/3/0/2)#ip address 81.1.81. Enable TP-OAM on the tunnels. and then determines which tunnel should be selected to forward the traffic. 5.81 6-10 SJ-20140731105308-012|2014-10-20 (R1. 3.ZXR10 M6000-S Configuration Guide (MPLS) status based on actual conditions.1 255.255. It is required to establish two valid tunnels (tunnel1 and tunnel2) between PE1 and PE2.0 PE1(config-if-gei-0/3/0/2)#no shutdown PE1(config-if-gei-0/3/0/2)#exit /*Run the following commands to configure TE interfaces: */ PE1(config)#interface te_tunnel1001 PE1(config-if-te_tunnel1001)#exit PE1(config)#interface te_tunnel1002 PE1(config-if-te_tunnel1002)#exit /*Run the following commands to configure tunnels:*/ PE1(config)#mpls traffic-eng PE1(config-mpls-te)#router-id 4. Configure TE interfaces.255.

52.81.81.52 PE1(config-mpls-te-static-te_tunnel1001)#lsp 1 PE1(config-mpls-te-static-te_tunnel1001-lsp)#out-seg-info out-port xgei-0/0/0/2 out-label 3 next-hop 81.2 PE1(config-mpls-te-static-te_tunnel1002-lsp)#rvs-in-seg-info in-port gei-0/3/0/2 in-label 3 PE1(config-mpls-te-static-te_tunnel1002-lsp)#exit PE1(config-mpls-te-static-te_tunnel1002)#exi /*Run the following commands to enable TP-OAM on the two tunnels*/ /*to detect the connectivity of the tunnels:*/ PE1(config)#mpls-tp oam PE1(config-tp-oam)#static-tunnel 1001 lspid 1 PE1(config-tp-oam-static-tunnel-1001-lsp-1)#meg 1001 PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#meg-id 1001 PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#oam enable PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#local-mep 1001 type bidirectional PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#peer-mep 2001 type bidirectional PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#cv enable PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#cv period 1s PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#cc enable PE1(config-tp-oam-static-tunnel-1001-lsp-1-meg-1001)#exit 6-11 SJ-20140731105308-012|2014-10-20 (R1.2 PE1(config-mpls-te-static-te_tunnel1001-lsp)#rvs-in-seg-info in-port xgei-0/0/0/2 in-label 3 PE1(config-mpls-te-static-te_tunnel1001-lsp)#exit PE1(config-mpls-te-static-te_tunnel1001)#exit PE1(config-mpls-te)#static te_tunnel1002 PE1(config-mpls-te-static-te_tunnel1002)#role ingress type bidirectional PE1(config-mpls-te-static-te_tunnel1002)#ingress-tunnel-id 1002 ingress 4.52.Chapter 6 APS Configuration PE1(config-mpls-te)#interface loopback1 PE1(config-mpls-te-if-loopback1)#exit PE1(config-mpls-te)#interface gei-0/3/0/2 PE1(config-mpls-te-if-gei-0/3/0/2)#exit PE1(config-mpls-te)#interface xgei-0/0/0/2 PE1(config-mpls-te-if-xgei-0/0/0/2)#exit PE1(config-mpls-te)#advertise none-null PE1(config-mpls-te)# static te_tunnel1001 PE1(config-mpls-te-static-te_tunnel1001)#role ingress type bidirectional PE1(config-mpls-te-static-te_tunnel1001)#ingress-tunnel-id 1001 ingress 4.1.81 egress 4.81.81 egress 4.52.0) ZTE Proprietary and Confidential .52 PE1(config-mpls-te-static-te_tunnel1002)#lsp 1 PE1(config-mpls-te-static-te_tunnel1002-lsp)#out-seg-info out-port gei-0/3/0/2 out-label 3 next-hop 81.52.81.1.5.5.

0) ZTE Proprietary and Confidential .5.0 PE2(config-if-xgei-0/3/0/21)#no shutdown PE2(config-if-xgei-0/3/0/21)#exit PE2(config)#interface gei-0/3/0/5 PE2(config-if-gei-0/3/0/5)#ip address 81.255.2 255.5.255.ZXR10 M6000-S Configuration Guide (MPLS) PE1(config-tp-oam-static-tunnel-1001-lsp-1)#exit PE1(config-tp-oam)#static-tunnel 1002 lspid 1 PE1(config-tp-oam-static-tunnel-1002-lsp-1)#meg 1002 PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#meg-id 1002 PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#oam enable PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#local-mep 1002 type bidirectional PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#peer-mep 2002 type bidirectional PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#cv enable PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#cv period 1s PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#cc enable PE1(config-tp-oam-static-tunnel-1002-lsp-1-meg-1002)#exit PE1(config-tp-oam-static-tunnel-1002-lsp-1)#exi /*Run the following commands to configure a tunnel*/ /*protection group:*/ PE1(config)#tunnel-group 1 PE1(config-tunnel-group-1)#protect-type 1:1 bidirectional receiving both PE1(config-tunnel-group-1)#working-tunnel 1001 PE1(config-tunnel-group-1)#protect-tunnel 1002 PE1(config-tunnel-group-1)#protect-strategy aps PE1(config-tunnel-group-1)#exit /*Run the following commands to configure an APS instance:*/ PE1(config)#aps PE1(config-aps)#linear-protect PE1(config-aps-linear-protect)#tunnel-group 1 PE1(config-aps-linear-protect-tunnelgroup1)#switch force-switch PE1(config-aps-linear-protect-tunnelgroup1)#hold-off 20 PE1(config-aps-linear-protect-tunnelgroup1)#exit PE1(config-aps-linear-protect)#exit PE1(config-aps)#exit Run the following commands on PE2 (tail node of the two tunnels): /*Run the following commands to configure the IP addresses of interfaces:*/ PE2(config)#interface xgei-0/3/0/21 PE2(config-if-xgei-0/3/0/21)#ip address 81.0 PE2(config-if-gei-0/3/0/5)#no shutdown PE2(config-if-gei-0/3/0/5)#exit /*Run the following commands to configure TE interfaces: */ 6-12 SJ-20140731105308-012|2014-10-20 (R1.1.255.2 255.1.255.

52.52.1 PE2(config-mpls-te-static-te_tunnel65536-lsp)#exit PE2(config-mpls-te-static-te_tunnel65536)#exit PE2(config-mpls-te)#static te_tunnel65537 PE2(config-mpls-te-static-te_tunnel65537)#role egress type bidirectional PE2(config-mpls-te-static-te_tunnel65537)#ingress-tunnel-id 1002 ingress 4.81 egress 4.52 PE2(config-mpls-te-static-te_tunnel65537)#lsp 1 PE2(config-mpls-te-static-te_tunnel65537-lsp)#in-seg-info in-port gei-0/3/0/5 in-label 3 PE2(config-mpls-te-static-te_tunnel65537-lsp)#rvs-out-seg-info out-port gei-0/3/0/5 out-label 3 next-hop 81.52 PE2(config-mpls-te-static-te_tunnel65536)#lsp 1 PE2(config-mpls-te-static-te_tunnel65536-lsp)#in-seg-info in-port xgei-0/3/0/21 in-label 3 PE2(config-mpls-te-static-te_tunnel65536-lsp)#rvs-out-seg-info out-port xgei-0/3/0/21 out-label 3 next-hop 81.52.52.5.52.81 egress 4.81.0) ZTE Proprietary and Confidential .81.52.52 PE2(config-mpls-te)#interface loopback1 PE2(config-mpls-te-if-loopback1)#exit PE2(config-mpls-te)#interface gei-0/3/0/5 PE2(config-mpls-te-if-gei-0/3/0/5)#exit PE2(config-mpls-te)#interface xgei-0/3/0/21 PE2(config-mpls-te-if-xgei-0/3/0/21)#exit PE2(config-mpls-te)#advertise none-null PE2(config-mpls-te)# static te_tunnel65536 PE2(config-mpls-te-static-te_tunnel65536)#role egress type bidirectional PE2(config-mpls-te-static-te_tunnel65536)#ingress-tunnel-id 1001 ingress 4.Chapter 6 APS Configuration PE2(config)#interface te_tunnel65536 PE2(config-if-te_tunnel65536)#exit PE2(config)#interface te_tunnel65537 PE2(config-if-te_tunnel65537)#exit /*Run the following commands to configure tunnels:*/ PE2(config)#mpls traffic-eng PE2(config-mpls-te)#router-id 4.81.5.1.81.1 PE2(config-mpls-te-static-te_tunnel65537-lsp)#exit PE2(config-mpls-te-static-te_tunnel65537)#exit /*Run the following commands to enable TP-OAM on the two*/ /*tunnels to detect the connectivity of the tunnels:*/ PE2(config)#mpls-tp oam PE2(config-tp-oam)#static-tunnel 65536 lspid 1 PE2(config-tp-oam-static-tunnel-65536-lsp-1)#meg 2001 6-13 SJ-20140731105308-012|2014-10-20 (R1.1.

0) ZTE Proprietary and Confidential .ZXR10 M6000-S Configuration Guide (MPLS) PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#meg-id 2001 PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#oam enable PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#local-mep 2001 type bidirectional PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#peer-mep 1001 type bidirectional PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#cv enable PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#cv period 1s PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#cc enable PE2(config-tp-oam-static-tunnel-65536-lsp-1-meg-2001)#exit PE2(config-tp-oam-static-tunnel-65536-lsp-1)#exi PE2(config-tp-oam)#static-tunnel 65537 lspid 1 PE2(config-tp-oam-static-tunnel-65537-lsp-1)#meg 2002 PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#meg-id 2002 PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#oam enable PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#local-mep 2002 type bidirectional PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#peer-mep 1002 type bidirectional PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#cv enable PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#cv period 1s PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#cc enable PE2(config-tp-oam-static-tunnel-65537-lsp-1-meg-2002)#exit PE2(config-tp-oam-static-tunnel-65537-lsp-1)#exi /*Run the following commands to configure a tunnel protection group:*/ PE2(config)#tunnel-group 1 PE2(config-tunnel-group-1)#protect-type 1:1 bidirectional receiving both PE2(config-tunnel-group-1)#working-tunnel 65536 PE2(config-tunnel-group-1)#protect-tunnel 65537 PE2(config-tunnel-group-1)#protect-strategy aps PE2(config-tunnel-group-1)#exit /*Run the following commands to configure an APS instance:*/ PE2(config)#aps PE2(config-aps)#linear-protect PE2(config-aps-linear-protect)#tunnel-group 1 PE2(config-aps-linear-protect-tunnelgroup1)#switch force-switch PE2(config-aps-linear-protect-tunnelgroup1)#hold-off 20 PE2(config-aps-linear-protect-tunnelgroup1)#exit PE2(config-aps-linear-protect)#exit PE2(config-aps)#exit Configuration Verification Run the show aps linear-protect tunnel-group 1 command on PE1 and PE2 to check the APS configuration and whether APS has been enabled. The execution result is displayed as follows: 6-14 SJ-20140731105308-012|2014-10-20 (R1.

At last. and the PWs should be associated with tunnels that provide bearer paths. At last. Figure 6-6 shows a sample network topology. It is also required to establish a tunnel from UPE to NPE2 for providing a bearer path for PW2. a protection relationship should be configured between PW1 (the primary PW) and PW2 (the backup PW).0) ZTE Proprietary and Confidential . the PW protection group informs APS. 6-15 SJ-20140731105308-012|2014-10-20 (R1. and establish a tunnel from UPE to NPE1 for providing a bearer path for PW1. TP-OAM should be enabled on the PWs.valid hold-off time: 2000ms Switch command: force-switch 6. To detect the connectivity of the two PWs.2 APS Configuration Example (PW Protection Group) Scenario Description A protection relationship should be configured between the two PWs in a PW protection group.Chapter 6 APS Configuration PE1#show aps linear-protect tunnel-group 1 ----------[APS Linear Instance]---------Protection group type: tunnel Protection group id: 1 Protection type: 1:1 bidirectional receiving both APS is enabled APS state: NO_REQUEST_NULL Protection mode: remote Active-state: restore-run Revertive mode: revertive. TP-OAM notifies the corresponding entity module of the alarm. Upon detecting an alarm. and then the entity module sends a notification to the PW protection group module. It is required to deploy a PW protection group on the UPE NE. Therefore. WTR time: 5min Hold-off time: 2000ms. APS calculates the status based on actual conditions. and then determines which tunnel should be selected to forward the traffic. it is required to create two valid tunnels and respectively bind two PWs to the tunnels.valid hold-off time: 0ms Switch command: nul PE2#show aps linear-protect tunnel-group 1 ----------[APS Linear Instance]---------Protection group type: tunnel Protection group id: 1 Protection type: 1:1 bidirectional receiving both APS is enabled APS state: FORCED_SWITCH Protection mode: remote Active-state: restore-run Revertive mode: revertive.3. WTR time: 5min Hold-off time: 0ms.

81 255. Configure tunnels. 4. Configure the IP addresses of interfaces. 3.255. and respectively bind the two PWs to the corresponding tunnels. Configure an APS instance. 2.255. 5.1 255.1. Configure tunnel policies.255.1.1.255.1. Configuration Commands /*Run the following commands to configure the IP addresses of interfaces:*/ PE1(config)#interface xgei-0/0/0/2 PE1(config-if-xgei-0/0/0/2)#ip address 81. Configure TE interfaces.0 PE1(config-if-xgei-0/0/0/4)#no shutdown PE1(config-if-xgei-0/0/0/4)#exit /*Run the following commands to configure TE interfaces: */ PE1(config)#interface te_tunnel1001 PE1(config-if-te_tunnel1001)#exit PE1(config)#interface te_tunnel1002 PE1(config-if-te_tunnel1002)#exit /*Run the following commands to configure tunnels:*/ 6-16 SJ-20140731105308-012|2014-10-20 (R1. 6.ZXR10 M6000-S Configuration Guide (MPLS) Figure 6-6 APS Configuration Example (PW Protection Group) Configuration Flow 1.0 PE1(config-if-xgei-0/0/0/2)#no shutdown PE1(config-if-xgei-0/0/0/2)#exit PE1(config)#interface xgei-0/0/0/4 PE1(config-if-xgei-0/0/0/4)#ip address 40.0) ZTE Proprietary and Confidential . Configure a PW protection group.

81.81.0) ZTE Proprietary and Confidential .81 PE1(config-mpls-te)#interface loopback1 PE1(config-mpls-te-if-loopback1)#exit PE1(config-mpls-te)#interface xgei-0/0/0/4 PE1(config-mpls-te-if-xgei-0/0/0/4)#exit PE1(config-mpls-te)#interface xgei-0/0/0/2 PE1(config-mpls-te-if-xgei-0/0/0/2)#exit PE1(config-mpls-te)#advertise none-null PE1(config-mpls-te)#static te_tunnel1001 PE1(config-mpls-te-static-te_tunnel1001)#role ingress type bidirectional PE1(config-mpls-te-static-te_tunnel1001)#ingress-tunnel-id 1001 ingress 4.52 PE1(config-mpls-te-static-te_tunnel1002)#lsp 1 PE1(config-mpls-te-static-te_tunnel1002-lsp)#out-seg-info out-port xgei-0/0/0/4 out-label 3 next-hop 40.81.81.82.81.1.52.71 PE1(config-mpls-te-static-te_tunnel1002-lsp)#rvs-in-seg-info in-port xgei-0/0/0/4 in-label 3 PE1(config-mpls-te-static-te_tunnel1002-lsp)#exit PE1(config-mpls-te-static-te_tunnel1002)#exit PE1(config-mpls-te)#exit /*Run the following commands to configure tunnel policies:*/ PE1(config)#tunnel-policy work PE1(config-tunnel-policy-work)#tunnel selecting mpls-te te_tunnel1001 PE1(config-tunnel-policy-work)#exit PE1(config)#tunnel-policy protect PE1(config-tunnel-policy-protect)#tunnel selecting mpls-te te_tunnel1002 PE1(config-tunnel-policy-protect)#exit /*Run the following commands to configure a PW protection group:*/ PE1(config)#pw pw1001 6-17 SJ-20140731105308-012|2014-10-20 (R1.52.Chapter 6 APS Configuration PE1(config)#mpls traffic-eng PE1(config-mpls-te)#router-id 4.1.81 egress 4.82.1.82 PE1(config-mpls-te-static-te_tunnel1001)#lsp 1 PE1(config-mpls-te-static-te_tunnel1001-lsp)#out-seg-info out-port xgei-0/0/0/2 out-label 3 next-hop 81.81 egress 4.1.2 PE1(config-mpls-te-static-te_tunnel1001-lsp)#rvs-in-seg-info in-port xgei-0/0/0/2 in-label 3 PE1(config-mpls-te-static-te_tunnel1001-lsp)#exit PE1(config-mpls-te-static-te_tunnel1001)#exit PE1(config-mpls-te)#static te_tunnel1002 PE1(config-mpls-te-static-te_tunnel1002)#role ingress type bidirectional PE1(config-mpls-te-static-te_tunnel1002)#ingress-tunnel-id 1002 ingress 4.81.

52 vcid 1002 PE1(config-vpls-1001-protect-pw1002-neighbor)#signal static local-label 400 remote-label 400 /*Run the following commands to enable TP-OAM on the*/ /*two PWs to detect the connectivity of the PWs:*/ PE1(config)#mpls-tp oam PE1(config-tp-oam)#oam enable PE1(config-tp-oam)#pw pw1001 PE1(config-tp-oam-pw-pw1001)#meg 33 PE1(config-tp-oam-pw-pw1001-meg-33)#meg-id 33 PE1(config-tp-oam-pw-pw1001-meg-33)#oam enable PE1(config-tp-oam-pw-pw1001-meg-33)#local-mep 13 type bidirectional PE1(config-tp-oam-pw-pw1001-meg-33)#peer-mep 31 type bidirectional PE1(config-tp-oam-pw-pw1001-meg-33)#cv enable PE1(config-tp-oam-pw-pw1001-meg-33)#cv period 1s PE1(config-tp-oam-pw-pw1001-meg-33)#cc enable PE1(config-tp-oam-pw-pw1001-meg-33)#exit PE1(config-tp-oam-pw-pw1002)#meg 44 PE1(config-tp-oam-pw-pw1002-meg-44)#meg-id 4 PE1(config-tp-oam-pw-pw1002-meg-44)#local-mep 14 type bidirectional PE1(config-tp-oam-pw-pw1002-meg-44)#peer-mep 41 type bidirectional PE1(config-tp-oam-pw-pw1002-meg-44)#oam enable PE1(config-tp-oam-pw-pw1002-meg-44)#cv enable PE1(config-tp-oam-pw-pw1002-meg-44)#cv period 1s PE1(config-tp-oam-pw-pw1002-meg-44)#cc enable PE1(config-tp-oam-pw-pw1002-meg-44)#exit PE1(config-tp-oam-pw-pw1002)#exit PE1(config-tp-oam)#exit /*Run the following commands to configure an APS instance:*/ 6-18 SJ-20140731105308-012|2014-10-20 (R1.82 vcid 1001 PE1(config-vpls-1001-spoke-pw-pw1001-neighbor)#signal static local-label 300 remote-label 300 PE1(config-vpls-1001-spoke-pw-pw1001-neighbor)#exit PE1(config-vpls-1001-spoke-pw-pw1001)#redundancy-manager PE1(config-vpls-1001-spoke-pw-pw1001)#protect-type 1:1 bidirectionalreceiving both protect-strategy aps PE1(config-vpls-1001-spoke-pw-pw1001)#exit PE1(config-vpls-1001)#backup-pw pw1002 protect pw1001 PE1(config-vpls-1001-protect-pw1002)#neighbor 4.52.ZXR10 M6000-S Configuration Guide (MPLS) PE1(config)#pw pw1002 PE1(config)#mpls l2vpn enable PE1(config)#vpls 1001 PE1(config-vpls-1001)#pseudo-wire pw1001 spoke PE1(config-vpls-1001-spoke-pw-pw1001)#neighbor 4.0) ZTE Proprietary and Confidential .52.82.82.

Chapter 6 APS Configuration PE1(config)#aps PE1(config-aps)#linear-protect PE1(config-aps-linear-protect)#pw-protector pw1001 PE1(config-aps-linear-protect-pwprotector-pw1001)#switch force-switch PE1(config-aps-linear-protect-pwprotector-pw1001)#hold-off 20 Configuration Verification Run the show aps linear-protect pw-protector pw1 command on PE1 to check the APS configuration and whether APS has been enabled: PE1#show aps linear-protect pw-protector pw1001 ----------[APS Linear Instance]---------Protection group type: pw Protection group id: 1 Protection group name: pw1001 Protection type: 1:1 bidirectional receiving both APS is enabled APS state: FORCED_SWITCH Protection mode: remote Active-state: restore-run Revertive mode: revertive.valid hold-off time: 2000ms Switch command: force-switch 6-19 SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential . WTR time: 5min Hold-off time: 2000ms.

0) ZTE Proprietary and Confidential .ZXR10 M6000-S Configuration Guide (MPLS) This page intentionally left blank. 6-20 SJ-20140731105308-012|2014-10-20 (R1.

.............. 1-30 Figure 1-18 Establishing an LDP Target Session .................................................................................................................................... 1-4 Figure 1-4 MPLS Working Principle ............... 1-80 Figure 1-30 Packet Filtration Configuration Example....................................................................................... 1-6 Figure 1-7 MPLS Special Terms. 1-49 Figure 1-23 LSP Load-Sharing Configuration Example .. 1-8 Figure 1-8 Routing Table Generation .................... 1-12 Figure 1-12 Downstream on Demand (DoD) ....................................................................................... 1-3 Figure 1-3 Position of MPLS ................................... 1-71 Figure 1-28 LDP IGP Synchronization Configuration Example (IS-IS) ........ 1-4 Figure 1-5 MPLS Label Structure..............................................................................0) ZTE Proprietary and Confidential .......... 1-36 Figure 1-20 LDP Multi-Instance Topology................................Figures Figure 1-1 IP Forwarding ............................................................................................. 1-17 Figure 1-16 Implementation of Longest Matching Routes in LSP ..... 1-56 Figure 1-24 LDP BFD Configuration Example ............................... 1-10 Figure 1-10 LSP Generation .............. 1-13 Figure 1-13 Downstream Unsolicited .......................................... 1-16 Figure 1-15 Network Topology for IGP Synchronization ............ 1-11 Figure 1-11 Penultimate Hop Popping..................................................................................................................................................................................................................................... 1-42 Figure 1-22 Network Architecture of LDP Graceful Restart Configuration Instance........................................................................................................................ 1-13 Figure 1-14 LDP Session Establishment ........................................ 1-5 Figure 1-6 MPLS Label Stack ............... 1-10 Figure 1-9 LIB Generation............................................................... 1-60 Figure 1-25 PEER BFD Configuration Example ..................................... 1-85 I SJ-20140731105308-012|2014-10-20 (R1.................................................................................................................................................... 1-75 Figure 1-29 Network Diagram for LDPIGP Synchronization Integrated with FRR.................................................. 1-68 Figure 1-27 LDP IGP Synchronization Configuration Example (OSPF) .............................................. 1-64 Figure 1-26 GTSM Configuration Example.......................................................................................................................... 1-33 Figure 1-19 Configuring a Label Distribution Policy ........................................... 1-2 Figure 1-2 ATM Forwarding ................................................................................................................... 1-39 Figure 1-21 Establishing an LDP FRR ............................................................................ 1-19 Figure 1-17 Establishing a Basic LDP Neighbour Session ...................................................................................................

........................................................................ 2-137 Figure 2-25 GR Configuration Example ........ 2-31 Figure 2-9 TE Interface Authentication Configuration ..........ZXR10 M6000-S Configuration Guide (MPLS) Figure 1-31 Label-Distribution Configuration Example ........................................... 2-12 Figure 2-5 Configuring BFD on RSVP Interface ............................................................................................................ 2-4 Figure 2-3 Establishing a Basic OSPF TE RSVP Tunnel............................................. 2-26 Figure 2-8 TE Message Acknowledgement and Retransmission Configuration Example ....................................... 2-79 Figure 2-18 Instance of Configuration for HOT_LSP Supporting TE-FRR.......................0) ZTE Proprietary and Confidential ....................................... 2-89 Figure 2-19 FRR Promotion Configuration Example (Node Protection Having a Higher Priority than Link Protection)............................................................................. 1-93 Figure 1-34 Label-Request Configuration Example ......................... 1-88 Figure 1-32 Label-Retention Configuration Example .............. 2-145 II SJ-20140731105308-012|2014-10-20 (R1....................................... 2-116 Figure 2-22 Establishing an MPLS TE End-to-End Path Protection.... 2-129 Figure 2-24 Instance of Automatic Bandwidth Regulation Configuration for the MPLS TE .................................................................................... 2-42 Figure 2-11 Configuration Instance of OSPF TE Crossing Several AS Domains .............................................................. 1-99 Figure 1-36 Longest-Match Configuration Example.................................. 2-105 Figure 2-20 FRR Configuration Example (Bandwidth for Backup Tunnels Being Met) ............................................................................. 2-19 Figure 2-7 TE Summary Refresh Configuration Example .............................................................................................................................. 2-110 Figure 2-21 FRR Hello Configuration Example...................................................................... 2-123 Figure 2-23 Loose Node Re-optimization Configuration Instance .................................................................................................. 1-90 Figure 1-33 Label-Advertise Configuration Example ...................................... 2-37 Figure 2-10 TE LSP Calculation Scheme ................ 2-43 Figure 2-12 Configuration Instance of IS-IS TE Crossing Several AS Domains .............................................................................................................. 2-8 Figure 2-4 Establishing a Strict IS-IS TE RSVP Tunnel ...................... 2-73 Figure 2-17 TE-FRR Bandwidth Protection Configuration Instance .. 1-103 Figure 2-1 LSP Tunnel Establishment 1 .............................................. 2-60 Figure 2-14 Establishing a Tunnel in Facility Mode Manually.......................................................................... 1-96 Figure 1-35 LSP-Control Configuration Example........................ 2-64 Figure 2-15 Establishing a Tunnel in Facility Mode Automatically. 2-16 Figure 2-6 RSVP LSP BFD Configuration Instance .................................................................................................................................. 2-52 Figure 2-13 TE-FRR Bandwidth Protection ................. 2-4 Figure 2-2 LSP Tunnel Establishment 2 .......................................... 2-68 Figure 2-16 Establishing a Tunnel in Detour Protection Mode .......................................

........................................................................................................................ 6-4 Figure 6-3 Tunnel Protection Group Application ....................................0) ZTE Proprietary and Confidential ......................................... 2-221 Figure 3-1 MPLS OAM Configuration Example ........... 2-175 Figure 2-32 TE Tunnel WTR Configuration Instance ........Figures Figure 2-26 FA Configuration Example .................................. 5-3 Figure 5-2 Unidirectional 1+1 Linear Protection Switching (Signal Failure) ..................................................................................................................... 5-4 Figure 5-3 Unidirectional 1:1 Linear Protection Switching (Expressed in Single Direction) ................ 2-203 Figure 2-38 Configuration Instance for Binding Interfaces Supporting TE Bandwidth Reservation ........... 2-199 Figure 2-37 TE Affinity Configuration Instance .............................................................................................. 3-4 Figure 4-1 MAM .................................................................................................................................... 2-180 Figure 2-33 Hard Preemption................................................... 5-6 Figure 5-5 Tunnel Protection Group Configuration Example................................................................................. 6-16 III SJ-20140731105308-012|2014-10-20 (R1................................................................... 2-215 Figure 2-39 Instance for Resource Reservation Configuration on the RSVP-TE .................................................................................................................................................................... 2-186 Figure 2-34 Soft Preemption ............................................... 6-5 Figure 6-4 PW Protection Group Application ................... 2-158 Figure 2-29 TE SRLG Configuration Example....................................................................................... 6-5 Figure 6-5 APS Configuration Example (Tunnel Protection Group) ........ 6-2 Figure 6-2 Working Flow of the Non-Revertive Mode ........................................................................................................... 2-164 Figure 2-30 TE Tunnel Re-optimization Configuration Example ................................................................ 5-9 Figure 6-1 Working Flow of the Revertive Mode.................................. 2-154 Figure 2-28 TE Metric Configuration Example...................................................................................... 4-3 Figure 5-1 Structure of Unidirectional 1+1 Linear Protection Switching ............................... 6-10 Figure 6-6 APS Configuration Example (PW Protection Group) ......................................................................... 5-5 Figure 5-4 Unidirectional 1:1 Protection Switching (Primary Tunnel Z-A Failure) ............. 2-170 Figure 2-31 Topological Graph of the Instance for Tunnel Establishment with Only TE HOTSTANDBY ................ 2-186 Figure 2-35 Instance of TE Tunnels Supporting Soft Preemption ......... 4-2 Figure 4-2 RDM ........................................................................... 2-149 Figure 2-27 AR Configuration Example .................................. 2-188 Figure 2-36 Instance of Equal Load Sharing Configuration on the TE-ECMP .............

IV SJ-20140731105308-012|2014-10-20 (R1.0) ZTE Proprietary and Confidential .Figures This page intentionally left blank.

Backward Defect Indication BGP .Label Distribution Protocol CR-LSP .0) ZTE Proprietary and Confidential .Access Network APS .Border Gateway Protocol CR-LDP .Application Response ASBR .Downstream-on-Demand ECMP .Equal-Cost Multi-Path routing V SJ-20140731105308-012|2014-10-20 (R1.Downstream Unsolicited DoD .Class of Service DNR .Asynchronous Transfer Mode BDI .Connectivity Verification CoS .Glossary ABR .Constrained Route .Area Border Router AN .Do-Not-Revert DU .Automatic Protection Switching AR .Constraint-based Routing Label Switched Path CSPF .Constrained Shortest Path First CV .Autonomous System Boundary Router ATM .

Fast Reroute GR .0) ZTE Proprietary and Confidential .Internet Protocol IPX .Layer 3 Virtual Private Network LAN .Label Edge Router LIB .Forward Defect Indication FEC .Label Distribution Protocol LER .Group Traffic State Machine IETF .Intermediate System-to-Intermediate System L2VPN .Interior Gateway Protocol IP .Internetwork Packet Exchange protocol IS-IS .Local Area Network LDP .Frame Relay FRR .Forwarding Adjacency FDI .ZXR10 M6000-S Configuration Guide (MPLS) FA .Graceful Restart GTSM .Layer 2 Virtual Private Network L3VPN .Label Information Base VI SJ-20140731105308-012|2014-10-20 (R1.Forwarding Equivalence Class FFD .Fast Failure Detection FR .Internet Engineering Task Force IGP .

Open Shortest Path First PE .Network Provider Edge NR .Least Upper Bound MBB .Label Switch Router LUB .Multiprotocol BGP MPLS .Label Switched Path LSR .Network Control Protocol NE .Provider Edge PLR .No Request OAM .Point of Local Repair PPP .Multiprotocol Label Switching NCP .Make Before Break MML .Operation.Network Element NPE .Merge Point MP-BGP .Link State Advertisement LSP .0) ZTE Proprietary and Confidential .Glossary LSA .Man Machine Language MP .Point to Point Protocol PW . Administration and Maintenance OSPF .Pseudo Wire VII SJ-20140731105308-012|2014-10-20 (R1.

Voice over Internet Protocol WTR .Virtual Private Network VRF .ZXR10 M6000-S Configuration Guide (MPLS) QoS .User Datagram Protocol UPE .Virtual Route Forwarding VoIP .Virtual Channel Identifier VP .User-End PE VC .Virtual Path VPI .Signal Failure TCP .0) ZTE Proprietary and Confidential .Traffic Engineering SD .Transport Protocol TTL .Quality of Service RSVP .Resource Reservation Protocol RSVP-TE .Resource Reservation Protocol .Time To Live UDP .Virtual Path Identifier VPN .Traffic Engineering TP .Signal Degrade SF .Transmission Control Protocol TE .Wait to Restore Time VIII SJ-20140731105308-012|2014-10-20 (R1.Virtual Channel VCI .