You are on page 1of 170

CATALOGO

14/11/05

13:35

Página 1

CONTENTS

ABOUT TECNOCOMMERZ ..................................................................

1

COMPANY AIMS AND PHILOSOPHY ....................................................

2

MATERIALS .....................................................................................

3

PRODUCTS, WE SUPPLY ...................................................................

4

PIPES DIMENSIONS AND WEIGHTS .....................................................

5

COMPARISION OF INTERNATIONAL STANDARDS FOR STAINLESS STEEL ...

6

NICKEL ALLOYS CORROSION DATA .....................................................

7

PRODUCTS ACCORDING TO ASTM CODE .............................................

8

MAXIMUM RECOMMENDED PRESSURES FOR
SEAMLESS/STAINLESS STEEL TUBES .................................................

9

SWG & BWG EQUIVALENTS IN INCHES AND MILLIMETRES ....................

10

WEIGHT OF FITTINGS ........................................................................

11

MATERIALS INFORMATION .................................................................

12

CATALOGO

14/11/05

13:35

Página 2

CATALOGO

14/11/05

13:35

Página 3

ABOUT TECNOCOMMERZ
INTRODUCTION

1
Let us introduce you the ACEQUISA-TECNOCOMMERZ group.
– Since 1983, year that Acequisa was founded, we have been a specialist stockist
and supplier of bars, plates, flanges, tubes and fittings in special stainless steels,
superalloys of nickel, Cr and Mo, Titanium, tantalum, cupronickels and other special alloys. Developing our activity mainly throught the Iberian Peninsula (Spain
and Portugal).
– In 2005, as an answer to a global demand, Tecnocommerz is created to export
more than 20 years experience in this field to international markets.

v

TECNOCOMMERZ
Ctra. Madrid-Irún, Km. 245 • Naves Radial I, 2A/2B
09007 BURGOS
Telph. 00 34 947 47 51 48 • Fax 00 34 947 47 51 49
E-mail: sales@tecnocommerz.com
info@tecnocommerz.com

3

4

N-620 MOTORWAY
BURGOS-VALLADOLID

N-620
BURGOS-VALLADOLID

Villalvilla

N-120
LEÓN-BURGOS

Towards
Madrid

N-1

N-620

Towards
Vitoria-Francia

Towards
Centro Urbano

N-1
MADRID-IRÚN

Towards
Vitoria-Francia

Towards N-623
Santander

Dirección
Madrid

Dirección
Vitoria-Francia

Dirección
Santander

Dirección
Vitoria-Francia

Villatoro
Villimar

N-623
SANTANDER-BURGOS

Towards
City Centre

Towards N-1
Vitoria-Francia

Roundabout

N-1
IRÚN-MADRID

Towards
Vitoria-Francia

Towards N-623
Santander

Toll
Motorway

Castañares

Traffic lights

Vía Servicio

TECNOCOMMERZ

HOTEL

N-120
BURGOS-LOGROÑO

AUTOPISTA
BURGOS-FRANCIA

Vía Servicio

Exit 2
Rubena - Villafría
Toll Motorway

13:35

N-1

Dirección
Santander

14/11/05

Towards
Vitoria-Francia

N-623

HOW TO REACH US BY ROAD:
BURGOS

CATALOGO
Página 4

CATALOGO

14/11/05

13:35

Página 5

PRESENTATION
GLOSSARY
❖ Annealed:
Metallurgical condition for products having undergone a special heat treatment that allows more
sophisticated metalworking techniques such as certain types of machining of forming.
In the case of austenitic and austeno-ferritic steels, this state corresponds to the solution annealed state.
❖ Descaled rolled bars:
Hot processed peeled bars: 1X finishing as per EN 10088-3 (1C for the non-peeled black bars).
❖ Ground bars:
Cold processed bars obtained by grinding; 2B an 2G finishing as per EN 10088-3 for the tolerances h9 and <h8 respectively.
❖ Heat treated:
Metallurgical condition obtained by quenching + tempering.
❖ Material number:
No. of the steel registered with the European Registration Office. The number is found in the STAHLEISENLIST Nº 9.
❖ Mechanical properties:
1 MPa = 1 N/mm2.
❑ For profiles and bars with a thickness < 35 mm having undergone a final cold run, the maximum
HB hardness values or the maximum tensile strength values can be respectively increased:
✔ by 60 units and 150 MPa, and the minimum elongation value can be decreased to 10%, for
ferritic and martensitic steels.
✔ by 100 units and 200 MPa, and the minimum elongation value can be decreased to 20%, for
austenitics.
EN 10088-3.

❖ Bright drawn bars:
Cold processed bars obtained by drawing (cold deformation): 2H finishing as per EN 10088-3.
❖ Bright turned bars:
Cold processed bars obtained by turning and roller burnishing: 2D finishing as per EN 10088-3.
❖ Treated and overaged, or precipitation hardened:
Metallurgical condition obtained by quenching and tempering performed on precipitation hardening
grades.
❖ Treated or solution annealed:
Metallurgical condition obtained by quenching and reserved for precipitation hardening grades
(4542 - ex F16 PH).
It is mandatory that the material undergo tempering before its final use.
❖ PRECISION DRAWN/TURNED BARS:
Products that are specially processed and manufactured to meet the increasingly strict requirements
of the screw cutting industry. See definition in the chapter entitled «Factory manufacturing possibilities».
An manufacturing process that considerably improves the machinability of the grades without deteriorating other properties (corrosion, Mechanical properties), which remain in complete conformity
with standards.
5

CATALOGO

14/11/05

13:35

Página 6

13:35

Página 7

COMPANY AIMS AND PHILOSOPHY

2

THE TWO ESSENTIAL
BUSINESS PRINCIPLES

THE ECONOMIC EFFICIENCY

14/11/05

THE CLIENT SATISFACTION

CATALOGO

OUR PHILOSOPHY = WORK HARD TO REACH THESE TWO
PILLARS

7

CATALOGO

14/11/05

13:35

Página 8

QUALITY:

All products are certified and
guaranteed according to ASTM,
DIN, AFNOR, BS…

v
Trazability in all our products is
assured.

8

CATALOGO

14/11/05

13:35

Página 9

MATERIALS, GRADES AVAILABLE
1º Austenitic stainless steels:
UNS
S31008
S31603
S31703
S31726
S32100
S32109
S34700
S41000
S43100

Material
AISI 310S
AISI 316L
AISI 317L
AISI 317LMN
AISI 321
AISI 321 H
AISI 347
AISI410
AISI431

W.Nr, or…
1,4841
1,4404
1,4438
1,4439
1,4541
1,4878
1,4550
1,4006
1,4057

3

2º Super austenitic stainless steels:
S31254
N08367
N08904

S31254
AL-6XN
904L

1,4547; F44
1,4539

3º Steels type Duplex and Super Duplex (Ferretic-Austenitic):
S31803
S32550
S32760
S32750

Duplex S31803
Ferralium 255®
Super duplex F55
Super duplex S32750

1,4462; F51
1,4507; F61
1,4501
1,4410; F3

4º Super Alloys Cr, Ni, Mo,…:
S17400
N08020
N10675
N06022
N10276
N06455
N08028
N08330
N08800
N08810
N08811
N08825
S66286
N08330
N06600
N06601
N06625
N07718
N07750
N04400
N05500

17-4PH®
20Cb3®
Hastelloy B3®
Hastelloy C22®
Hastelloy C276®
Hastelloy C4®
Incoloy 028®
Incoloy 330®
Incoloy 800®
Incoloy 800H®
Incoloy 800HT®
Incoloy 825®
Incoloy A286®
Incoloy DS®
Inconel 600®
Inconel 601®
Inconel 625®
Inconel 718®
Inconel X750®
Monel 400®
Monel K500®

1,4542; A564 Gr 630
Alloy 20; 2,4660
2,4617
2,4602
2,4819
2,4610
1,4563; Sanicro28
1,4333
1,4876
1,4876; 1,4958
1,4876; 1,4959
2,4858
1,4980; A638Gr 660
1,4864
2,4816
2,4851
2,4856
2,4668
2,4669
2,4360
2,4375

Niquel 200
Niquel 201

2,4060; 2,4066
2,4061; 2,4068

5º Nickels:
N02200
N02201

6º Exotic metals:

N50250.....

Niobium
Tantalo
Titanio Gr 1, 2 y 7
Zirconium

9

CATALOGO

14/11/05

13:35

Página 10

CATALOGO

14/11/05

13:35

Página 11

PRODUCTS, we supply:
Round bars
Hexagon bars
Bored bars
Forged bars
Blanks and rings
Tube plates
Tubes
Plates
Flanges
Elbows
Tess
Reductions

4

Caps
…………

Welded and seamless tubes

– Plates
– Plates cutting according to your needs

Fittings, welded and seamless

11

CATALOGO

14/11/05

13:35

Página 12

PRODUCTS, we supply:

Flanges ANSI-DIN

– Bars (rounds, square angles…)
– Profiles according to your needs

Fittings
Bolting according to your drawings

12

CATALOGO

14/11/05

13:35

Página 13

PRODUCTS, we supply:

We cut according to your needs

– Flanges
– Forgings
– Special forgings

Welding wire and electrodes

Fittings according to your drawings

13

CATALOGO

14/11/05

13:35

Página 14

PRODUCTS, we supply:

Collars

Forget fittings

Wire mesh
14

CATALOGO

14/11/05

13:35

Página 15

PRODUCTS, we supply:

Special flanges

Seamless and welded fittings
15

CATALOGO

14/11/05

13:35

Página 16

PRODUCTS, we supply:

Wide range of products

Parts according to your needs

16

14/11/05

13:35

Página 17

PIPE DIMENSIONS IN MM AND WEIGHTS IN KG.
ASME B36.B36.10

1/8

10,3

1/4

13,7

10

3/8

17,1

15

1/2

21,3

20

3/4

26,7

25

1

33,4

32

1 1/4

42,2

40

1 1/2

48,3

50

2

60,3

65

2 1/2

73,0

80

3

88,9

3 1/2

101,6

100

4

114,3

125

5

141,3

150

6

168,3

200

8

219,1

250

10

273,0

300

12

323,8

350

14

355,6

400

16

406,4

450

18

457

500

20

508

22

559

600

24

610

NOTE:

5S

1,65
0,8
1,65
1,0
1,65
1,3
1,65
1,7
1,65
1,9
1,65
2,4
2,11
3,8
2,11
4,6
2,11
5,2
2,11
5,8
2,77
9,5
2,77
11,3
2,77
14,8
3,40
22,6
3,96
31,3
3,96
34,4
4,19
41,6
4,19
46,8
4,78
59,3
4,78
65,2
5,54
82,5

5

10 S
1,24
0,3
1,65
0,5
1,65
0,6
2,11
1,0
2,11
1,3
2,77
2,1
2,77
2,7
2,77
3,2
2,77
4,0
3,05
5,3
3,05
6,5
3,05
7,4
3,05
8,4
3,40
11,6
3,40
13,8
3,76
20,0
4,19
27,8
4,57
36,0
4,78
41,3
4,78
47,3
4,78
53,3
5,54
68,6
5,54
75,5
6,35
94,5

10

20

6,35
54,7
6,35
62,6
6,35
70,6
6,35
78,6
6,35
86,5
6,35
94,5

30
1,45
0,3
1,85
0,5
1,85
0,7
2,41
1,1
2,41
1,4
2,90
2,2
2,97
2,9
3,18
3,5
3,18
4,5
4,78
8,0
4,78
9,9
4,78
11,4
4,78
12,9

6,35
33,3
6,35
42,4
6,35
49,7
7,92
67,9
7,92
77,8
7,92
87,7
9,53
117,2
9,53
129,1
9,53
141,1

7,04
36,8
7,80
51,8
8,38
65,2
9,53
81,3
9,53
93,3
11,13
122,4
12,70
155,1
12,70
171,1
14,27
209,6

STD

40

60

XS

40 S

80 S

1,73
0,4
2,24
0,6
2,31
0,9
2,77
1,3
2,87
1,7
3,38
2,5
3,56
3,4
3,68
4,1
3,91
5,5
5,16
8,6
5,49
11,3
5,74
13,6
6,02
16,1
6,55
21,8
7,11
28,3
8,18
42,6
9,27
60,3
9,53
73,9
9,53
81,3
9,53
93,3
9,53
105,2
9,53
117,2
9,53
129,1
9,53
141,1

2,41
0,5
3,02
0,8
3,20
1,1
3,73
1,6
3,91
2,2
4,55
3,3
4,85
4,5
5,08
5,5
5,54
7,6
7,01
11,4
7,62
15,3
8,08
18,6
8,56
22,3
9,53
31,0
10,97
42,6
12,70
64,6
12,70
81,6
12,70
97,4
12,70
107,4
12,70
123,3
12,70
139,2
12,70
155,1
12,70
171,1
12,70
187,1

10,31
79,7
11,13
94,6
12,70
123,3
14,27
155,8
15,09
183,4

17,48
255,4

10,31
53,1
12,70
81,6
14,27
109,0
15,09
126,7
16,66
160,1
19,05
205,7
20,62
247,8
22,23
299,3
24,61
355,3

80

100

120

140

IDENTICAL TO XS-80S

O.D.
(MM)

IDENTICAL TO STD-40S

NPS
(INCH)

IDENTICAL TO 10S

DN
(MM)

IDENTICAL TO 5S

CATALOGO

15,09
96,0
17,48
132,1
19,05
158,1
21,44
203,5
23,83
254,6
26,19
311,2
28,58
373,8
30,96
442,1

15,09
75,9
18,26
114,8
21,44
159,9
23,83
195,0
26,19
245,6
29,36
309,6
32,54
381,5
34,93
451,5
38,89
547,7

11,13
28,3
12,70
40,3
14,27
54,2
18,26
90,4
21,44
133,1
25,40
187,0
27,79
224,7
30,96
286,6
34,93
363,6
38,10
441,5
41,28
527,0
46,02
640,0

20,62
100,9
25,40
155,2
28,58
208,1
31,75
253,5
36,53
333,2
39,67
408,3
44,45
508,1
47,63
600,6
52,37
720,2

160

XXS

4,75
2,0
5,56
2,9
6,35
4,3
6,35
5,7
7,14
7,4
8,74
11,1
9,53
14,0
11,13
21,4

7,47
2,6
7,82
3,7
9,09
5,5
9,70
7,9
10,15
9,7
11,07
13,4
14,02
20,4
15,24
27,7

13,49
33,5
15,88
49,1
18,26
67,6
23,01
111,3
28,58
172,3
33,32
238,8
35,71
281,7
40,49
365,4
45,24
459,4
50,01
564,8
53,98
672,3
59,54
808,2

17,12
41,0
19,05
57,4
21,95
79,2
22,23
107,9
25,40
155,2
25,40
187,0

Green values are wall thicknesses in mm, other values are weights in kg/m.
Specific steel weight used for calculation is 8.0.
Titanium weight is approximately 57% of the table values.
DN = Nominal Diameter. SI description of pipe size in mm.
NPS = Nominal Pipe Size - description of pipe size in inch.
O.D = Outside Diameter of pipe.
Sch5S and 10S do not permit threading according to ANSI B1.20.1.
Sch40S and 80S in the table are applicable up to and including 12”.

17

5

CATALOGO

14/11/05

13:35

Página 18

CATALOGO

14/11/05

13:35

Página 19

COMPARISON OF INTERNATIONAL STANDARDS FOR
STAINLESS STEEL
Werkstoff-Nr.

DIN.

AISI.

UNS.

AFNOR.

BS.

JIS

SS.

GOST

1.4000

403(410S)

S 41008

Z6C13

403 S17

SUS 403

2301

08Ch13

405

S40500

Z6CAI13

405 S17

SUS 405

410
430

S 41000
S43000

Z12C13
Z8C17

2302
2320

12Ch13
12Ch17

420

S42000

Z20C13

SUS 420J1
SUS 420J2

2303

20Ch13

1.4024

X15Cr13

410

S 41000

SUS 410J1

1.4028
1.4031

X30Cr13
X38Cr13
(X40Cr13)
X46Cr13

420
420

S 42000
S 42000

Z30C13
Z40C14

410 S21
430 S15
430 S17
420 S29
420 S37
420 S45
420 S29
410 S21
420 S45

SUS 410
SUS 430

1.4021

X6Cr13
(X7Cr13)
X6CrAl13
(X7CrAl13)
X10Cr13
X6Cr17
(X8CR17)
X20Cr13

SUS 420J2
SUS 420J2

2304
2304

30Ch13
40Ch13

420

S42000

420 S45

40Ch13

X20CrNi172
(X22CrNi17)
X6CrTi17
(X8CrTi17)
X6CrTi12

431

S43100

Z40C14
Z38C13M
Z15CN 16-02

431 S29

SUS 431

2321

20Ch17N2

XM8
430Ti
409

Z8CT17

SUS 430LX

08Ch17T

S 40900

Z6CT12

SUH 409

X5CrNi1810
(X5CrNi189)
X10CrNiS189
(X12CrNiS188)
X2CrNi1911
(X2CrNi 189)
(G-X2Cr189)
X12CrNi177

304/304H

S 30400

Z6CN18-09

409 S19
409 S17
304 S31

SUS 304

2332

08Ch18N10

303

S 30300

Z10CNF 18-09

303 S21

SUS 303

2346

304L

S 30403

2352
2333

03Ch18N11

S 30100

304 S12
304 C12
304 S11
301 S21

SCS 19
SUS304L

301

SUS 301

X2CrNiN 1810
X5CrNiMo17122
X2CrNiMo17132
(X2CrNiMo1810)
(G-X2CrNiMo1810)
X2CrNiMoN17133
(X2CrNiMoN1813)
X2CrNiMo18143
(X2CrNiMo1812)

304LN
316
316L

S 30453
S 31600
S 31603

Z2CN18-10
Z3CN19-10M
Z2CN18-09
Z12CN17-07
Z12Cn18-07
Z2CN18-10Az
Z6CND17-11
Z2CND 18-13
Z2CND17-12

304 S62
316 S16
316 S14

SUS 304LN
SUS 316
SUS 316L

2371
2347
2348



316LN

S 31653

Z2CND 17-13

SUS 316LN

2375

316L

S 31603

Z2CND 17-13

SCS 16
SUS 316L

2353

03Ch17N14M2

S 31600

Z6CND 17-12

SUS 316

2343

S 31703

Z2CND 19-15

316 S11
316 S12
316 S13
316 S16
316 S33
317 S12

SUS 317L

2367

S 31726

N 08310

S 44400
N 08925

Z2CND 19-15




317 S16
317 S16




SUS 317







2326




07Ch17N20M2D2T

1.4002
1.4006
1.4016

1.4034
1.4057
1.4510
1.4512
1.4301
1.4305
1.4306

1.4310
1.4311
1.4401
1.4404

1.4429
1.4435

1.4436
1.4438
1.4439
1.4449
1.4465
1.4505
1.4521
1.4529

X5CrNiMo17133
316
(X5CrNiMo1812)
X2CrNiMo18164
317L
(X2CrNiMo1816)
X2CrNiMoN17135 317LNM
X5CrNiMo1713
317
X1CrNiMoN25252

X5CrNiMoCuNb2018

440
X2CrMoTi182
X1NiCrMoCuN25206

08Ch11NYU

6

19

CATALOGO

14/11/05

13:35

Página 20

Werkstoff-Nr.

DIN.

AISI.

UNS.

AFNOR.

BS.

JIS

SS.

GOST

1.4539
1.4541

X1NiCrMoCu25205
X6CrNiTi1810
(X10CrNiTi189)

904L
321

N 08904
S 32100

Z1NCDU25-2004
Z6CNT18-10


SUS 321

2562
2337


1Ch18N12T

1.4550

347

S 34700

Z6CNNb 18-10

SUS 347

2338

08Ch 18N12B



316Ti

N 08800
N 08028
S 31635


Z1NCDU31273Az
Z6CNDT 17-12





2350



10Ch17N13M2T

316 Cb

08Ch16N13M2B

318

310LC

HNV3
(405)
(430)







Z6CNDNb17-12
Z6CNDNb19-13


Z2CN25-20
Z8CA7
Z45CS9
Z10C13
Z10CAS18

1.4583
1.4586
1.4335
1.4713
1.4718
1.4724
1.4742

X6CrNiNb1810
(X10CrNiNb189)
X2NiCrAITi3220
X1NiCrMoCuN31274
X6CrNiMoTi17122
(X10CrNiMoTi1810)
X6CrNiMoNb17122
(X10CrNiMoNb 1810)
X10CrNiMoNb1812
X5CrMoCuNb2218
X1CrNi2521
X10CrAl7
X45CrSi93
X10CrAl13
X10CrAl18


321 S12
321 S20
(321 S31)
347 S17
347 S31


320 S31
320 S17













1.4749
1.4762
1.4821
1.4828
1.4833
1.4841
1.4845

X18CrN28
X10CrAl24
X20CrNiSi254
X15CrNiSi2012
X7CrNi2314
X15CrNiSi2520
X12CrNi2521

446-1
(446)
327
309
309S
314/310
310S








Z10CAS24
Z20CNS25-04
Z15CNS20-12
Z15CN24-13
Z12CNS25-20
Z12CN25-20




309 S24


310 S24







2361

Ch25


Ch24N12S1

20Ch25N20S2
10Ch23N18

1.4848
1.4864

(G-X40CrNiSi2520)
X12NiCrSi3616


330


N 08330

310 C40
Na 17



1.4871

X53CrMnNiN219

EV8


Z12NCS37-18
Z12NCS35-16
Z12NC37-18
Z52CMN21-09





SUH 1

SUS 430
SUH 21



SUH 309
SUS 3095
SUH 310
SUH 310
SUS 310S
SCH 21
SUH 330

1.4876
1.4876
1.4878

X10NiCrAlTi3320
X10CrNiAPTi3320
X12CrNiTi189

B163
B163
321H

N 08800
N 08810

Z8NC32-21
Z8NC32-21
Z6CNT18-12(B)



2337



1.4893

1.4362
1.4417
1.4460





X4CrNiMo2751
(X8CrNiMo275)





329

S 30815
S 32750
S 32304
S 31500
S 32900





NA 15(H)
NA 15
321 S20
(321 S12)




2368



2324





1.4462



X2CrNiMoN2253







S 31803
S 31200
S 31260
S 32550
S 32950

Z2CND22-05Az















1.4558
1.4563
1.4571
1.4580

(–) hitherto existing DIN-designation

20





401 S45
403 S17
430 S15

349 S54

SUH 35
SUH 36
NCF 8000

SUS 321




SUS 329J1
SCH 11
SCS 11




CATALOGO

14/11/05

13:35

Página 21

NICKEL ALLOYS CORROSION DATA
The following table summarises the typical resistance of various nickel base alloys to a wide range of corrosive environments. When using the table the following points should be borne in mind:
1. Data are summarised in this way for guidance only to show:
i:

The most suitable alloy for a given environment bearing in mind that no allowance is made for the effects
of heat transfer, erosion, galvanic effects or the influence of minor impurities present in mixtures.

2. Materials are rated according to the determined corosion rate in a particular environment:
A= Corrosion rate less than 0-1 mm/y.
B= Corrosion rate less than 0-5 mm/a but greater than 0-1 mm/y.
C= Corrosion rate greater than 0-5 mm/y.
Corrosion rates less than 0-5 mm/a (A and B rating) are acceptable for most chemical and process plant.
3. The information should not be taken as an implied recommendation for the use of a particular material
in a specific environment. It should not be a substitute for in plant trials with sample test coupons.
4. Concentrations refer to aqueous solution or mixtures of gases in air.
5. Environments are listed in alphabetical order.
6. This data is typical of results obtained in these environments. However, these alloys are not limited to
the corrosives, temperatures or concentrations given.
N.B. The A rating can be misleading in that very often the corrosion rate is very much less than 0-1 mm/y.
Where thin-walled material is to be used and only very low corrosion rates can be tolerated, more precise corrosion data should be obtained.

Media

Acetaldehyde
Acetic Acid
Acetic Anhydride
Acetone
Acetylene
Acrolein
Air 100
Alcohol-Allyl
Ethyl
Methyl
Allyl Chloride
Aluminium Chloride
AluminiumSulphate (Alum.)
Ammonia Liquid
Ammonium Bicarbonate
Ammonium Carbonate
Ammonium Chloride (dry)
Ammonium Hydroxide
Ammonium Nitrate
Ammonium Phosphate
Ammonium Sulphate
Amyl Acetate
Amyl Choride
Aniline
Barium Chloride
Barium Hydroxide
Beer

Concentration %

Temperature °C

Nickel
200 & 201

alloy
400

alloy
600

alloy
800

alloy
825

99
0-99
100
0-100
100
100

100
100
100
100
100
100
0-100
0-100
0-20
0-20
100
0-30
0-40
5
0-40
100
100
100
0-40
100
0-50

40
30
30
100
150
100
A
30
30
30
30
0-30
30
30
100
30
20
100
70
80
100
100
30
30
30
100
1040
100
30

A
C
B
A
A
B
A
A
A
A
A
B
C
C



B


B
B
A
A
C
B
B
A
A

A
B
B
A

B
A
A
A
A
A
B
B
C



B
C

B
B
A
B
C
B

B
A

A
B
B
A

B
A
A
A
A
B
B
C
B



B


B
B
A
B
B
B
B
B
A

A
A
A
A
A
B
A
A
A
A
B
C
B
A
B
C
A
C
A
A
A
B
A
B
A
B
B
B
A

A
A
A
A
A
B
A
A
A
A
A
B
A
A
B
B
A
B
A
A
A
A
A
B
A
B
A
A
A

7

21

CATALOGO

14/11/05

13:35

Página 22

Media

Concentration %

Temperature °C

Nickel
200 & 201

alloy
400

alloy
600

alloy
800

alloy
825

Beet Sugar Liquors
Benzaldehyde
Benzene
Black Sulphate Liquor
Boric Acid
Bromine, Dry
Butadiene
Butane
Butil Acetate
Butyric Acid
Calcium Chloride
Calcium Hydroxide
Cane Sugar Liquors
Carbon Bisulphide
Carbon Dioxide
Carbon Tetrachloride
Caustic Soda

0-40
100
100
100
0-20
100
100
100
100
0-100
0-25
0-30
100
100
100
100

A
B
A

B
A
A
A
B
C
A
B
A
A
A
A

A
B
A

B
A
A
A
B
B
A
B
A
B
A
B

A
B
A
A
B
A
A
A
B
C
A
B
A
A
A
A

A
A
A
B
A
B
A
A
A
B
B
B
A
A
A
A

A
A
A
A
A
B
A
A
A
A
A
B
A
A
A
A

Chlorine, Dry
Chlorobenzene
Chlorosulphonic Acid
Chloroform
Chromic Acid
Citric Acid
Coffee
Copper Sulphate
Cresylic Acid
Dichloretuane

100
100
100
100
0-100
100

0-30
100
100
100
100
All
100
100
100
100
100
100
100
0-30
25
20
0-100
0-100
100
30-100
0-40
All
All
100
0-100

30
30
30
100
100
50
30
30
30
100
30
100
90
30
450
30
See Sodium
Hydroxide
550
30
30
100
30
30
100
100
30
30
700
30
30
30
30
700
30
30
30
30
30
30
30
30
100
30
100
50
30
30
30
150

B
A
B
A
C
B
A
C
B
A

B
B
A
A

B
A
C
C
C
B
B
A
B
C
B
B
A
B
A
A

B
B
B
A
C
B
A
C
B
A

B
B
A
A

B
A
C
C
B
B
C
A
B
A
B
B
A
B
A
A

A
B
B
A
C
B
A
C
B
A
A
B
B
A
A
A
B
A
C
C
C
B
B
A
B
C
B
A
A
B
A
A

A
B

A
C
B
A
B
B
B
A
B
B
A
B
A
A
A
C
B
B
B
B
A
C
A
B
A
A
B
A
A

C
B
B
A
B
A
A
A
B
A

A
A
A
A

A
A
B
A
A
B
B
A
A
A
A
A
A
A
A
A



100

0-37
100
10-100
100

500

35

35
35
35
350

A
A
C
C


A
C
C

A
A
C
C

A
A
C
C


A
C
C

C
B
B

C
A
B

A
B
B

A
C
C

A
B
B

All

30

B

B

B

A

A

Ethyl Acetate
Ethyl Cellulose
Ethyl Chloride
Ethylene Dichloride
Ethylene Glycol
Fatty Acids
Ferric Chloride
Ferric Nitrate
Ferric Sulphate
Fluoboric Acid
Fluosilicic Acid
Formaldehyde
Formic Acid
Fuel Oil
FurfuraI
Gelantine
Glucose
Glutamic Acid
Glycerine
Glycerol
High Temperature Salt
(nitrate/nitrite)
Hydraulic Oil
Hydrazine
Hydrobromic Acid
Hydrochloric Acid
Hydrocyanic Acid
Hydrofluoric Acid
Hydrogen Peroxide
(acid free)

22

CATALOGO

14/11/05

13:35

Página 23

Media

Hydrogen Sulphide
Hydroquinone
Insulin
Lactic Acid
Lead Acetate
Lemon Juice
Linseed Oil
Lithium Chloride
Lithium Hydroxide
Magnesium Carbonate
Magnesium Chloride
Magnesium Hydroxide
Magnesium Nitrate
Magnesium Sulphate
Maleic Acid
Mercuric Chloride
Mercuric Cyanide
Mercuric lodide
Mercurous Nitrate
Mercury
Methyl Alcohol
Methyl Chloride
Methyl Ethyl Ketone
Milk
Mine Water
Molasses
Mono (sodium, potassium
or ammonium) Phosphate
Naphthenic Acid
Nickel Chloride
Nickel Nitrate
Nickel Sulphate
Nitric Acid
Nitrobenzene
Oils, Crude
Oils, Essential
Oils, Mineral
Oils, Palm
Oils, Peanut
Oils, Sulphonated
Oils, Vegetable
Oleic Acid
Oleum
Orange Juice
Oxalic Acid
Oxidising gases
Palmitic Acid
Paraffin
Petrol
Phenol
Phenol Sulphonic Acid
Phosphoric Acid
Phthalic Anhydride
Picric Acid
Potassium Bicarbonate
Potassium Carbonate
Potassium Chlorate
Potassium Chloride
Potassium Chromate

Concentration %

Temperature °C

Nickel
200 & 201

alloy
400

alloy
600

alloy
800

alloy
825

0-20
All
100
80
20
All
100
All
10
All
0-50
All
All
30
All
All
All
All
All
All
0-100
100
All
All
All
All

150
35
35
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
100
100
30
100
30
65
30


B
A
C
B
A
A
A
A
A
A
A
C
B
B
C
C
C
C

B
B
A
C
B
B
A
A
A
A
A
A
C
A
B
C
C
C
C


A
A
B
A
A
A
A
A
A
A
A
B
A
B
C
C
C
B

B

A
B
A
B
A
A
A
A
A
A
A
A
B
C
C
C
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
C
B
C
A

A
A
B
B
C
A

A
A
B
B
C
A

A
A
B
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

All
100
All
All
All
0-65
100
100
100
100
100
100
100
100
100
100
20
All
All
100
100
100
100
100
100
0-25
25-85
100
100
0-30
All
All
All
0-30

30
30
30
30
30
30
80
100
30
30
30
30
30
30
30
30
30
30
30
°C
30
35
30
30
30
30
85
30
30
30
30
30
30
30

A
B
B
C
B
C
C
B
A
A
A
A
A
A
A
B
C
A
C
1000
A
A
A
A
B
B
A
B
C
A
A
B
A
A

A
A
B
C
B
C
C
B
A
A
A
A
A
A
A
B
C
A
B
550
A
A
A
B
B
A
A
A
C
A
A
B
A
B

A
A
B
B
B
B
C
B
A
A
A
A
A
A
A
A
A
A
B
1100
A
A
A
A
B
A
C
A
C
A
A
B
A
A

A
A
B
B
B
A
B
B
A
A
A
A
A
A
A
A
B
A
C
1100
A
A
A
A
B
B
C
B
C
A
A
B
A
B

A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
B
900
A
A
A
A
A
A
A
A
B
A
A
A
A
A

23

CATALOGO

14/11/05

13:35

Página 24

Media

Potassium Cyanide
Potassium Dichromate
Potassium Ferricyanide
Potassium Hydroxide
Potassium Nitrate
Potassium Sulphate
Propane
Salicylic Acid
Sea Water
Silicon Tetrachloride
Silver Nitrate
Soap
Sodium Acetate
Sodium Bicarbonate
Sodium Bisulphate
Sodium Bromide
Sodium Carbonate
Sodium Chloride
Sodium Hydroxide
Sodium Metaphosphate
Sodium Metasilicate
Sodium Nitrate
Sodium Peroxide
Sodium Phosphate
Sodium Sulphate
Sodinm Sulphide
Steam
Stearic Acid
Sugar (liquid)
Sulphuric Acid

Sulphurous Acid
Tall Oil
Tannic Acid
Tartaric Acid
Tetraphosphoric Acid
Toluene
Trichloroethylene
Turpentine
Urea
Vinegar
Vinyl Chloride
Water
Xylene
Zinc Ammonium Chloride
Zinc Chloride
Zinc Nitrate
Zinc Sulphate

24

Concentration %

Temperature °C

Nickel
200 & 201

alloy
400

alloy
600

alloy
800

alloy
825

0-30
0-20
0-30
0-50
0-50
All
10
100
All
100
100
All
100
All
All
10
0-50
30
All
0-50
50-75
All
0-50
10
All
100
All
All
All
100
All
All
0-15
15-75
75-96
0-60
100
10
58
100
100
100
100
50-100
100
100
100
100
0-40
0-100
10
20

100
30
30
30
100
30
30
100
30
100
30
30
30
30
30
30
30
A
30
30
30
30
30
30
30
100
30
30
30
450
30
30
30
30
30
100
30
30
30
30
100
100
30
375
30
30
100
100
100
30
30
30

B
B
B
A
A
B
B
A
A
A
A
C
A
B
B
B
B
B
B
A
A
B
A
B
B
B
A
A
B
A
A
A
B
C
C

A
B
B
C
A
A
A

A
A
A
B

B
C
B


B
B
A
A
B
B
A
A
A
A
C
A
B
B
A
B
B
A
A
A
B
A
B
B
B
A
A
B
A
A
A
A
B
C

A
B
B
C
A
A
A

A
A
A
B
B
B
C
B

B
B
B
B
B
B
A
A
A
A
A
B
A
B
B
B
B
B
B
A
A
A
A
A
A
B
A
A
A
A
A
A
B
C
C

A
B
B
B
A
B
A
B
A
A
A
A
B
B
B
B

B
B
B
B
B
A
A
A
A
A
B
B
A
B
B
B
B
B
A
A
B
B
A
A
A
C
A
A
B
A
A
A
B
B
C
C
A
B
B

A
B
A
B
B
A
A
B
C
C
B
B

B
A
B
B
B
A
A
A
A
A
A
B
A
A
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
A
B
A
B
A
A
A
B
A
A
A
A
A
A
B
B
A
A

CATALOGO

14/11/05

13:35

Página 25

PRODUCTS ACCORDING TO ASTM CODE
SEAMLESS TUBES AND PIPES:
FERRITIC – MARTESITIC STELL
STAINLESS STEEL
DUPLEX / SUPERDUPLEX
NICKEL AND NICKEL ALLOYS
TITANIUM
COPPER AND COPPER ALLOYS

ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM

A
A
A
A
B
B
B
B
B
B
B

268
213, ASTM A 269, ASTM A 271, ASTM A
376, ASTM B 677
789, ASTM A 790
161, ASTM B 163, ASTM B 165, ASTM B
407, ASTM B 423, ASTM B 444, ASTM B
668, ASTM B 729, ASTM B 677
338, ASTM B 861, ASTM B 337
43, ASTM B 68, ASTM B 75, ASTM B 88
111, ASTM B 315, ASTM B 395, ASTM B
543

ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM
ASTM

A
A
B
A
B
B
B
B
B
B

268
249,
673,
789,
464,
516,
704,
775
338,
467,

ASTM
ASTM
ASTM
ASTM
ASTM

A
B
B
B
B

167,
127,
424,
265
169,

ASTM
ASTM
ASTM
ASTM

A
B
B
B

182, ASTM A 403, ASTM A 815
366
363
61, ASTM B 62, ASTM B 271

312

167
622

466

WELDED TUBES AND PIPES:
FERRITIC – MARTESITIC STEEL
STAINLESS STEEL
DUPLEX / SUPERDUPLEX
NICKEL AND NICKEL ALLOYS

TITANIUM
COPPER AND COPPER ALLOYS

ASTM
ASTM
ASTM
ASTM
ASTM
ASTM

A
B
A
B
B
B

312,
674,
790
468,
517,
705,

ASTM A 358, ASTM A 409
ASTM A 731
ASTM B 514, ASTM B 515
ASTM B 619, ASTM B 626
ASTM B 725, ASTM B 730

ASTM B 862
ASTM B 543, ASTM B 608

PLATES:
STAINLESS STEEL
NICKEL AND NICKEL ALLOYS
TITANIUM
COPPER AND COPPER ALLOYS

ASTM A 176, ASTM A 240
ASTM B 162, ASTM B 168, ASTM B 409
ASTM B 443, ASTM B 463, ASTM B 575
ASTM B 171, ASTM B 248

FITTINGS:
STAINLESS STEEL
NICKEL AND NICKEL ALLOYS
TITANIUM
COPPER AND COPPER ALLOYS

8

FLANGES AND FORGINGS:
NICKEL AND NICKEL ALLOYS
TITANIUM
COPPER AND COPPER ALLOYS

ASTM B 462, ASTM B 564
ASTM B 348
ASTM B 62, ASTM B 271

ROUND, SQUARE AND HEXAGONAL BARS:
STAINLESS STEEL
NICKEL AND NICKEL ALLOYS
TITANIUM
COPPER AND COPPER ALLOYS

ASTM
ASTM
ASTM
ASTM
ASTM

A
B
B
B
B

276,
160,
408,
348
148,

ASTM A 479
ASTM B 166, ASTM B 164, ASTM B 335,
ASTM B 425, ASTM B 446, ASTM B 472
ASTM B 271

25

CATALOGO

14/11/05

13:35

Página 26

CATALOGO

14/11/05

13:35

Página 27

MAXIMUM RECOMMENDED PRESSURES FOR
SEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)
Temperature Material
°C
-29° to 38°
93°
149°
204°
260°
316°
343°
371°
399°
427°
454°
482°
510°
538°
566°
593°
621°
649°
677°
704°
732°
760°
788°
816°

AISI
304-321
347-316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316

Nominal size in inches / Presure Kg/cm2
1/2”
Schedule
5S
10S
159 207

3/4”
Schedule
5S
10S
126
163

1”
Schedule
5S
10S
99
171

1.1/4”
Schedule
5S
10S
78
134

1.1/2”
Schedule
5S
10S
68
112

2”
Schedule
5S
10S
54
92

2.1/2”
Schedule
5S
10S
57
84

3”
Schedule
5S
10S
47
68

3.1/2”
Schedule
5S
10S
41
59

141
141
159
127
144
152
116
134
149
106
129
146
98
126
145
95
126
145
91
126
144
88
125
143
85
123
142
82
121
140
80
120
136
77
117
128
74
115
119
72
111
103
64
108
89
51
71
75
40
44
60
28
32
47
21
24
35
15
17
26
12
13
20
8
10
16
6
8
13

112
112
126
101
114
120
91
106
117
84
102
115
78
100
115
75
100
144
72
99
114
70
99
113
67
98
112
65
96
111
63
94
107
61
93
101
59
90
94
57
188
82
51
85
70
40
55
59
31
34
47
22
25
36
17
18
27
12
14
20
9
10
16
7
8
12
5
7
10

88
88
99
79
90
95
72
84
93
66
81
91
61
79
91
59
79
90
57
78
90
55
78
90
53
77
89
51
76
87
50
75
85
48
73
80
46
71
74
45
69
65
40
67
55
31
43
46
24
27

152
152
171
137
155
164
125
144
160
114
139
157
106
136
156
102
136
156
98
135
155
95
134
154
91
133
153
88
131
151
86
129
146
83
127
138
80
123
128
77
120
111
69
116
96
55
76
81
43
48

17
19
28
13
14
21
9
10
16
7
8
12
5
6
10
4
5
8

31
34
50
23
25
38
17
19
28
13
14
22
9
11
17
7
9
14

69
69
78
62
71
75
57
66
73
52
63
72
48
62
71
46
62
71
45
62
71
43
61
70
41
60
70
40
59
69
39
59
67
38
58
63
36
56
58
35
54
51
31
52
43
24
34
36
19
21
29
13
15
22
10
20
17
7
8
12
6
6
10
4
5
7
3
4
6

60
60
68
54
62
65
49
57
63
45
55
62
42
54
62
40
54
62
39
53
62
37
53
61
36
53
61
35
52
60
34
51
58
33
50
55
32
49
51
31
47
44
27
45
38
21
29
31
16
18
25
12
13
19
9
17
14
6
7
11
5
5
8
3
4
6
2
3
5

48
48
54
43
49
52
39
45
50
36
44
49
33
43
49
32
43
49
31
42
49
30
42
49
29
42
48
28
41
48
27
40
46
26
40
43
35
39
40
24
38
35
21
36
30
16
23
25
13
14
20
9
10
15
7
7
11
5
5
8
4
4
6
2
4
5
2
6
4

51
51
57
46
52
54
41
48
53
38
46
52
35
45
52
34
45
52
33
45
52
31
45
51
30
44
51
29
43
40
28
43
49
27
42
46
27
41
42
26
40
37
23
38
32
17
24
26
14
15
21
10
11
16
7
8
12
5
6
9
4
4
7
3
3
5
2
3
4

41
41
47
37
42
44
34
39
43
31
38
43
29
37
42
28
37
42
27
37
42
26
36
42
25
36
42
24
35
41
23
35
40
22
34
37
22
33
35
21
32
30
18
31
26
14
20
21
11
12
17
8
9
13
6
6
10
4
5
7
3
3
5
2
3
4
1
2
3

36
36
41
32
37
39
29
34
38
27
33
37
25
32
37
24
32
37
23
32
37
22
32
37
21
31
36
21
31
36
20
30
35
19
30
33
19
29
30
18
28
26
16
27
22
12
17
18
9
11
15
7
7
11
5
5
8
4
4
6
3
3
5
2
2
4
1
2
3

184
184
207
165
187
197
150
174
193
138
168
190
128
164
189
123
164
188
119
163
187
115
162
186
110
160
185
107
158
182
103
155
176
100
153
166
97
149
154
93
144
134
84
140
117
67
93
99
52
58
79
38
42
62
28
31
46
21
23
35
16
18
27
11
14
21
8
11
17

145
145
163
130
148
155
118
137
152
108
132
149
101
129
148
97
129
148
94
128
148
90
128
147
87
126
145
84
124
143
81
122
139
79
120
131
76
117
121
74
114
106
66
110
91
52
72
77
40
45
61
29
32
48
22
24
36
16
18
27
12
14
21
9
10
16
6
9
13

119
119
134
107
121
128
97
113
125
89
108
123
83
106
122
80
106
122
77
106
121
74
105
121
71
104
120
69
102
118
67
101
114
65
99
108
63
96
100
60
93
87
54
90
75
42
59
63
33
37
50
24
26
39
18
10
29
13
14
22
10
11
17
7
8
13
5
7
11

103
103
112
91
102
111
84
96
102
73
94
101
73
94
101
62
94
101
62
94
102
62
94
101
72
94
101
61
85
101
53
85
94
53
85
94
51
82
85
51
88
75
40
76
69
34
52
54
28
39
43
20
25
32
12
7
25
11
12
19
9
10
15
6
7
11
4
6
9

82
82
92
74
84
88
67
78
86
61
75
84
57
73
84
56
73
84
53
73
84
51
72
83
49
71
82
47
70
87
46
69
78
44
68
74
43
66
69
41
54
60
37
62
51
29
40
43
22
25
34
16
18
26
12
13
20
9
10
15
7
8
11
5
6
9
3
8
7

74
74
84
67
76
80
61
70
78
55
68
77
51
66
76
50
66
76
48
66
76
46
65
75
44
65
74
43
64
70
42
63
71
40
62
67
39
60
62
38
58
54
33
56
46
26
36
38
20
22
31
14
16
24
11
12
18
8
9
13
6
7
10
4
5
8
3
4
6

60
60
68
54
62
65
49
57
64
45
55
62
42
54
62
40
54
62
39
54
62
38
53
61
36
53
61
35
52
60
34
51
58
33
50
55
32
49
51
31
47
44
27
46
38
21
29
31
16
18
25
12
13
19
9
10
14
6
7
11
5
5
8
3
4
6
2
3
5

53
53
59
47
54
57
43
50
55
39
48
54
37
47
54
35
47
54
34
47
54
33
46
53
31
46
53
30
45
52
29
45
51
28
44
48
28
43
44
27
41
38
24
40
33
18
25
27
14
16
21
10
11
17
7
8
12
5
6
9
4
5
7
3
3
6
2
3
4

27

9

CATALOGO

14/11/05

13:35

Página 28

MAXIMUM RECOMMENDED PRESSURES FOR
SEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)
Temperature Material
°C
-29° to 38°
93°
149°
204°
260°
316°
343°
371°
399°
427°
454°
482°
510°
538°
566°
593°
621°
649°
677°
704°
732°
760°
788°
816°

28

AISI
304-321
347-316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316

Nominal size in inches / Presure Kg/cm2
4”
Schedule
5S
10S
36
53

5”
Schedule
5S
10S
38
47

6”
Schedule
5S
10S
32
40

8”
Schedule
5S
10S
24
30

10”
Schedule
5S
10S
24
30

12”
Schedule
5S
10S
25
27

14”
Schedule
5S
10S
21
26

16”
Schedule
5S
10S
20
33

32
32
36
29
33
50
26
30
34
24
29
33
22
28
33
21
28
33
21
28
33
20
28
32
19
28
32
18
27
32
18
27
31
17
26
29
17
26
27
16
25
23
14
24
20
11
15
16
8
9
13
6
7
10
4
5
7
3
3
5
2
3
4
2
2
3
1
2
2

34
34
38
31
35
45
28
32
36
25
31
35
24
30
35
23
30
35
23
30
35
21
30
34
20
30
34
20
29
34
19
29
33
18
28
31
18
27
28
17
27
25
15
25
21
12
16
17
9
10
14
6
7
11
5
5
8
3
4
6
2
3
4
2
2
3
1
2
3

28
28
32
26
29
31
23
27
30
21
26
29
20
25
29
19
25
29
19
25
29
17
35
29
17
25
28
16
24
28
16
24
27
15
24
26
15
23
24
14
22
21
13
21
18
10
14
14
7
8
11
5
6
9
4
4
7
3
3
5
2
2
4
1
2
3
1
1
2

22
22
24
19
22
23
18
21
23
16
20
22
15
19
22
14
19
22
14
19
22
13
19
22
13
19
22
12
18
21
12
18
21
12
18
20
11
17
18
11
17
16
9
16
13
7
10
11
6
6
9
4
4
7
3
3
5
2
2
4
1
2
3
1
1
2
1
1
2

21
21
24
19
22
23
17
20
22
16
19
22
15
19
22
14
19
22
14
19
22
13
19
22
13
19
21
12
18
21
12
18
21
11
18
19
11
17
18
11
17
15
9
16
13
7
10
11
5
6
9
4
4
7
3
3
5
2
2
3
1
2
3
1
1
2
1
1
2

22
22
25
20
23
24
18
21
23
17
20
23
15
20
23
15
20
23
15
20
23
14
20
22
13
19
22
13
19
22
12
19
21
12
18
20
11
18
19
11
17
16
10
17
14
7
10
11
6
6
9
4
4
7
3
3
5
2
2
4
1
2
3
1
1
2
1
1
2

17
17
21
17
19
20
15
18
20
14
17
20
13
17
20
13
17
19
13
17
19
12
17
19
11
16
19
11
16
19
10
16
18
10
16
17
10
15
16
9
15
14
8
14
12
6
9
9
5
5
8
3
4
6
2
3
4
2
2
3
1
1
2
1
1
2
0,9
1
1

16
16
20
16
18
19
14
17
18
13
16
18
12
16
18
12
16
18
15
16
18
11
15
18
10
15
18
10
15
17
10
15
17
9
14
16
9
14
15
9
14
13
7
12
10
5
8
8
4
5
6
3
3
5
2
2
4
1
2
3
1
1
2
1
1
1
0,7
1
2

47
47
53
42
48
37
38
54
49
35
42
48
32
42
48
31
42
48
31
42
48
29
41
47
28
41
47
27
40
46
26
39
45
25
39
42
24
38
39
24
37
34
21
35
29
16
22
24
12
14
19
9
10
15
7
7
11
5
5
8
4
4
6
2
3
5
2
3
4

42
42
47
38
43
31
34
40
44
31
38
43
29
38
43
28
37
43
28
37
43
26
37
43
25
37
42
24
36
42
23
35
40
23
35
38
22
34
35
21
33
31
19
32
26
14
20
21
11
12
17
8
9
13
6
7
10
4
5
7
3
4
6
2
3
4
1
2
3

35
35
40
32
36
38
29
33
37
26
32
36
24
31
36
23
31
36
23
31
36
22
31
36
21
31
35
20
30
35
20
30
34
19
29
32
18
28
29
18
28
26
16
26
22
12
17
18
9
10
14
7
7
11
5
5
8
3
4
6
3
3
5
2
2
4
1
2
3

30
30
33
27
30
32
24
28
31
22
27
31
21
26
30
20
26
30
20
26
30
18
26
30
18
26
30
17
25
29
17
25
28
16
25
27
15
24
25
15
23
22
13
22
18
10
14
15
8
9
12
5
6
9
4
4
7
3
3
5
2
2
4
1
2
3
1
1
2

26
26
30
24
27
38
22
25
28
20
24
27
18
24
27
18
24
27
18
24
27
16
23
27
16
23
27
15
23
26
15
22
25
14
22
24
14
21
22
13
21
19
12
20
16
9
13
13
7
8
11
5
5
8
4
4
6
2
3
4
2
2
3
1
1
3
1
1
2

24
24
27
22
25
26
20
23
25
18
22
25
17
22
25
16
21
25
16
21
25
15
21
25
14
21
24
14
21
24
14
20
23
13
20
22
13
20
20
12
19
18
11
18
15
8
11
12
6
7
10
4
5
7
3
4
5
2
2
4
2
2
3
1
1
2
1
1
2

21
21
26
21
23
25
19
22
24
17
21
24
16
21
24
15
20
24
15
20
23
14
20
23
14
20
23
13
20
23
13
19
22
12
19
21
12
19
19
11
18
17
10
17
14
8
11
12
6
7
7
4
5
7
3
3
5
2
2
4
2
2
3
1
1
2
1
1
2

18
18
23
18
20
22
16
19
21
15
18
21
14
18
21
13
18
21
13
18
20
12
18
20
12
17
20
11
17
20
11
17
19
11
17
18
10
16
17
10
16
15
9
15
9
7
9
10
5
6
8
4
4
6
2
3
4
2
2
3
1
1
2
1
1
2
0,9
1
1

CATALOGO

14/11/05

13:35

Página 29

MAXIMUM RECOMMENDED PRESSURES FOR
SEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)
Temperature Material
°C

-29° to 38°
93°
149°
204°
260°
316°
343°
371°
399°
427°
454°
482°
510°
538°
566°
593°
621°
649°
677°
704°
732°
760°
788°
816°

AISI
304-321
347-316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316

Nominal size in inches / Presure Kg/cm2
1/2”
Schedule
5S
10S
327 458

3/4”
Schedule
5S
10S
267
375

1”
Schedule
5S
10S
250
345

1.1/4”
Schedule
5S
10S
205
287

1.1/2”
Schedule
5S
10S
185
265

2”
Schedule
5S
10S
156
225

2.1/2”
Schedule
5S
10S
170 236

3”
Schedule
5S
10S
148
209

3.1/2”
Schedule
5S
10S
135
193

291
291
327
262
297
312
238
276
305
218
265
300
202
260
298
195
259
298
188
258
298
181
257
295
174
254
292
169
250
288
164
246
279
159
242
264
153
236
244
148
229
213
134
224
186
108
151
160
85
94
128
61
68
100
46
51
75
34
37
56
26
29
44
18
22
35
14
18
28

237
237
267
213
242
255
194
225
249
178
216
245
165
212
243
159
211
248
154
211
243
148
209
240
142
207
238
138
203
235
134
201
228
129
197
215
125
192
199
121
186
173
109
181
151
87
121
129
68
75
103
49
54
80
37
41
60
27
30
45
21
23
35
15
18
28
11
15
22

222
222
250
200
226
238
182
210
233
166
202
229
154
198
228
149
198
227
144
197
227
138
196
225
133
194
223
129
190
220
125
188
213
121
184
201
117
180
186
113
174
162
101
169
141
81
113
120
63
70
96
46
50
75
34
38
56
25
28
42
19
21
33
14
16
26
10
14
21

182
182
205
164
186
196
149
173
192
137
166
188
127
163
187
123
163
187
118
162
187
114
161
185
109
159
183
106
157
181
103
154
175
99
152
165
96
148
153
96
143
133
83
139
116
66
92
97
51
57
78
37
41
61
28
31
46
20
23
34
16
17
27
11
13
21
8
11
17

164
164
185
148
167
176
134
156
172
123
150
169
114
147
168
110
146
168
106
146
168
102
145
166
98
143
165
95
141
162
92
139
158
89
136
149
86
133
138
83
129
120
75
125
104
59
82
87
46
51
70
33
37
54
25
27
41
18
20
30
14
16
24
10
12
19
7
10
15

138
138
156
124
141
148
113
131
145
104
126
143
96
123
142
93
123
141
89
123
141
86
122
140
83
121
139
80
119
137
78
117
133
75
115
125
73
112
116
70
108
101
63
105
87
49
69
73
38
43
58
28
31
45
21
23
34
15
17
25
12
13
20
8
10
15
6
8
12

151
151
270
136
154
162
124
143
159
113
138
156
105
135
155
101
135
155
98
134
155
94
133
153
91
132
145
88
130
150
85
128
145
82
126
137
80
122
127
77
119
111
69
115
95
54
75
80
42
47
64
30
34
50
23
25
37
17
18
28
13
14
22
9
11
17
7
9
14

131
131
148
118
134
141
107
124
138
98
120
135
91
117
135
88
117
134
85
116
134
82
116
133
79
114
132
76
113
130
74
111
126
71
109
119
69
106
110
67
103
96
59
99
83
47
65
69
36
40
55
26
29
43
20
22
32
14
16
24
11
12
19
8
9
15
6
8
12

120
120
135
108
122
129
98
113
126
90
109
123
83
107
123
80
107
122
77
106
122
74
105
121
72
104
120
69
103
118
67
101
115
65
99
108
63
97
100
61
94
87
54
91
75
42
59
63
33
37
50
24
26
39
18
20
29
13
14
22
10
11
17
7
8
13
5
7
11

406
406
458
366
415
437
333
385
427
305
371
420
283
364
417
273
362
416
263
361
416
254
359
412
244
355
409
236
349
403
229
344
390
222
338
368
214
329
342
207
320
229
189
316
263
156
218
232
122
136
185
88
98
144
66
73
109
49
54
81
38
42
64
27
32
50
20
27
40

333
333
375
300
340
358
273
316
350
250
308
344
232
298
342
224
297
341
216
296
341
208
294
338
200
291
335
194
286
330
188
282
320
182
277
302
176
270
280
170
262
244
154
253
214
125
175
186
98
109
148
71
78
116
53
59
87
39
43
65
30
33
51
21
26
40
16
21
32

306
306
345
276
313
329
251
291
322
230
280
317
213
274
315
206
273
314
199
272
314
191
270
311
184
268
308
178
263
304
173
259
294
167
255
278
162
248
258
156
241
224
141
236
196
115
160
170
90
100
136
65
72
106
49
54
80
36
40
60
28
31
47
20
24
37
15
20
30

255
255
287
229
260
274
209
242
268
191
233
263
177
228
262
171
227
261
165
226
261
159
225
259
153
223
256
148
219
252
144
216
245
139
212
231
134
207
214
130
200
187
117
195
163
94
131
139
73
82
111
53
59
86
40
44
65
29
32
49
22
25
38
16
19
30
12
16
24

234
234
265
220
230
244
162
223
242
172
212
232
165
209
236
151
202
230
152
202
230
145
202
230
135
202
230
132
195
224
132
195
224
125
195
215
125
185
195
112
181
165
107
171
143
84
112
124
65
73
103
43
52
72
34
44
56
22
26
41
20
22
34
11
15
24
10
12
20

200
200
225
180
204
215
164
189
210
150
182
206
139
179
275
138
178
204
129
177
204
124
176
203
120
174
201
116
171
198
112
169
192
109
166
181
105
162
168
107
159
146
91
152
127
72
101
107
56
63
86
41
45
67
31
34
50
22
25
38
17
19
29
12
17
23
9
12
18

209
209
236
189
214
225
178
199
220
157
191
216
146
187
215
141
187
214
136
186
214
131
185
213
126
184
211
122
180
208
118
177
201
114
174
190
110
170
176
107
165
153
96
160
133
76
106
113
60
66
90
43
47
70
32
36
53
24
26
40
18
20
31
13
15
24
10
13
20

185
185
209
167
189
199
152
176
195
139
169
192
129
166
191
125
165
190
120
165
190
116
164
188
111
162
187
108
159
184
105
157
178
101
154
168
98
150
156
94
146
136
85
141
118
67
93
99
52
58
79
38
42
62
28
31
46
21
23
35
16
18
27
11
16
21
8
11
17

171
171
193
154
175
184
140
162
180
128
156
177
119
153
176
115
153
175
111
152
175
107
151
174
103
150
172
100
147
170
96
145
164
93
142
155
90
139
144
87
135
125
78
130
108
62
86
91
48
54
73
35
38
57
26
29
43
19
21
32
15
16
25
10
14
20
8
10
16

29

CATALOGO

14/11/05

13:35

Página 30

MAXIMUM RECOMMENDED PRESSURES FOR
SEAMLESS/STAINLESS STEEL TUBES (Kg/cm2)
Temperature Material
°C
-29° to 38°
93°
149°
204°
260°
316°
343°
371°
399°
427°
454°
482°
510°
538°
566°
593°
621°
649
677°
704°
732°
760°
788°
816°

30

304-321
347-316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316
304
321-347
316

Nominal size in inches / Presure Kg/cm2
4”
Schedule
40S 80S
125 181

5”
Schedule
40S
80S
110
162

6”
Schedule
40S
80S
100
156

8”
Schedule
40S
80S
88
138

10”
Schedule
40S
80S
79
110

12”
Schedule
40S
80S
68
92

14”
Schedule
40S 80S
62
84

16”
Schedule
40S
80S
54
73

111
111
125
100
113
119
91
105
117
83
101
115
77
99
114
75
99
114
72
99
113
69
98
113
67
97
112
64
95
110
63
94
107
60
92
101
58
90
93
56
87
81
50
84
70
39
55
58
31
34
46
22
24
36
16
18
27
12
13
20
9
10
16
6
8
12
5
6
10

97
97
110
88
92
105
80
92
102
73
89
101
68
87
100
65
87
100
63
86
99
61
86
99
58
85
98
56
84
96
55
82
93
53
81
88
51
79
82
49
76
71
44
74
61
34
48
51
27
30
40
19
21
31
14
16
24
10
12
18
8
9
14
6
7
11
4
6
9

88
88
100
80
90
95
72
84
93
66
81
91
61
79
91
59
79
91
57
78
90
55
78
90
53
77
89
51
76
88
50
75
85
48
73
80
46
72
74
45
69
65
40
67
55
31
43
46
24
27
37
17
19
28
13
14
21
9
10
17
7
8
12
5
6
10
4
5
8

78
78
88
70
79
84
64
74
82
58
71
80
54
70
80
52
70
80
50
69
79
48
69
79
46
68
78
45
67
77
44
66
75
42
65
70
41
63
65
39
61
57
35
59
49
27
38
40
21
23
32
15
17
25
11
12
19
8
9
14
6
7
11
4
5
8
3
4
7

70
70
79
63
72
76
58
67
74
53
64
73
49
63
72
47
63
72
46
63
72
44
62
72
42
62
71
41
60
70
40
60
68
38
59
64
37
57
59
36
55
52
32
53
44
24
34
36
19
21
29
14
15
23
10
11
17
7
8
13
6
6
10
4
5
8
3
4
6

61
61
68
55
62
65
50
58
64
46
55
63
42
54
62
41
54
62
39
54
62
38
34
62
36
53
61
35
52
60
34
51
58
33
50
55
32
49
51
31
48
44
27
46
38
21
29
31
16
18
25
12
13
19
9
10
14
6
7
11
5
5
8
3
4
6
2
3
5

55
55
62
50
56
59
45
52
58
41
50
57
38
49
57
37
49
57
36
49
56
34
49
56
33
48
56
32
47
55
31
47
53
30
46
60
29
45
46
28
43
40
25
41
34
19
27
28
15
16
23
9
10
15
8
9
13
6
6
10
4
5
7
3
4
6
2
3
5

48
48
54
43
49
52
39
46
51
36
44
50
33
43
50
32
43
49
31
43
49
30
42
49
29
42
48
28
41
48
27
37
46
26
40
44
25
39
40
24
38
35
21
36
30
16
23
25
13
14
20
8
9
9
7
7
11
5
5
8
4
4
6
2
3
5
2
2
4

161
161
181
145
164
173
132
152
169
121
147
166
112
144
165
108
143
165
104
143
164
100
142
163
96
140
162
93
138
159
91
136
154
88
134
146
85
130
135
82
126
118
73
122
102
58
80
85
45
50
68
32
36
53
24
27
40
18
20
30
14
15
28
9
12
18
7
10
15

144
144
162
118
136
155
118
136
151
108
131
149
100
129
148
97
128
147
93
128
147
90
127
146
86
126
145
84
123
143
81
122
138
78
120
130
76
116
121
73
113
105
65
109
91
51
72
76
40
45
61
29
32
47
22
24
35
16
18
27
12
13
21
9
10
16
6
9
13

139
139
157
125
142
149
114
132
146
104
127
144
97
124
143
93
124
142
90
123
142
87
123
141
83
121
140
81
119
138
78
118
133
76
115
126
73
113
117
71
109
102
63
105
88
49
69
73
39
43
59
28
31
46
21
23
34
15
17
26
12
13
20
8
10
16
6
8
13

123
123
138
110
125
132
101
116
129
92
112
127
85
110
126
82
109
126
79
109
125
77
108
125
74
107
124
71
105
122
69
104
118
67
102
111
65
69
103
62
96
90
56
93
77
43
61
64
34
38
52
24
27
40
18
20
30
13
15
22
10
11
18
7
9
14
5
7
11

98
98
110
88
100
105
80
93
103
73
89
101
68
87
100
65
87
100
63
87
100
61
86
99
58
85
98
57
84
97
55
83
94
53
81
88
51
79
82
50
77
71
44
74
61
34
48
51
27
30
41
19
21
32
14
16
24
10
12
18
8
9
14
6
7
11
4
6
9

82
82
92
74
84
88
67
78
86
61
75
84
57
73
84
55
73
84
53
73
84
51
72
83
49
71
82
47
70
81
46
69
79
44
68
74
43
66
69
42
64
60
37
62
51
29
40
42
22
25
34
16
18
26
12
13
20
9
10
15
7
7
11
5
6
9
3
5
7

74
74
84
67
76
80
61
70
78
56
68
77
52
66
76
50
66
76
48
66
76
46
65
75
44
65
75
43
64
74
42
63
71
40
62
67
39
60
92
38
58
54
33
56
46
26
36
38
20
22
31
14
16
24
11
12
18
8
9
13
6
7
10
4
5
8
3
4
6

65
65
73
58
66
70
53
61
68
48
59
67
45
58
66
43
58
66
42
58
66
40
57
66
39
56
65
37
55
64
36
55
62
35
54
59
34
52
54
33
51
47
29
49
40
22
31
33
17
19
27
11
12
18
9
10
15
7
7
11
5
6
9
3
4
7
2
3
5

CATALOGO

14/11/05

13:35

Página 31

EQUIVALENTS IN INCHES AND MILLIMITRES

BWG EQUIVALENTS IN INCHES AND MILLIMETRES

Bwg

in

mm

Bwg

in

mm

0
1
2
3
4
5
6
7
8
9
10
11
12

.340
.300
.284
.259
.238
.220
.203
.180
.165
.148
.134
.120
.109

8.636
7.620
7.213
6.578
6.045
5.588
5.156
4.572
4.190
3.759
3.403
3.048
2.768

13
14
15
16
17
18
19
20
21
22
23
24
25

.095
.083
.072
.065
.058
.049
.042
.035
.032
.028
.025
.022
.020

2.413
2.108
1.829
1.651
1.473
1.244
1.067
0.889
0.812
0.711
0.635
0.559
0.508

SWG EQUIVALENTS IN INCHES AND MILLIMETRES

Swg

in

mm

Bwg

in

mm

0
1
2
3
4
5
6
7
8
9
10
11
12

.324
.300
.276
.252
.232
.212
.192
.176
.160
.144
.128
.116
.104

8.230
7.620
7.010
6.401
5.893
5.385
4.877
4.470
4.064
3.658
3.251
2.946
2.642

13
14
15
16
17
18
19
20
21
22
23
24
25

.092
.080
.072
.064
.056
.048
.040
.036
.032
.028
.024
.022
.020

2.337
2.032
1.829
1.626
1.422
1.219
1.016
0.914
0.813
0.711
0.610
0.559
0.508

10

31

CATALOGO

14/11/05

13:35

Página 32

CATALOGO

14/11/05

13:35

Página 33

WEIGHT OF FITTINGS

NOTE:
All weights in this section are based on approximate weights for steel.
Titanium weights can be calculated as 57% of the table values.

(ANSI B16.11) 3000 lbs SCREWED FITTINGS
APPROXIMATE WEIGHTS IN Kg

TYPE
SIZE INCHES

1/8

1/4

3/8

1/2

3/4

1

1 1/4

1 1/2

2

SIZE METRIC

6

8

10

15

20

25

32

40

50

Round Nipples

0,023

0,04

0,055

0,1

0,2

0,242

0,405

0,56

Hexagon Nipples

0,032

0,04

0,072

0,1

0,16

0,24

0,38

0,455

0,55

Reducing Nipples

0,038

0,055

0,09

0,142

0,205

0,35

0,405

0,51

End Caps

0,026

0,04

0,06

0,106

0,14

0,34

0,454

0,7

1,3

Unions

0,16

0,16

0,21

0,325

0,5

0,9

1,12

1,45

2,19

#Hexagon

90° Elbows

0,16

0,135

0,27

0,41

0,61

1

1,25

1,6

2,55

45° Elbows

0,12

0,11

0,23

0,34

0,555

0,85

1

1,4

2,1

Tees

0,255

0,225

0,325

0,6

0,8

1,41

1,4

2,27

3,05

*Reducing Tees

0,25

0,4

0,7

0,98

1,73

2,01

2,605

3,4

Welding Bosses

0,053

0,085

0,15

0,22

0,316

0,705

0,998

1,44

Couplings

0,035

0,05

0,08

0,15

0,22

0,31

0,71

1,05

1,5

Reducing Couplings

0,07

0,105

0,185

0,285

0,396

0,872

1,4

1,71

Half Couplings

0,02

0,024

0,035

0,075

0,15

0,2

0,335

0,5

0,71

#Weights of the smallest reduction, i.e. the heaviest
*Weights of the largest reduction, i.e. the heaviest

(ANSI B16.11) SCREWED FITTINGS
APPROXIMATE WEIGHTS IN Kg

TYPE
SIZE INCHES

1/8

1/4

3/8

1/2

3/4

1

1 1/4

1 1/2

2

SIZE METRIC

6

8

10

15

20

25

32

40

50

0,025

0,035

0,054

0,08

0,18

0,19

0,23

0,455

*Hexagon Bushes

Square Head Plugs

0,009

0,016

0,029

0,057

0,095

0,172

0,255

0,4

0,58

Hexagon Head Plugs

0,029

0,029

0,057

0,085

0,142

0,227

0,51

0,624

1,021

Round Head Plugs

0,057

0,057

0,085

0,113

0,17

0,34

0,51

0,709

1,361

*Weights of the largest reduction, i.e. the heaviest

11
33

CATALOGO

14/11/05

13:35

Página 34

(ANSI B16.11) 3000 lbs SOCKET-WELD FITTINGS
TYPE

APPROXIMATE WEIGHTS IN Kg

SIZE INCHES

1/8

1/4

3/8

1/2

3/4

1

1 1/4

1 1/2

2

SIZE METRIC

6

8

10

15

20

25

32

40

50

Couplings

0,039

0,05

0,06

0,115

0,18

0,25

0,4

0,48

0,8

#Reducing Couplings

0,066

0,071

0,132

0,22

0,325

0,44

0,575

1,3

Half Couplings

0,04

0,054

0,085

0,135

0,17

0,32

0,485

0,6

1,02

Tees

0,265

0,21

0,255

0,31

0,325

0,6

0,85

1,29

1,9

*Reducing Tees

0,289

0,323

0,415

0,448

0,81

1,32

1,675

2,55

Welding Bosses

0,072

0,085

0,135

0,205

0,3

0,41

0,56

1,225

End Caps

0,02

0,035

0,058

0,085

0,13

0,21

0,3

0,475

0,73

90° Elbows

0,155

0,13

0,13

0,225

0,29

0,5

0,75

1,1

1,7

45° Elbows

0,072

0,06

0,085

0,18

0,222

0,36

0,555

0,85

1,2

Unions

0,157

0,157

0,188

0,28

0,45

0,775

1,2

1,4

2,25

#Weights of the smallest reduction, i.e. the heaviest
*Weights of the largest reduction, i.e. the heaviest

34

CATALOGO

14/11/05

13:35

Página 35

WEIGHT OF FITTINGS
(ANSI B16.11) 6000 LBS SOCKET-WELD FITTINGS
TYPE

APPROXIMATE WEIGHTS IN Kg

SIZE INCHES

1/8

1/4

3/8

1/2

3/4

1

1 1/4

1 1/2

2

SIZE METRIC

6

8

10

15

20

25

32

40

50

0,085

0,13

0,205

0,275

0,48

0,68

1,05

1,95

Couplings

#Reducing Couplings

0,1

0,148

0,272

0,355

0,5

0,75

1,275

2,2

Half Couplings

0,094

0,15

0,25

0,34

0,65

0,751

1

2,1

Tees

0,675

1,2

1,58

1,8

3,005

3,6

*Reducing Tees

0,805

1,359

1,85

2,3

3,68

4,15

Welding Bosses

0,09

0,135

0,2

0,27

0,4

0,6

1

1,78

End Caps

0,105

0,175

0,188

0,23

0,41

0,63

0,8

1,4

90° Elbows

0,4

0,628

1

1,4

2,35

3

45° Elbows

0,369

0,58

0,905

1,125

2,125

2,6

#Weights of the smallest reduction, i.e. the heaviest
*Weights of the largest reduction, i.e. the heaviest

BS3799 SWAGE NIPPLES
TYPE

APPROXIMATE WEIGHTS IN Kg

SIZE INCHES

1/8

1/4

3/8

1/2

3/4

1

1 1/4

1 1/2

2

SIZE METRIC

6

8

10

15

20

25

32

40

50

Screwed/Plain 3000 lbs

0,040

0,054

0,085

0,135

0,170

0,320

0,485

0,600

0,925

Plain 6000 lbs

0,105

0,130

0,180

0,225

0,290

0,550

0,80

1,100

1,400

Screwed 6000 lbs

0,170

0,215

0,285

0,325

0,501

0,750

0,951

1,600

2,100

#Weights of the smallest reduction, i.e. the heaviest
*Weights of the largest reduction, i.e. the heaviest

(ANSI B16.11) 6000 LBS SCREWED FITTINGS
TYPE

APPROXIMATE WEIGHTS IN Kg

SIZE INCHES

1/8

1/4

3/8

1/2

3/4

1

1 1/4

1 1/2

2

SIZE METRIC

6

8

10

15

20

25

32

40

50

Round Nipples

0,191

0,272

0,43

0,716

1,008

Hexagon Nipples

0,045

0,06

0,08

0,12

0,195

0,3

0,48

0,493

0,61

#Hexagon Reducing
Nipples

0,04

0,055

0,07

0,085

0,138

0,275

0,39

0,3

0,504

Couplings

0,08

0,085

0,105

0,2

0,45

0,945

1

1,85

3,4

Reducing Couplings

0,088

0,105

0,126

0,245

0,509

1,35

1,455

2,222

3,955

Half Couplings

0,06

0,065

0,08

0,115

0,225

0,454

0,525

0,95

1,6

End Caps

0,06

0,065

0,085

0,145

0,2

0,335

0,585

0,75

1,45

90° Elbows

0,285

0,275

0,475

0,7

1,6

3,05

3,4

6

9,4

45° Elbows

0,265

0,245

0,225

0,625

0,95

1,12

2,125

2,6

4,3

Tees

0,48

0,425

0,6

0,9

1,65

2,1

3,5

4,4

8,5

*Reducing Tees

0,6

0,78

1,2

2

2,34

4,05

4,94

10,4

Welding Bosses

0,085

0,115

0,21

0,46

0,9

1,1

1,85

3,25

#Weights of the smallest reduction, i.e. the heaviest
*Weights of the largest reduction, i.e. the heaviest

35

CATALOGO

14/11/05

13:35

Página 36

WEIGHT OF FITTINGS
90° ELBOWS, BUTT-WELD FITTINGS (LONG RADIUS)
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

XS

Sch

Sch

Sch

Sch

Sch

80

100 120

140

160

XXS

1/2

15

0,03

0,05

0,06 0,06

0,09

0,09

0,12

0,12

3/4

20

0,04

0,07

0,08 0,08

0,11

0,11

0,15

0,15

1

25

0,07

0,14

0,15 0,15

0,2

0,2

0,28

0,38

11/4

32

0,1

0,23

0,26 0,26

0,35

0,35

0,44

0,6

1 /2

40

0,15

0,3

0,4

0,4

0,55

0,55

0,65

0,95

2

50

0,3

0,5

0,7

0,7

0,95

0,95

1,4

1,7

2 /2

65

0,55

0,85

1,4

1,4

1,5

1,5

2,5

3,2

3

80

1

1,25

2,5

2,5

2,9

2,9

3,75

5,5

3 /4

90

1,2

1,65

3

3

4

4

4

100

1,6

2,1

4

4

6

6

7,5

5

125

2,7

3,65

6,8

6,8

9,3

9,3

12,7

15

18

6

150

4,4

5,45

11

11

16,8

16,8

23

26

29,5

8

200

8,8

10,2

17,25

19

22

22

55

54

10

250

16,8

18,15

25,85

33,15

41,5

12

300

24

27,25

37,2

49

60

14

350

28

39,95

50

59

70

70

16

400

38

51,6

64

78,3

95

95

95

125

18

450

48

65,4

82

99,85 139,15

120

120 176,15

20

500

58,4

84,9

100

146

194

146

146 228,35

311

194

22

550

120

24

600

88

146

146

220

318,25

220

532,5

282

1

1

1

36

27,25

34,8

34,8

53,9

53,9

61,16

75

60

61,25

81,7

80

80

107,4

123 140

157

180

70

83

109

94

94

135

188 190

224

247,45

162

125

125

202

260 274

323

367

231,5

158

158 290,55 390 405

422

545

194 390,45 476 508

607

770

220 363,15

236

40,5

52

85

97

109

8
12

53,9

177,97

38


9

282 657,85 820 954 1100

1270

CATALOGO

14/11/05

13:35

Página 37

90° ELBOWS, BUTT-WELD FITTINGS (SHORT RADIUS)
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

11,35
21,35
33,15
52,5
71,25
92,15
135,8

214,3

0,05
0,06
0,11
0,18
0,3
0,53
1,05
1,88
2,25
3
5,1
8,25
16,5
31,13
45
52,5
71,25
90
109,5

165

0,05
0,06
0,11
0,18
0,3
0,53
1,05
1,88
2,25
3
5,1
8,25
16,5
31,13
45
52,5
71,25
90
109,5

165

0,02
0,03
0,05
0,08
0,11
0,23
0,41
0,75
0,9
1,2
2,03
3,3
6,6
12,45
18
21
28,5
36
43,8

66

0,04
0,05
0,1
0,17
0,23
0,38
0,64
0,94
1,24
1,58
2,74
4,09
7,65
11,1
13,61
17,35
20,44
25
29,96 37,5 39,5
38,7 48 52,2
49,05 61,5 65,35
63,68 75 109,5

90

109,5 109,5 165

0,07
0,8
0,15
0,26
0,39
0,67
1,05
2,03
2,8
4,2
6,5
11,75
18,15 24,35
37,7 37,7
48
54,5
56
54,45
74
66
104,3 106,7 104,3
118 154,35 110,6
154,35 208 135,8



256,5 355,5 197,5

XS

Sch

Sch

Sch

Sch

Sch

80

100 120

140

160

XXS

0,07
0,8
0,15
0,26
0,39
0,67
1,05
2,03
2,8
4,2
4,5
6,5
9
11,75
13,5
24,35
26,35 29
32
37,7 40,85 50 53
62
56
68 81,25 92
99
66 93,5 124 120 138,8
104,3 138 171,5 166 198
110,6 193 257,4 283 387
135,8 261 332 376 430





197,5 443,5 530 621 680

37

CATALOGO

14/11/05

13:35

Página 38

WEIGHT OF FITTINGS
45° ELBOWS, BUTT-WELD FITTINGS
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

0,02
0,02
0,04
0,05
0,08
0,15
0,28
0,5
0,6
0,8
1,35
2,2
4,4
8,3
12
14
19
24
29,2

44

0,03
0,04
0,07
0,11
0,15
0,25
0,43
0,63
0,83
1,05
1,83
2,73
5,1
9,08
13,63
20
25,8
32,7
42,45

73

10
15,85
24,5
35
47,5
69,45
97

159

0,03
0,04
0,08
0,13
0,2
0,35
0,7
1,25
1,5
2
3,4
5,5
11
20,75
30
35
47,5
60
73

110

0,03
0,04
0,08
0,13
0,2
0,35
0,7
1,25
1,5
2
3,4
5,5
11
20,75
30
35
47,5
60
73
88,98
110

25
32
41
50
60
73

10
18,5
24,75
37
46,5
56
73

110

0,05
0,06
0,1
0,18
0,28
0,46
0,75
1,45
2
3
4,65
8,4
13,6 17,4
29,95 26,95
30,85 40,85
40
40,85 54,5
47
62,5
81
62,5
87,15 115,75 79
113,5 155,5
97



190,65 266,5 141

XS
0,05
0,06
0,1
0,18
0,28
0,46
0,75
1,45
2
3
4,65
8,4
17,4
26,95
40
47
62,5
79
97
118
141

Sch

Sch

Sch

Sch

Sch

80

100 120

140

160

26
48,5
78,5
112
161,5
211
303,5

545

0,06
0,08
0,14
0,22
0,33
0,7
1,25
1,88

4,5
7,5
13
27,5
54,4
90
123,73
183
272,5
385

635

0,06
0,08
0,19
0,3
0,48
0,85
1,6
2,75
4
5,1
9
14,75
27

XXS

30,58
53,7
67,5
101
145,25
195,23

333,93

19
37,5
61,5
94
130
195
238

410

3,75
6,35
11,5
20,25
42,5
70
95
137
202,5
254

477

Sch

Sch

Sch

Sch

Sch

80

100 120

140

160

XXS

END CAPS, BUTT-WELD FITTINGS
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

38

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

5
8
13
16
21
30
42

74,5

0,03
0,06
0,1
0,14
0,2
0,25
0,35
0,7
1
1,1
2
3
5,5
9
15
16
21
26
34

52

0,03
0,06
0,1
0,14
0,2
0,25
0,35
0,7
1
1,1
2
3
5,5
9
15
16
21
26
34
42
52

7
13,6
25,5
38
52,5
66
94,5

120

0,05
0,09
0,13
0,19
0,23
0,3
0,45
0,85
1,3
1,6
2,7
4,4
8,35
13,6
22,5
27
31,5
36
42

60

0,01
0,02
0,04
0,05
0,08
0,1
0,14
0,25
0,4
0,43
0,8
1,2
2,2
3,6
6
6,4
8,4
10,4
13,6

20,8

0,01
0,02
0,05
0,07
0,1
0,13
0,18
0,36
0,5
0,55
1
1,5
2,75
4,45
7,5
8,17 14
10,67 18
13
22
17
29
– 35,5
26
44

4,5
6
10
13,5
18
22
34

52

19
24,5
31,5
42
56,75

96,5

XS

0,05
0,09
0,13
0,19
0,23
0,3
0,45
0,85
1,3
1,6
2,7
4,4
8,35
13,6 16,25
22,5 29,5
27 36,3
31,5 52,25
36 72,5
42 98,5
51

60
150

11
21
32,5
50
64
75
96

118

2,5
4
6
15,5 18,5
30
28
41
42
47
52
59
73
88
93
105 153


200 250

0,15
0,23
0,3
0,55
0,9
1,45

2,75
5
7,5
15,45
28,5
44,5
59,6
79
104
170

285

0,2
0,3
0,35
0,6
1
1,8
2,75
3,5
5,5
8,1
13,15

CATALOGO

14/11/05

13:35

Página 39

WEIGHT OF FITTINGS
EQUAL TEES, BUTT-WELD FITTINGS
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

XS

24,6
40
56,6
102
110
164
245

373

0,16
0,23
0,35
0,9
1,35
1,7
2,7
3,75
5
6,5
10
16
27
45
65
102
110
135
168

240

0,16
0,23
0,35
0,9
1,35
1,7
2,7
3,75
5
6,5
10
16
27
31,75
45
60
65
70,5
95
102 105
135
110 167
206,5
135 237,45 277
168 320 378,65
220


240 570,65 653,75

0,25
0,38
0,5
1,05
1,5
2,15
3
3,8
5,25
7,65
13,5
19,3
33
60
78
115
167
190
245

350

0,25
0,38
0,5
1,05
1,5
2,15
3
3,8
5,25
7,65
13,5
19,3
33
60
78
115
167
190
245
280
350

0,07
0,09
0,14
0,35
0,55
0,68
1,06
1,5
2
2,6
4
6,35
10,7
18
26
40,7
43,95
53,95
67,2

95,9

0,09
0,11
0,27
0,45
0,65
1,7
2,18
3
4,05
4,4
7,42
12,35
20
28,15
47,45
69,9 87,16
72,65 90,8
101,7 127,12
169,8 199,76

220
306,45 310

23
34,7
59
94,5
100
127
168

240

Sch

Sch

Sch

Sch

Sch

80

100

120

140

160
0,27
0,47
0,86
1,25
1,85
3,18
4
6,58

9
17,5
24
43,6 49,5
67,5 74
93
115 136,2 150
165 206 240
249 335 330
322 380 450
459 540 590



748 910 1100

54
98,5
176,5
275
385
500
720

1180

17
25
39,5
70,35
120,3
183,85
300
425
590
790

1310

XXS
0,27
0,47
0,65
1,18
2
3
4,5
7,1
10,9
15
24
37,6
68

REDUCING TEES, BUTT-WELD FITTINGS
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

XS

24,6
38,6
56,6
102
110
164
218

373

0,16
0,23
0,35
0,9
1,35
1,7
2,7
3,75
5
6,5
10
14
27
43,5
63
102
110
135
168

237

0,16
0,23
0,35
0,9
1,35
1,7
2,7
3,75
5
6,5
10
14
27
43,5
63
70,5
102
105
110
167
135 237,45
168 265,1
220

237 390,45

31,75
55
95
135
206,5
256,5
350,5

544,8

0,25
0,38
0,5
1,05
1,5
2,15
3
3,8
5,25
7,65
13,5
19,3
33
55
78
115
167
190
218

350

0,25
0,38
0,5
1,05
1,5
2,15
3
3,8
5,25
7,65
13,5
19,3
33
55
78
115
167
190
218
280
350

0,07
0,09
0,14
0,35
0,55
0,68
1,06
1,5
2
2,6
4
5,6
10,7
17,45
25,25
40,7
43,95
53,95
67,2

94,45

0,09
0,11
0,27
0,45
0,65
1,7
2,18
3
4,05
4,4
7,42
12,35
20
26,3
47,25
69,9 87,16
72,65 90,8
101,7 127,12
169,8 199,76
220

268,99 272

23
33,15
59
94,5
100
127
168

227

Sch

Sch

Sch

Sch

Sch

80

100

120

140

160
0,27
0,47
0,86
1,25
1,85
3,18
3,85
6,13

65,83
106,24
162,28
200
278,87
405,42

606,1

43,6
63,5
124,85
206
335
380
540

910

9
17,5
24
49,5
88,5
140,85
235
320
440
570

1060

49,25
95
158
275
360
475
680

1140

15,9
23
32,7
55,6
113
163,45
300
410
550
770

1270

XXS
0,27
0,47
0,65
1,18
2
3
4,2
6,6
10,9
15
23,15
37,6
51,3

39

CATALOGO

14/11/05

13:35

Página 40

WEIGHT OF FITTINGS
CONCENTRIC REDUCERS, BUTT-WELD FITTINGS
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

0,03
0,05
0,07
0,12
0,15
0,32
0,4
0,55
0,65
1,1
1,6
2,6
4,3
6
10,75
13,25
16
23,8

28,7

0,03
0,07
0,09
0,14
0,23
0,41
0,5
0,68
0,82
1,35
2
3,27
5,45
7,7
13,6
16,35
19,98
29,75

36,32

23
28
34
50
57
63

0,07
0,13
0,18
0,26
0,41
0,77
1
1,3
1,6
2,75
3,95
5
5,58
6,5
7,25 8,99
10,7
9,7 13,21
15
22,25 26,85 26,85
27,5 33,15 33,15
33,5 46,76
40
59,45
79
59,45



71,7 107,14 71,7

0,07
0,13
0,18
0,26
0,41
0,77
1
1,3
1,6
2,75
3,95
6,5
10,7
15 16,35
26,85 31,3
33,15 44
40
59,5
59,45 93
65,35

71,7 129,4

0,1
0,16
0,22
0,35
0,57
1,01
1,35
1,89
2,27
3,92
5,94
8
9,86
14,48 14,48
22,25 19,79
41,75 35,55
56,75
44
77,4 53,12
124,85 79


180,7 95,34

XS
0,1
0,16
0,22
0,35
0,57
1,01
1,35
1,89
2,27
3,92
5,94
9,86
14,48
19,79
35,55
44
53,12
79
86,71
95,34

Sch

Sch

Sch

Sch

Sch

80

100 120

140

160

16,35
28,5
44,25
78
112
145
305

540

0,15
0,23
0,27
0,48
0,95
1,35
1,9

3,65
6,35
10
16,5
29,5
49
86
121
159
340

610

0,14
0,2
0,3
0,45
0,9
1,35
1,8
3,2
3,85
6,35
9
14,5

XXS

3,65
6,35
7,5
11,8 13,5
17,25 20,45 24,5
28,15 32,65 38,15
52,25 64 73
73,5
83 97
97,6 116 136
159 163 178



228 241 295

XXS

ECCENTRIC, REDUCERS, BUTT-WELD FITTINGS
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

0,03
0,05
0,07
0,12
0,15
0,32
0,4
0,55
0,65
1,1
1,6
2,6
4,3
6
10,75
13,25
16
23,8

28,7

0,03
0,07
0,09
0,14
0,23
0,41
0,5
0,68
0,82
1,35
2
3,27
5,45
7,7
13,6
16,35
19,98
29,75

36,32

23
28
34
50
57
63

0,07
0,13
0,18
0,26
0,41
0,77
1
1,3
1,6
2,75
3,95
5
5,58
6,5
10,7
7,25 8,99
9,7 13,21
15
22,25 26,85 26,85
27,5 33,15 33,15
33,5 46,76
40
59,45
79
59,45



71,7 107,14 71,7

N.B.– Weights are of the smallest reduction, i.e. the heaviest.

40

0,07
0,13
0,18
0,26
0,41
0,77
1
1,3
1,6
2,75
3,95
6,5
10,7
15 16,35
26,85 31,3
33,15 44
40
59,5
59,45 93
65,35

71,7 129,4

0,1
0,16
0,22
0,35
0,57
1,01
1,35
1,89
2,27
3,92
5,94
8
9,86
14,48 14,48
22,25 19,79
41,75 35,55
56,75
44
77,4 53,12
124,85 79


180,7 95,34

XS
0,1
0,16
0,22
0,35
0,57
1,01
1,35
1,89
2,27
3,92
5,94
9,86
14,48
19,79
35,55
44
53,12
79
86,71
95,34

Sch

Sch

Sch

Sch

Sch

80

100 120

140

160

16,35
28,5
44,25
78
112
145
305

540

0,15
0,23
0,27
0,48
0,95
1,35
1,9

3,65
6,35
10
16,5
29,5
49
86
121
159
340

610

3,65
6,35
7,5
11,8 13,5
17,75 20,45 24,5
28,15 32,65 38,15
52,25 64 73
73,5
83 97
97,6 116 136
159 163 178



228 241 295

0,14
0,2
0,3
0,45
0,9
1,35
1,8
3,2
3,85
6,35
9
14,5

CATALOGO

14/11/05

13:35

Página 41

WEIGHT OF FITTINGS
STUB ENDS, BUTT-WELD FITTINGS (ANSI B16.9)
N.B. SIZE

APPROXIMATE WEIGHTS IN Kg

Inches Metric
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch

Sch

Sch

Sch

Sch

Sch

Std

Sch

Sch

Sch

5s

10s

10

20

30

40s

Wall

40

60

80s

8,84
14,87
19,29
28,57
32,14
44,2
55,8
65
75,9

0,13
0,18
0,29
0,41
0,54
0,98
1,54
2,1
2,47
2,99
5,22
6,79
10,28
17,86
21,88
28,57
32,14
38
41,96
46,88
50,45

12,81
23,8
32,23
44,2
56,7
74,2
88,4
109
128,6

0,14
0,2
0,38
0,54
0,67
1,34
2,05
2,8
2,94
4,17
7,41
10,27
15,63
23,94
29,38
39,73
42,86
50
55,81
62,07
67,41

18
19,75
24,25
36
42,95
50,05

7,99
12,1
14,64
15,8
16,65
21,3
31,7
37
45,55

23,21
32,59
43,3
56,25
65,63
78
91,52

28,13
38,84
54,92
71,88
91,52
112,1
142
160

18,21
33,57
47,32

5,27
9,6
13,04
21,83
38,98
55,8

XS

Sch

Sch

Sch

Sch

Sch

80

100 120

140

160

XXS

0,3
0,35
0,5 0,66
0,67 0,95
0,9
1,2
2,01 2,46
2,69 3,71
3,93 5,18
6,25
6,29 7,68
11,79 13,84
16,25 19,2
24,55 26,79 26,16
45,54 50,45
62,05 71,43

STUB ENDS, BUTT-WELD FITTINGS (MSS-SP-43)
N.B. SIZE
Inches
1/2
3/4
1
11/4
11/2
2
21/2
3
31/2
4
5
6
8
10
12
14
16
18
20
22
24

APPROXIMATE WEIGHTS IN Kg
Metric
15
20
25
32
40
50
65
80
90
100
125
150
200
250
300
350
400
450
500
550
600

Sch 5s
0,03
0,04
0,06
0,08
0,11
0,17
0,25
0,35
0,5
0,61
1,06
1,2
2,09
3,63
5,33
5,81
6,54
7,72
8,54
9,8
10,26

Sch 10s
0,04
0,06
0,08
0,1
0,14
0,2
0,33
0,44
0,63
0,76
1,33
1,51
2,61
4,54
6,67
7,26
8,17
9,65
10,67
11,6
12,83

Sch 40s
0,09
0,12
0,15
0,2
0,28
0,41
0,66
0,89
1,26
1,52
2,66
3,02
5,22
9,08
13,25
14,53
16,34
19,3
21,34
23
25,65

Sch 80s
0,12
0,16
0,22
0,31
0,39
0,69
1,05
1,46
1,54
2,49
3,55
5,49
9,97
13,75
19,64
29
37,5
49,25
60
77,5
88,25

41

CATALOGO

14/11/05

13:35

Página 42

WEIGHT OF FLANGES
150 lbs PIPE FLANGES
N.B. SIZE
Inches Metric

APPROXIMATE WEIGHTS IN Kg

N.B. SIZE
Inches Metric

Slip-on
and
Screwed

Socket
Weld

Weld
Neck

Blind

Lap
Joint

0,5

0,5

0,82

0,82

0,5

5

125

APPROXIMATE WEIGHTS IN Kg
Slip-on
and
Screwed

Socket
Weld

6,8

Weld
Neck

Blind

Lap
Joint

8,62

9,07

6,8

1/2

15

3/4

20

0,91

0,91

0,82

0,91

0,91

6

150

8,62

10,89

11,79

8,62

1

25

0,91

0,91

1

1

0,95

8

200

13,61

17,69

20,41

13,61

11/4

32

1,27

1,27

1,36

1,27

1,27

10

250

19,5

23,59

31,75

19,5

11/2

40

1,36

1,36

1,81

1,36

1,36

12

300

29,03

36,29

49,9

29,03

2

50

2,27

2,27

2,72

2,27

2,27

14

350

35,38

49,9

59,42

47,63

21/2

65

3,63

3,63

4,08

3,18

3,63

16

400

42,18

63,5

77,11

63,5

3

80

4,08

4,08

4,54

4,08

4,08

18

450

54,43

68,04

94,8

72,57

31/2

90

5

5,44

5,9

5

20

500

72,12

81,65

123,4

88,45

4

100

5,9

6,8

7,71

5,9

24

600

95,25

117,93

186,4

124,74

300 lbs PIPE FLANGES
N.B. SIZE
Inches Metric

1/2

15

APPROXIMATE WEIGHTS IN Kg

N.B. SIZE
Inches Metric

Slip-on
and
Screwed

Socket
Weld

Weld
Neck

Blind

Lap
Joint

0,68

0,68

0,91

0,91

0,68

5

125

APPROXIMATE WEIGHTS IN Kg
Slip-on
and
Screwed

Socket
Weld

11,79

Weld
Neck

Blind

Lap
Joint

15,42

15,88

11,79

3/4

20

1,13

1,13

1,36

1,36

1,13

6

150

15,88

20,41

22,68

15,88

1

25

1,36

1,36

1,81

1,81

1,36

8

200

24,49

31,75

36,74

24,49

11/4

32

2,04

2,04

2,49

2,72

2,04

10

250

34,93

44,91

57,61

34,93

11/2

40

2,95

2,95

3,18

3,18

2,95

12

300

49,9

64,41

83,46

63,5

2

50

3,18

3,18

3,63

3,63

3,18

14

350

74,39

84,37

107,1

86,18

21/2

65

4,54

4,54

5,44

5,44

4,54

16

400

99,79

111,6

139,3

113,4

3

80

5,9

5,9

7,26

7,26

5,9

18

450

127

138,4

176,9

133,8

31/2

90

7,26

9,07

9,53

7,26

20

500

147,4

171,5

223,2

167,8

4

100

9,53

11,34

12,25

9,53

24

600

222,3

247,2

342

249,5

400 lbs PIPE FLANGES
N.B. SIZE
Inches Metric

APPROXIMATE WEIGHTS IN Kg

N.B. SIZE
Inches Metric

Slip-on
and
Screwed

Weld
Neck

Blind

Lap
Joint

15,88

14,97

11,34

4

100

11,79

5

125

14,06

19,5

19,96

13,15

6

150

19,96

25,85

27,67

19,05

8

200

30,36

40,37

45,36

29,03

10

250

41,28

57,15

70,31

50,8

42

12
14
16
18
20
24

300
350
400
450
500
600

APPROXIMATE WEIGHTS IN Kg
Slip-on
and
Screwed

Weld
Neck

Blind

Lap
Joint

58,51
86,64
114,8
140,6
171,5
244,5

80,29
105,7
133,4
163,3
201,9
290,3

102,5
140,6
180,5
227,7
281,7
424,6

68,95
95,25
127
156,5
190,5
279

CATALOGO

14/11/05

13:35

Página 43

600 lbs PIPE FLANGES
N.B. SIZE
Inches Metric

APPROXIMATE WEIGHTS IN Kg

N.B. SIZE
Inches Metric

Slip-on
and
Screwed

Socket
Weld

Weld
Neck

Blind

Lap
Joint

1,27

1,27

1,36

0,91

1,27

5

125

APPROXIMATE WEIGHTS IN Kg
Slip-on
and
Screwed

Socket
Weld

Weld
Neck

Blind

Lap
Joint

28,58

30,84

30,84

28,58

1/2

15

3/4

20

1,36

1,36

1,59

1,36

1,36

6

150

36,29

36,74

39,01

36,29

1

25

1,59

1,59

1,81

1,81

1,59

8

200

44

50,8

63,05

44

1

1 /4

32

2,04

2,04

2,27

2,72

2,04

10

250

80,29

88,45

108,9

88,45

11/2

40

2,95

2,95

3,63

3,63

2,95

12

300

97,52

102,5

133,8

108,8

2

50

3,63

3,63

4,54

4,54

3,63

14

350

117,5

157,4

171,5

131,5

21/2

65

5,44

5,44

6,35

6,3

5,44

16

400

166

218,2

239

181,4

3

80

6,8

6,8

8,16

9,07

6,8

18

450

215,5

251,7

301,6

212,7

31/2

90

9,53

11,79

13,15

9,53

20

500

277,6

313

387,8

285,8

4

100

14,97

16,78

18,6

14,97

24

600

370,1

4432

533

392,8

900 lbs PIPE FLANGES
N.B. SIZE
Inches Metric

APPROXIMATE WEIGHTS IN Kg

N.B. SIZE
Inches Metric

Slip-on
and
Screwed

Weld
Neck

Blind

Lap
Joint

APPROXIMATE WEIGHTS IN Kg
Slip-on
and
Screwed

Weld
Neck

Blind

Lap
Joint

147,9

168,7

187,3

167,8

3

80

14,06

14,51

14,51

14,06

12

300

4

100

24,04

23,13

24,49

24,04

14

350

172,4

254,9

224,1

188,2

5

125

37,65

39,01

39,46

37,65

16

400

208,2

310,7

280,8

210,9

6

150

49

49,9

51,26

49

18

450

293,5

419,1

399,2

294,8

8

200

78

84,82

89,36

86,18

20

500

359,3

528,0

502,1

367,4

10

250

111,1

121,6

131,5

124,7

24

600

671,3

680,4

952,1

703,1

1500 lbs PIPE FLANGES
N.B. SIZE
Inches Metric

APPROXIMATE WEIGHTS IN Kg

N.B. SIZE
Inches Metric

APPROXIMATE WEIGHTS IN Kg

Slip-on
and
Screwed

Socket
Weld

Weld
Neck

Blind

Lap
Joint

15

2,72

2,72

3,18

1,81

2,72

6

3/4

20

3,18

3,18

3,4

2,72

3,18

8

1

25

3,4

3,4

3,86

4,08

3,4

10

1

1 /4

32

4,54

4,54

4,54

4,54

4,54

12

300

302,6

11/2

40

6,35

6,35

6,35

6,35

6,35

14

350

2

50

9,53

9,53

10,89

11,34

9,53

16

21/2

65

16,33

16,33

16,33

15,88

16,33

18

3

80

21,77

21,77

21,77

21,77

20

4

100

33,11

31,3

33,11

33,11

24

5

125

59,87

59,87

64,41

59,87

1/2

Slip-on
and
Screwed

Weld
Neck

Blind

Lap
Joint

74,39

74,39

72,12

74,39

200

117

123,8

137

117

250

197,8

205,9

230

220

150

Socket
Weld

313

351,5

285,8

426,4

442,3

403,7

400

567

589,7

521,7

450

737,1

793,8

669

500

929,9

1009,3

805,2

600

1508,3

1644,4

1281,5

43

CATALOGO

14/11/05

13:35

Página 44

2500 lbs PIPE FLANGES
N.B. SIZE
Inches Metric

APPROXIMATE WEIGHTS IN Kg

N.B. SIZE
Inches Metric

Slip-on
and
Screwed

Weld
Neck

Blind

Lap
Joint

APPROXIMATE WEIGHTS IN Kg
Slip-on
and
Screwed

Weld
Neck

Blind

Lap
Joint

1/2

15

3,18

3,18

3,18

3,18

3

80

37,65

42,64

39,01

36,29

3/4

20

3,63

3,63

3,63

3,63

4

100

56,7

65,77

61,23

54,43

1

25

4,99

5,44

4,99

4,99

5

125

95,25

111,1

102,06

93

11/4

32

7,26

7,71

7,71

7,26

6

150

147,4

172,4

156,5

142,9

11/2

40

9,98

11,34

10,43

9,98

8

200

220

63,1

240,4

213,2

2

50

17,24

19,05

17,69

16,78

10

250

421,8

87,6

464,9

408,2

65

24,94

23,59

25,4

24,04

12

300

499

691,7

589,7

499

1

2 /2

ROUND BAR – metric
SIZE

WEIGHTS IN Kg

SIZE

WEIGHTS IN Kg

SIZE

WEIGHTS IN Kg

mm

Wt per ft

Wt per M

mm

Wt per ft

Wt per M

mm

Wt per ft

Wt per M

0,5

0,0004

0,0015

21

0,829

2,72

72

9,74

31,96

1,0

0,0018

0,0062

22

0,908

2,98

75

10,57

34,68

1,5

0,0042

0,014

23

0,994

3,26

80

12,03

39,46

2

0,0076

0,025

24

1,08

3,55

90

15,22

49,94

2,5

0,012

0,039

25

1,17

3,85

100

18,79

61,65

3

0,017

0,055

26

1,27

4,17

110

22,74

74,6

3,5

0,023

0,076

27

1,37

4,5

120

27,07

88,8

4

0,03

0,099

28

1,47

4,83

130

31,7

104

4,5

0,038

0,125

30

1,69

5,55

140

36,88

121

5

0,047

0,154

32

1,92

6,31

150

42,37

139

5,5

0,057

0,187

33

2,05

6,71

160

48,16

158

6

0,068

0,222

35

2,3

7,55

170

54,26

178

6,5

0,079

0,26

36

2,44

7,99

180

60,96

200

7

0,092

0,302

38

2,71

8,9

190

67,97

223

7,5

0,106

0,347

39

2,86

9,38

200

75,3

247

8

0,12

0,395

40

3,01

9,86

220

90,8

298

8,5

0,136

0,445

42

3,32

10,88

240

108

355

9

0,152

0,499

45

3,8

12,48

250

117

385

9,5

0,169

0,556

48

4,33

14,21

260

127

417

10

0,188

0,617

50

4,7

15,41

280

147

483

11

0,227

0,746

52

5,08

16,67

300

169

555

12

0,271

0,888

55

5,69

18,65

320

192

631

13

0,317

1,04

56

5,89

19,33

340

217

713

14

0,369

1,21

58

6,32

20,74

350

230

755

15

0,424

1,39

60

6,77

22,2

360

244

799

16

0,482

1,58

62

7,22

23,7

380

271

890

17

0,543

1,78

64

7,7

25,25

400

301

986

18

0,61

2

65

7,94

26,05

500

469

1540

19

0,68

2,23

68

8,69

28,51

20

0,753

2,47

70

9,21

30,21

44

CATALOGO

14/11/05

13:35

Página 45

PLATE – metric

THICKNESS
5 mm
6 mm
8 mm
10 mm
12 mm
15 mm
20 mm
25 mm
30 mm
40 mm
50 mm

WT PER SQ FT

WT PER SQ M

2000
x 1000 mm

WEIGHTS IN Kg
2500
x 1250 mm

3,802
4,563
6,084
7,604
9,125
11,406
15,207
19,01
22,813
30,414
38,02

40,925
49,111
65,483
81,845
98,222
122,778
163,689
204,622
245,556
327,378
409,244

82
98
131
164
196
246
327
409
491
655
819

128
153
205
256
307
384
512
639
767
1023
1279

3000
x 1500 mm
184
221
295
368
442
553
737
921
1105
1473
1842

4000
x 2000 mm

6000
x 2000 mm

327
393
524
655
786
982
1310
1637
1964
2619
3274

491
589
786
982
1179
1473
1964
2456
2947
3929
4911

45

CATALOGO

14/11/05

13:35

Página 46

CATALOGO

14/11/05

13:35

Página 47

MATERIALS INFORMATION
See inside for further details

TRADEMARKS
Some alloys presented in this catalogue are registered trade marks
property of the registered owner:





®

wich are the

AL-6XN of ATI Properties Inc.
Ferralium of Meighs Ltd.
17-4PH of Armco.
20 Cb3 of Carpenter Technology, Co.
Hastelloy B3-C22-C276-C4 of Haynes International.
Incoloy: 028-330-800-800H-800HT-825-A286-DS; Inconel: 600-601-625-718X750 and Honel: 400-K500 of INCO Alloys International.

47

12

CATALOGO

14/11/05

13:35

Página 48

CATALOGO

14/11/05

13:35

Página 49

310S

310S
Alloy: AISI-310S
(Cr. Ni. alloy)
UNS-S31008
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

19
22

24
26

Mo

Co

Fe

Cu

C

Mn

Si

P

S

0,08

2

1,5

0,045

0,030

N
(x)

x

(x) cb = 10 x Cmini, 1,10 max

2.º Mechanical properties:
Representative Tensile Properties

Typical Creep-Rupture Properties

Temp
°F

Ultimate
Tensile
Strength, psi

0.2% Yield
Strength, psi

Elongation
%

Temp
°F

Stress, psi, for a
Secondary Creep Rate
1% in 10,000 hrs

10,000 hr
Rupture
Strength, psi

70
1000
1200
1400
1600

80,000
67,800
54,100
35,100
19,100

35,000
20,800
20,700
19,300
12,200

52
47
43
46
48

1200
1400
1600
1800

14,900
3,300
1,100
280

14,400
4,500
1,500
660

3.º Physical properties:
Density Ib/in3

Melting Range °F

0.284

2470-2555

Temp
°F

Coefficient* of
Thermal
Expansion,
in/in °F x 10-6

Thermal
Conductivity
Btu•ft/ft2•hr•°F

Modulus of
Elasticity
Dynamic,
psi x 106

70
1000
1200
1400
1600
1800
2000


9.5
9.8
10.05
10.15
10.3
10.6

7.6
13.6
15.2
16.8
18.4
20.0

29.0
23.0
21.8
20.5
19.2

* 70°F to indicated temperature.

49

CATALOGO

14/11/05

13:35

Página 50

4.º Specifications:
Norm

Tubes
Seamless Welded

ASTM

A-213
A-312

A-312

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240

A-276

A-240

A-182
A-473

A-403

A-276
A-580

B.S.
EN-10095,
X8CrNi25-21
W.Nr. 1.4841

5.º Characteristics, applications:
Excellent resistance to oxidation under mildly cyclic conditions through 2000°F characterizes 310.
Because of its high chromium and medium nickel contents, 310 has good resistance to sulfidation and
other forms of hot corrosion.
310 is widely used in moderately carburizing atmospheres such as encountered in petrochemical
environments. The more severely carburizing atmospheres of industrial heat treating furnaces requiere 330 or 333. 310 is not suggested for the severe thermal shock of repeated liquid quenching.
310 is often used at cryogenic temperatures, because of excellent toughness to 4 K, and low magnetic permeability.
310 has a machinability rating of 42% relative to AISI B1112 steel. With high speed steel tooling
this is about 70 surface feet per minute. Forming operations should be at room temperature whenever possible.
• Oxidization resistance to 2000°F
• Moderate strength at high temperature
• Resistance to hot corrosion
• Strength and toughness at cryogenic temperatures
Applications











Kilns
Fluidized bed coal combustors
Radiant tubes
Tube hangers for petroleum refining and steam boilers
Coal gasifier internal components
Thermowells
Refractory anchor bolts
Burners, combustion chambers
Retorts, muffles, annealing covers
Saggers
Food processing equipment
Cryogenic structures.

6.º Welding properties:
Good weldability.
Weld with matching AWS E310-15 DC lime electrodes or ER310 bare wire.
7.º Products, we supply:
x Plates, sheets

50

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 51

316L

316L
Alloy: AISI-316L
(Cr. Ni. alloy)
UNS-S31603
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

10
14

16
18

2
3

Co

Fe

Cu

C

Mn

Si

P

S

N

0,030

2

0,75

0,045

0,030

0,10

x

2.º Mechanical properties:
Mechanical properties at 20°C
0,2% proof stress
N/mm2 min.

1% proof stress
N/mm2 min.

tensile strength
N/mm2

elongation after
fracture (Lo=5do)

195

235

450-700

40

Mechanical properties at elevated temperatures in N/mm2
Temperature °C

100

150

200

250

300

350

400

450

500

0,2% proof stress

165

150

137

127

119

113

108

103

100

1% proof stress

200

180

165

153

145

139

135

130

128

3.º Physical properties:
Specific gravity at 20°C ....................................
Thermal conductivity at 20°C .............................
Specific heat at 20°C .......................................
Modulus of elasticity at 20°C .............................
Thermal expansion in 10-6 m/m °C ....................

7,95 g/cm2
15 W/mK
500 J/kgK
200000 N/mm2
20 to 100°C 16,5
20 to 200°C 17,5
20 to 300°C 17,5
20 to 400°C 18,5
20 to 500°C 18,5

4.º Specifications:
Norm
ASTM

Tubes
Seamless Welded
A-213
A-312

A-249
A-312
A-554

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240

A-276

A-240

A-182
A-472
A-479

A-403

A-276
A-580

B.S.
W. Nr. 1.4404

51

CATALOGO

14/11/05

13:35

Página 52

5.º Characteristics, applications:
Material is austenitic, stainless and acid resisting nickel, chromium, molybdenum steels with a very
low carbon content (ELC type).
Material features improved strength due to its nitrogen addition, which is of particular importance
for the 0,2% proof stress to be used as design basis.
Applications
Material 316L and Material No. 1.4435 are mainly used for parts and equipment in urea plant subjected to high pressures and temperatures, and to severe corrosion (steam separator, condenser, reactor, stripper, scrubber). Both grades are also suitable for applications involving the attack of a variety
of chemicals in dyemills, in the textile, paper and leather industries, as well as the chemical, pharmaceutical and plastics industries.
The steels are not magnetic.
Corrosion resistance. Intergranular corrosion
Owing to their alloying elements and to the melting technique employed. Material 316 L and 1.4435
feature very good resistance to intergranular corrosion when tested according to DIN 50914. Their corrosion resistance is also found to be excellent when subjected to a Huey test according to ASTM A
252 Practice C - a maximum corrosion rate of 0.247 g/m_hr 316L and 0.54 g/m_hr (1.4435) obtained as an average of 5 bolling periods of 48 hours each can be guaranteed.
Stress corrosion cracking and pitting
The alloying elements of Material No. 1.4466 give this grade improved resistance to stress corrosion
cracking and pitting in high-chloride media (e.g. sea water) compared to that of conventional 18/8 steels.
Due to the increased Nickel content, Material No. 1.4465 has a considerably higher range of resistance to stress corrosion cracking than e.g. X2CrNiMo 1812 (TP 316 L).
Due to the Molybdenum content and the increased Chromium content there is a good corrosion resistance to flowing waters containing Chlorides.
Forming properties
Both grades can conveniently be cold formed, hot formed and machined.
Huey-test
Apart from the testing for resistance to grain disintegration the Huey-test also serves for investigating whether there are any further inhomogeneities such as precipitations within the grain, sigma phase and inclusions of Ferrite. For this reason the Huey-test represents a very strict testing method,
which includes a great number of parameters.
5,91 g/m2 24h=0.27 mm/year at the Huey-test. This extraordinarily low value can only be guaranteed by special provisions at the production of the steel and by extensive quality control during the various of production.
6.º Welding properties:
Welding presents no difficulties. With an approved welding technique for fully austenitic filler metals
sound weld joints can be achieved up to a plate thickness of 80 mm. Welding should be carried out with
a short arc and mean amperage taking care to prevent weave beads exeeding two times the electrode diameter. Thick layers are to be avoided. Its is recommended to chip out the end craters. Interpass
temperature should not exceed 150°. Quite on general, no postheat-treatment is required.
7.º Products, we supply:
x Plates, sheets

52

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 53

317L

317L
Alloy: AISI-317L
(Cr. Ni. Mo. alloy)
UNS-S31703
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

11
15

18
20

3
4

Co

Fe

Cu

C

Mn

Si

P

S

N

0,35

2

0,75

0,040

0,030

0,10

x

2.º Mechanical properties:
Tensile strength, mini: 515 MPa
Yield strength, mini: 205 MPa

Elongation, mini: 40% in 2 inch
Hardness: Brinell, max: 217
RcB, max: 96

3.º Physical properties:
Physical Data
Density (lb/cu. in.) ............................... 0.29 or 8,00 Kg/dm3
Specific Gravity .............................................................. 7.9
Specific Heat ............................................................... 0.12
(Btu/lb/Deg F - [32-212 Deg F])
Electrical Resistivity ....................................................... 444
(microhm-cm (at 68 Deg F))
Melting Point (Deg F) ................................................... 2550
Modulus of Elasticity Tension ............................................. 28
4.º Specifications:
Norm
ASTM

Tubes
Seamless Welded
A-213
A-312

A-249
A-312
A-813-4

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240

A-276
A-582

A-240

A-182
A-472
A-479

A-403
A-774
A-778

A-276
A-580

B.S.
W.Nr. 1. 4438
X2 Cr Ni Mo 18164

AENOR Z2CND 19-15
B5 - 317S/2

JIS - SUS 317L
S.S. - 2367

53

CATALOGO

14/11/05

13:35

Página 54

5.º Characteristics, applications:
Principal Desing Features
317L is a low carbon version of 317 stainless. It possesses the same high strength and corrosion
resistance and will produce stronger welds due to its low carbon content. Many users are shifting over
to this alloy in lieu of 304 and 316.
Corrosion Resistance
Resistant to a wide variety of marine environments, salts, dilute nitric, acetic and sulfuric acids. Significantly higher resistance to pitting and crevice corrosion at ambient temperatures than 316 or 316L
stainless.
Hot Working
All common hot working processes are possible with this alloy. Heat to 2100-2300°F (1149-1260°C).
Avoid working this material below 1700°F (927°C). For optimum corrosion resistance, a post-work annealing is recommended.
Cold Working
Shearing, stamping, heading and drawing can be successfully performed. To remove internal stresses, a post-work annealing is recommended.
Annealing
1850-2050°F (1010-1121°C), followed by rapid cooling.
Hardening
This alloy does not respond to heat treatment. Cold work will cause an increase in both hardness
and strength.
Machinability
Low speeds and constant feeds will minimize this alloy’s tendency to work harden. Tougher than 304
stainless with a long stringy chip, the use of chip breakers is recommended.
Applications
Chemical and petrochemical process equipment, pulp and paper manufacturing and condensers in
fossil and nuclear fueled power generation stations.
6.º Welding properties:
All common fusion and resistance methods except oxyacetylene welding have proven successful. Use
AWS E/ER 317L filler metal for best results.
7.º Products, we supply:
x Plates, sheets

54

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 55

317LMN

317LMN
Alloy: AISI-317LMN
(Cr. Ni. Mo. alloy)
UNS-S31703
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

13,5
17,5

17
20

4
5

Co

Fe

Cu

C

Mn

Si

P

S

N

0,030

2

0,75

0,045

0,030

0,10
0,20

X

2.º Mechanical properties:
Tensile strength, mini: 550 MPa
Yield strength, mini: 240 MPa

Elongation, mini: 40%
Hardness: Brinell, max: 217
RcB, max: 96

3.º Physical properties:
Physical Data
Density (lb/cu. in.) .................................... 0.29 or 8 Kg/dm3
Specific Heat ............................................................... 0.12
(Btu/lb/Deg F - [32-212 Deg F])
Melting Point (Deg F) ................................................... 2600
Thermal conductivity ....................................................... 9.4
Modulus of Elasticity Tension ............................................. 28
4.º Specifications:
Norm

Tubes
Seamless Welded

Plates
Sheets

ASTM

A-312

A-240

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

B.S.
W.Nr. 1. 4439 (X2 Cr Ni Mo N 17135)
SEN - 400

5.º Characteristics, applications:
Cold bending
Heat treatment is in most cases not necessary after cold bending to normal bending radio. At a higher
degree of forming and at operational conditions which could cause stress corrosion in austenitic
steels, a stress-relieving annealing is reconmmended.
55

CATALOGO

14/11/05

13:35

Página 56

Corrosion Resistance
The addition of nitrogen provides a good austenitic stability for Material 317LMN giving it a superior
corrosion resistance to that of 1.4435. Even after heat treatment e.g. welding, a good corrosion resistance is maintained as there is no possibility of the formation of harmful phases e.g. the sigma phase. The increased molybdenum content affords a high corrosion resistance in chlorine-ion-containing
media. Pitting corrosion resistance is particularly improved.
Material 317LMN is characterized by good resistance in
Mixed acids
– sulphuric acid / nitric acid, Hydrofluoric acid / nitric acid
– sodium chlorite, sodium-hypochlorite
Bleaching solutions
Sea and brackish water
– sodium chloride
Applications
Positive experiences with Material 317 LMN can be expected amongst others in the following
applications:



Fatty acid plants
Bleaching plants
Nuclear evaporation plants
Plants admitting aqueous chloride solutions.

6.º Welding properties:
Electrode rod welding as well as the WIG (TIG)-method is suitable for welding tubes into tube plates.
The use of additives of the same type is recommended in order to obtain a weld free of ferrites and with
the favourable properties of the basic material. Welding should be carried out with as little heat as possible. There is usually no need for further heat treatment.
Weldable by all common methods. Because of the carbon restriction in 317LMN, carbide precipitation along the weld boundaries will be minimized. Filler metal should be either 317L, LM or LMN, although Alloy 625 (Inconel tm) has been successfully employed.
7.º Products, we supply:
x Plates, sheets

56

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 57

321

321
Alloy: AISI-321
(Cr. Ni. alloy)
UNS-S32100
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

9
12

17
19

Mo

Co

Fe

Cu

C

Mn

Si

P

S

N

0,08

2

0,75

0,045

0,030

0,10

TI
(x)

X

(x) Ti: Ti 5x (c + n) mini, o.70 max.

2.º Mechanical properties:
Tensile strength, mini: 515 MPa
Yield strength, mini: 205 MPa

Elongation, mini: 40%
Hardness: Brinell, max: 217
RcB, max: 95

Representative Tensile Properties

Typical Stress-Rupture Strength

Temp
°F

Ultimate
Tensile
Strength, psi

0,2%
Yield
Strength, psi

Temp
°F

Stress, psi to Rupture at Indicated Time
1,000 hrs

10,000 hrs

400
600
800

62,000
62,000
62,000

20,500
18,000
17,000

1100
1200
1300

30,000
19,000
11,200

23,500
12,900
7,200

3.º Physical properties:
Density: 8 Kg/dm3
Density Ib/in3

Melting Range °F

0.286

2550-2600

Temp
°F

Coefficient* of
Thermal
Expansion,
in/in °F x 10-6

Thermal
Conductivity
Btu•ft/ft2•hr•°F

Modulus of
Elasticity
Dynamic,
psi x 106

200
400
800
1000

9.3
9.4
10.0
10.3

8.8
9.7
11.4
12.1

28.0
26.5
23.8
22.5

* 70°F to indicated temperature.

57

CATALOGO

14/11/05

13:35

Página 58

4.º Specifications:
Norm

Tubes
Seamless Welded

ASTM

A-213
A-312
A-376

A-249
A-312
A-554

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240

A-276
A-582

A-167
A-240

A-182
A-473
A-479

A-403

A-276
A-580

B.S.
W.Nr. 1.4541

5.º Characteristics, applications:
High carbon steels prone more to intercrystalline attack in weld zones and slower cooling sections.
These steel avoids such attacks through its stabilization with Ti. The corrosion behaviour of this alloy
in natural environments is very similar to the TP 304/304L alloys. Architecturally, it may not be adequate for near-industrial or onshore locations in Europe. Satisfactory in many low-chloride waters, it is
prone to pitting or crevice corrosion in seawater. Water treatment, galvanic protection and deaeration
can influence the performance.
Features
• Oxidation resistant to 1600°F
• Stabilized against weld heat affected zone (HAZ) intergranular corrosion
• Resists polythionic acid stress corrosion cracking
Application



Aircraft piston engine manifolds
Expansion joints
Refinery equipment
High temperature chemical process equipment

321 stainless is a titanium stabilized grade commonly used for service in the 1000-1600°F temperature range. For service temperatures up to about 1600°F, a stabilizing treatment at 1550-1650°F, a stabilizing treatment at 1550-1650°F, air cool, may be used to provide optimum resistance to intergranular corrosion and to polythionic acid stress corrosion cracking.
6.º Welding properties:
321 is readily welded by all common methods including submerged arc. Appropriate weld fillers are AWS
ER347 bare wire and E347 covered electrodes.
7.º Products, we supply:
x Plates, sheets

58

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 59

321H

321H

Alloy: AISI-321H
(Cr. Ni. alloy)
UNS-S32109
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

9
12

17
19

Mo

Co

Fe

Cu

C

Mn

Si

P

S

N

TI

0,04
0,10

2

0,75

0,045

0,030

0,10

(x)

X

(x) Ti: Ti 4x (c + n) mini, o.70 max.

2.º Mechanical properties:
Tensile strength, mini: 515 MPa
Yield strength, mini: 205 MPa

Elongation, mini: 40%
Hardness: Brinell, max: 217
RcB, max: 95

3.º Physical properties (Typical annealed):
Property

at

Density

Value

Unit

Property

3

at

Value

Unit

8,027

Kg/m

Melting Range

1400-1430

°C

Specific Heat

500

J/kg. °C

Relative Magnetic Permeability

1.02

Electrical Conductivity

25°C

1.25

% IACS

Electrical Resistivity

25°C

0.72

Micro ohm. m

Coefficient of Expansion

0-100°C

16.6

/ °C

Modulus of Elasticity

20°C

193

GPa

0-315°C

17.2

/ °C

Shear Modulus

20°C

77

GPa

0-540°C

18.6

/ °C

Poisson’s Ratio

20°C

0.30

100°C

16.1

W / m. °C

Thermal Conductivity

4.º Specifications:
Norm
ASTM

Tubes
Seamless Welded
A-213
A-312
A-376

A-249
A-312

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240

A-276
A-582

A-240

A-182
A-473
A-479

A-403

A-276
A-580

B.S.
W.Nr. 1.4878

59

CATALOGO

14/11/05

13:35

Página 60

5.º Characteristics, applications:
This is the high carbon version of TP 321 which ensures greater creep resistance. Behaves much
the same as TP 321 in oxidation resistance.
This grade is version of the most common stainless steel, grade 304. They contain carbide forming
or stabilising elements such as titanium, niobium and tantalum, which form carbides in preference to
chromium carbide, and so prevent sensitisation. The grades were more common before the development of steelmaking equipment for reliable and economical manufacture of 304L grade, which is now
used in most applications.
Grade 321 is stabilised with titanium, 347 with niobium (columbium, Cb, in USA practice), and 348
with niobium plus tantalum, with a controlled cobalt content. Grade 348 is mainly used in nuclear applications. Each grade has an ‘H’ version, with guaranteed high carbon (~0.07%), which can be used in
pressure vessels to higher temperatures.
The grades are used:
• where the steel will be used at temperatures in the carbide precipitation range, 425 to 900°C,
and subsequently exposed to corrosive environments.
• where heavy parts (> 5 mm thickness) are fabricated by welding, and will not be subsequently solution annealed.
In practice, grade 304L is most often used nowadays, except for components for feat treatment
equipment and furnaces which are used intermittently, and may face corrosive conditions while cool.
The grades have similar corrosion resistance to grade 304 which has not been sensitised. They are
not suitable for decorative applications, as the stabilising additions produce inclusions which impair surface quality. They are not available in BA finish, and are usually used as heavy sections in 2D or No 1
finish.
Applications
Heat exchangers, furnaces, boilers in chemical and petrochemical plant.
Welded construction and parts heated in the carbide precipitation range, subsequently requiring the
corrosion resistance of grade 304: boilers, exhaust manifolds, fasteners, fire walls, furnace heating
elements, jet engine parts, mufflers for stationary engines, stack liners.
6.º Welding properties:
Good weldability.
7.º Products, we supply:
x Plates, sheets

60

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 61

347
347
Alloy: AISI-347
(Cr. Ni. alloy)
UNS-S34700
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

9
13

17
19

Mo

Co

Fe

Cu

C

Mn

Si

P

S

N

Cb
(x)

0,08

2

0,75

0,045

0,030

X

(x) Cb: cb 10 x c mini, 1,00 max.

2.º Mechanical properties (Typical annealed):
Tensile strength, mini: 515 MPa
Yield strength, mini: 205 MPa

Elongation, mini: 40%
Hardness: Brinell, max: 201
RcB, max: 92

3.º Physical properties:
at

Property
Density

Value

Unit

Property

3

at

Value

Unit

8,027

Kg/m

Melting Range

1400-1430

°C

Specific Heat

500

J/kg. °C

Relative Magnetic Permeability

1.02

Electrical Conductivity

25°C

1.25

% IACS

Electrical Resistivity

25°C

0.72

Micro ohm. m

Coefficient of Expansion

0-100°C

16.6

/ °C

Modulus of Elasticity

20°C

193

GPa

0-315°C

17.2

/ °C

Shear Modulus

20°C

77

GPa

0-540°C

18.6

/ °C

Poisson’s Ratio

20°C

0.30

100°C

16.1

W / m. °C

Thermal Conductivity

4.º Specifications:
Norm
ASTM

Tubes
Seamless Welded
A-213
A-312
A-376

A-249
A-312
A-554

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240

A-276
A-582

A-240

A-182
A-473
A-479

A-403

A-276
A-580

B.S.
W.Nr. 1.4550

61

CATALOGO

14/11/05

13:35

Página 62

5.º Characteristics, applications:
General Description:
Stainless steels are iron based alloys containing at least 10.5% Chromium. They achieve their stainless characteristics through the formation of an invisible and adherent Chromium rich oxide film. Alloy
347 is a general purpose austenitic stainless steel with a face centered cubic structure. It is essentially
non-magnetic in the annealed condition and can only be hardened by cold working.
Niobium has been added to suppress grain boundary Chromium Carbide precipitation.
Finishes
No 1 (hot rolled, annealed and pickled), 2D (cold rolled).
Heat Treatment
Solution annealing is performed at 1000-1120°C, followed by rapid cooling. The grades cannot be hardened by heat treatment. Stress relieving is rarely required due to their high ductility and frequent use at
high temperatures.
Typical Applications
Welded construction and parts heated in the carbide precipitation range, subsequently requiring the corrosion resistance of grade 304: boilers, exhaust manifolds, fasteners, fire walls, furnace heating elements,
jet engine parts, mufflers for stationary engines, stack liners.
6.º Welding properties:
These grades are readily weldable by most fusion techniques (GTAW/TIG, GMAW/MIG/MAG,
MMAW/stick, SAW), with no preheat, postheat or control of interpass temperature needed. Grade
347 welding consumables are used for 321 and 347 grades, and are prequalified in AS1554.6:1994
for welding to most other austenitic grades. Pickling and passivation is not usually required for use at
elevated temperatures.
7.º Products, we supply:
x Plates, sheets

62

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 63

410
Alloy: AISI-410
(Cr. alloy)
UNS-S41000

410

1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

0,75

11,5
13,5

Mo

Co

Fe

Cu

C

Mn

Si

P

S

0,08
0,15

1

1

0,040

0,030

N

X

2.º Mechanical properties:
Tensile strength, mini: 450 MPa
Yield strength, mini: 205 MPa

Elongation, mini: 20%
Cold dend: 180°

Hardness: Brinell, max: 217
RcB, max: 96

Heat Treated Condition. 1” (25mm) round bar, oil quenched from 1800°F (982°C)
Tempering

Tensile

0.2% yield

Elongation

Reduction

Temp

Strength

Strength

in 2”

of Area, %

°F

°C

As
quenched

psi

MPa

psi

MPa

(50mm), %

193,450

1334

149,750

1032

17.0

Hardness

Brinell

RC

56.8

388

42

300

149

188,525

1300

148,575

1024

17.3

59.7

388

42

500

260

181,550

1252

143,550

990

16.8

60.7

388

42

700

371

181,425

1251

144,650

997

16.0

61.6

361

39

1050

566

124,050

855

110,330

761

20.8

67.2

255

25

1150

621

117,530

810

103,745

715

21.3

66.1

235

22

1200

649

113,020

779

99,125

683

22,0

66,5

229

20

75,610

521

43,590

301

34.5

74.5

143

Annealed
(1500/816)

3.º Physical properties:
Density 0.276 lb/in3 (7650 kg/m3); 8 kg/dm3).
Melting Point (approx.) 2223°F (1495°C)
Magnetic Permeability – In the annealed condition 410 will have a maximum permeability value of
900 Oersteds.
Modulus of Elasticity 29 x 106 psi (200 GPa).
Mean Specific Heat 32-212°F (0-100°C) 0.11 Btu/lb.F (460 J/kg.K)

Temper.

°F

°C

Coeficient* of
Thermal Expansion

Electrical Resistivity

Thermal
Conductivity

Temperature

in/in°Fx10-6 m/m.Kx10-6 Btu • ft/ft2 • hr •°F W/m.K

212 100

5.5

9.9

14.4

25.1

932 500

6.2

11.2

16.6

28.9

*70°F (21°C) to indicated temp.

°F

°C

68
212
392
752

20
100
200
400

ohm.circularmil/ft

microhm.m

343
385
433
529

0.57
0.64
0.72
0.88

63

CATALOGO

14/11/05

13:35

Página 64

4.º Specifications:
Norm

Tubes
Seamless Welded

ASTM

A-268
A-511

A-268

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240

A-276

A-240
A-473

A-182
A-479

A-403
A-580

A-276

W.Nr. 1.4006. (X12 Cr13; X10 Cr 13)

5.º Characteristics, applications:
Type 410 is a corrosion and heat resistant 12% chromium steel. It is the most widely used of the
hardenable stainless steels. Heat treated 410 has mechanical properties comparable to the engineering alloy steel AISI 4130, coupled with the additional benefit of good corrosion resistance.
Hardenable stainless which may be tempered as high as 1350°F (732°C) to produce high impact
toughness. Oxidation resistant through 1500°F (816°C) intermittently, 1200°F (649°C) continuously.
Corrosion Resistance
410 stainless is highly resistant to atmospheric corrosion. Maximum corrosion resistance is obtained by
hardening and polishing. Mild atmospheres, soft water (verify water analysis). Oxidizing saline solutions free
of chlorides, fluorides, iodides, bromides… Cold diluted nitric solutions. Certain cold diluted organic acids:
picric, tannic, lactic… Non-corrosive products such as: alcohol, benzol, petroleum, oil, soap…
Metallurgy
The microstructure of annealed 410 consists of ferrite and carbides. Austenite forms in increasing
amounts as the steel is heated above approximately 1450°F (790°C). Rapid cooling from above 1450°F
(790°C) produces a partially or completely martensitic structure, depending upon the austenitizing temperature and the analysis. A fully martensitic structure, or very nearly so, may be developed by oil quench from
1800°F (982°C), or by air cooling if the section is light.
Chromium near the upper specified limit will reduce maximum hardness and will usually produce
small amounts of ferrite in with the hardened martensite. Heats of 410 with higher carbon will have
slightly greater hardness in the annealed condition, and greater hardness in the hardened condition.
Heat Treatment
Annealing: Heat uniformly to 1200-1400°F (650-760°C), remove from furnace and air cool. This should
result in Brinell hardness about 187.
For maximum softness, heat to 1500-1650°F (816-900°C), furnace cool slowly to 1100°F (593°C),
after which air cooling is permissible. Brinell hardness should be approximately 155.
Hardening: Heat to 1750-1850°F (954-1010°C), soak at heat, and quench in oil. Light sections will also harden by air cooling. 410 will harden to some degree when heated 1500°F (816°C) and over unless
slowly cooled to below the critical temperature.
Tempering: Soak at heat at least one hour, longer for large sections, and air cool. Tempering 410 in the
range 750-1050°F (400-570°C) results in decreased impact toughness and somewhat reduced corrosion
resistance.
Applications
• Press plates. • Petrochemical equipment. • Gate valves. • Mining machinery. • Distillation trays.
6.º Welding properties:
Because 410 is an air hardening steel, it must be given a high preheat, at least 350-400°F (180200°C) before welding, and immediately given a full anneal before the weldment cools. Otherwise the
metal will harden, and cracking is likely. This nickel alloy is comparatively low strength, and therefore accommodates some of the strain which may otherwise contribute to cracking in the 410 weldment.
7.º Products, we supply:
x Plates, sheets
64

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 65

431
Alloy: AISI-431
(Cr. Ni. alloy)
UNS-S43100

431

1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

1,25
2,5

15
17

Mo

Co

Fe

Cu

C

Mn

Si

P

S

0,2

1

1

0,04

0,03

N

C

X

2.º Mechanical properties:
Yield strength 0.2: 200 GPa
3.º Physical properties:
7,85 Kg/dm3

Density
4.º Specifications:
Norms

Material

Chemical
composit

Pipes-Tubes
Seamless

Plates

Welded. Sheets

Rounds,

Strips

Wires

Forgings

Bars

DIN

F-44

BS
ASTM

AISI

A-511

A-276

A-276 A-580

A-473

ISO
AFNOR

5.º Characteristics and applications:
Principal Design Features
431 is a martensitic stainless combining excellent impact strength at high hardness levels with the
best corrosion resistance of any martensitic stainless steels.
Machinability
In the fully annealed condition, 431 will gall and build up on the tools. Good surface finishes are not
easily obtained.
Hot Working
Heat to 2100-2200°F (1149-1204°C) for best results. Do not work material below 1650°F (900°C).
Cold Working
This alloy is easily drawn, spun, headed, sheared and bent compared with other stainless steels.
Annealing
1200-1250°F (650-677°C), furnace or air cool.
65

CATALOGO

14/11/05

13:35

Página 66

Tempering
Temper for desired properties. Temperatures between 700-1050°F (371-565°C) will adversely affect impact strength and corrosion properties.
Hardening
1800-1950 F (982-1066°C), oil quench or ail cool for maximum properties.
Applications
431 has been successfully used in a variety of aircraft and general industrial applications. These include fasteners, bolts, valve components an chemical equipment.
6.º Corrosion data:
Sulphuric acid: 3
Hydrocloric acid: 3
Hydrofluoric acid: 3
Phosphoric acid: 3

Sea water: 2
Salts: 3
Alkalis: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 2
Carburization resistance: 2
Sufidation resistance: 2

Strength & Stability: 3
Nitriding resistance: 2
Carbonitriding resistance: 2

7.º Weldability:
Most electric welding procedures have proven successful with 431 stainless. Filler metal should be
AWS E/ER410. To avoid cracking, pre-heat the workpiece to 400-600°F (204-316°C). After air cooling, treat at 1200°F (649°C) to reattain maximum properties.
8.º Products, we supply:
x Plate-strip

66

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 67

UNS S31254
Alloy: UNS S31254
(Cr, Ni, Mo)
UNS: S31254
UNS S31254

1.º Chemical composition in %:
Ni

Cr

Mo

18

20

6,2

Co

Fe

Cu

C

Mn

Si

Rem

0,7

0,020

0,5

0,4

P

S

N

Mini
Max
0,20

2.º Mechanical properties:

Yield strength
Tensile strength
Elongation
Hardness
Impact value

Rp0.2
Rp1.0
Rm
A5
HB
KCV

N/mm2
N/mm2
N/mm2
%
J/cm2

min
min
min
min
max
min

Characteristic temperatures

20°C
300
340
650
35
210
120

Temp.°C
Solidification range
Scaling temperature in air
Hot forming
Quench annealing
Pressure vessel application
*

Tensile properties at elevated temperature
50°C 100°C
Rp0.2
Rp1.0
Rm

2

N/mm min
N/mm2 min
N/mm2 min

270
305
635

1400-1325
1000
1200-1000
1170 water*)
(–60)–400

1130 air/water below 2 mm

200°C 300°C 400°C

235
270
615

195
225
560

175
205
525

160
190
510

3.º Physical properties:
20°C
Density
Modulus of elasticity
Linear expansion 20 – 100°C
Thermal conduction
Heat capacity
Electric resistivity

g/cm3
kN/mm2
x 10–6/°C
W/m°C
J/kg°C
nWm

8.0
200
16.5
13.5
500
850

4.º Specifications:
Forgings: F-44
5.º Characteristics and applications:
The high levels of chromium, particulary of molybdenum, endow S31254 with an extremely good resistance to pitting and crevice corrosion. The addition of copper provides improved resistance in certain acids. Furthermore, due to its relatively high nickel content in combination with the high levels of
67

CATALOGO

14/11/05

13:35

Página 68

chromium and molybdenum, S31254 possesses a good resistance against corrosion. Numerous field
tests, as well as practical experience, show that S31254 is resistant to crevice corrosion in sea water, even at increased temperatures.
S31254 is delivered in an annealed condition (1150-1200°C, rapid cooling) and has an austenitic
structure. In certain cases there may be traces of intermetallic phases (chi-and sigma phase) in the
centre of the material. Normally, however, this has no influence on the impact strength or on the corrosion resistance. When exposed to a temperature range of between 600-1000°C, these phases can
precipitate at the grain boundaries. If the given recommendations for hot forming, welding and heat
treatment are followed, there will be no precipitation affecting the corrosion resistance.
CORROSION

RESISTANCE

General corrosion
In a solution containing halides such as chloride, bromide or fluoride ions conventional stainless steels can readily be attacked by localized corrosion in the form of pitting, crevice corrosion or stress corrosion cracking. In certain cases, however, the presence of halides can accelerate the general (uniform) corrosion. This applies especially to cases where halides occur in nonoxidizing acids.
Pitting corrosion
In a solution with a chloride concentration exceeding that of sea water, S31254 possesses a very
good resistance up to high temperatures.
Intergranular corrosion
S31254 has a very low carbon content. Therefore, as far as the connection with the heat input is
concerned, there is little risk of carbide precipitation. Due to the low carbon content and the general
chemical composition, this steel passes the Strauss test (ASTM A 262 Practice E) even after one hour
of sensitizing at 600-1000°C.
However, due to the high alloying element content of the steel, intermetallic phases can precipitate at
the grain boundaries as in the above mentioned temperature range. These precipitations do not involve a
risk of intergranular corrosion in the corrosive media where this steel is used. Thus, welding can be carried out without any risk of intergranular corrosion. However, in a hot concentrated nitric acid, these phases can cause risk to intergranular corrosion in the heat-affected zone.
Crevice corrosion
The weak point of the conventional stainless steel grades is their limited resistance to crevice corrosion. In sea water, for example, there is a considerable larger risk of crevice corrosion under gaskets,
deposits or fouling than of pitting on the free surfaces.
S31254 is completely free from attacks, even after exposure to sea water at 60°C. Conventional
stainless steel grades, on the other hand, are attacked already at low temperatures by crevice corrosion.
Stress corrosion cracking
Under favourable conditions, stress corrosion cracking can occur in all stainless steels, with the exception of those ferritic grades which are not alloyed with nickel or copper.
For austenitic steels, the resistance to stress corrosion cracking increases with the rise of the nickel and molybdenum contents.
S31254 possesses a very good resistance to stress corrosion cracking. However, this steel grade
does not pass the SCC test in a 45% boiling magnesium chloride test solution, which is the severest
test procedure to detect stress corrosion cracking. The same happens with ferritic steels, alloyed with
nickel or copper and ferritic-austenitic steels.
PROCESSING
Hot working
Hot working should be carried out in the temperature range of between 1150-1000°C. Higher temperatures will reduce the workability. Fairly heavy scaling occurs at temperatures exceeding 1150°C.
To ensure dissolution of possible precipitations of secondary phases from the hot forming, the subse68

CATALOGO

14/11/05

13:35

Página 69

quent heat treatment shall take place at min. 1150°C, followed by the quickest possible cooling. If a cooling rate is too low, it can cause a reduced corrosion resistance.
Cold working
S31254 possesses very good cold formability. Bending, pressing and other forming operations can
be carried out without any difficulty. Thus, practical experience obtained from the pressing of elbows,
tees, reducers, etc. has been very favourable. The steel workhardens rapidly.
MACHINING
Like other austenitic steels, S31254 is tough. The relatively high hardness and the tendency towards work-hardening must be taken into account when this grade is machined.
Fully satisfactory machining results can be obtained when selecting the right choice of tools and machining data.
Applications
Up to the present S31254 has been supplied for the following applications:
– Use of equipment in contact with sea water such as heat exchangers, cooling water pipes and
even in cases where stagnant conditions can occur. Desalation plants.
– Equipment at pulp bleaching plants, such as drums, vats and press rolls for filter washers, and
pipelines for pulp and filtrate.
– Components in gas cleaning systems, e.g. in pulp and metallurgical industries, and in power stations.
– Tanks and pipelines for different chemicals with high halide levels.
– Equipment used for the destillation of tall oil.
6.º Welding properties:
S31254 possesses good weldability and can be welded using conventional welding methods for
stainless steel.
Sheets and plates in grade S31254 have a homogeneous composition. Remelting of the parent metal, such as during welding without filler metal, may cause microscale variations in composition for elements such as chromium, nickel and, particularly, molybdenum. This phenomenon occurs in all highly
alloyed stainless steels. These variations may reduce the pitting resistance of the weld.
The following welding instructions should be observed:
1. The material may not be subjected to abrasive contact with copper/brass items. Penetration of
Cu/Zn into the grain boundaries can give rise to crack formation.
2. P 12 welding consumables should be used for all welding methods. TIG- and plasma -arc- welding
without filler wire should be avoided in cases where post-weld annealing is impossible.
3. Ignite the electrode in the joint since ignition burns beside the weld can give rise to corrosion
attacks.
4. Weld with low heat input, the run energy should not exceed 1.5 KJ/mm. Weaving should be avoided in horizontal position. Do not use unnecessarily high ampearages or thicker electrodes than
necessary.
7.º Products, we supply:
x Plate-strip

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

69

CATALOGO

14/11/05

13:35

Página 70

CATALOGO

14/11/05

13:35

Página 71

AL-6XN®
Alloy: AL6XN®
(Cr. Ni. Mo alloy)
UNS-N08367
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

23,5
25,5

20
22

6
7

Co

AL-6XN®
Fe

Cu

C

Mn

Si

P

S

N

0,75

0,3

2

1

0,04

0,03

0,18
0,25

C

X

2.º Mechanical properties:
Maximum Allowable Design Stress Values in tension, ksi (Mpa)
DIMENSIONALLY STABLE Under Cited conditions
For Metal
<3/16 inch thick sheet, >3/16 inch thick plate,
Temperature not
strip, seamless
bar, forgings
exceeeding

Welded Tube, Welded Pipe
<3/16 inch thick wall

Welded Pipe >3/16
inch thick wall

°F

°C

45YS
100TS

(310)
(717)

45YS
100TS

(310)
(717)

45YS
100TS

(310)
(717)

45YS
100TS

(310)
(717)

100

38

28.6

(197)

27.1

(187)

24.3

(167)

23.1

(159)

200

93

26.2

(181)

26.2

(181)

22.2

(153)

22.2

(153)

300

149

23.8

(164)

23.8

(164)

20.2

(139)

20.2

(139)

400

204

21.0

(151)

21.0

(151)

18.7

(129)

18.7

(129)

500

260

20.5

(141)

20.5

(141)

17.4

(120)

17.4

(120)

600

316

19.4

(134)

19.4

(134)

16.5

(114)

16.5

(114)

650

343

19.0

(131)

19.0

(131)

16.1

(111)

16.1

(111)

700

371

18.6

(128)

18.6

(128)

15.8

(109)

15.8

(109)

750

399

18.3

(126)

18.3

(126)

15.5

(107)

15.5

(107)

800

427

18.0

(124)

18.0

(124)

15.3

(105)

15.3

(105)

KEY: YS = Minimum yield strength 0.2% offset; TS = Minumum tensile strength
All product forms have a minimum 30% elongation in 2” or 4D
Values shown are for comparison only. Always consult current editions of codes and standars for values for us in
Values are as published in 2001 edition of Code. Always consult current editions of codes and standards for values

3.º Physical properties:
Density 8 Kg/dm3

71

CATALOGO

14/11/05

13:35

Página 72

4.º Specifications:
Norm

Tubes
Seamless Welded

ASTM

B-690
B-829

A-312
B-675
A-249
A-270
A-269

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

A-240
B-688

B-691
B-472

B-240
B-688

A-462
B-564

B-462
B-366

B-691

B.S.

5.º Characteristics, applications:
AL-6XN® alloy is a nickel molybdenum alloy with excellent resistance to chloride pitting and crevice
corrosion. AL-6XN® has been used for seawater heat exchangers, chemical process tanks and pipelines, offshore oil and gas seawater heat exchangers.
Corrosion Resistance
AL-6XN alloy has proven to be resistant to a broad range of very corrosive processing environments. Exceptional corrosion resistance is obtained to chloride-induced corrosion in the forms of pitting, crevice and
stress corrosion cracking. AL-6XN alloy also has excellent general corrosion resistance to various acids and
salt solutions. This is achieved due to the higher levels of:
• Nitrogen – which retards the formation of chi phase during manufacturing and field welding
• Chromium – provides good resistance to oxidizing environments
• Molybdenum – improves resistance to chlorides.
Cost Comparison
Al-6XN alloy initially is more expensive than 300 series stainless steels. However, life-cycle costs for
systems utilizing the alloy can be far less than the comparable costs of the initial installation, maintenance, and subsequent replacement of lesser alloys used in aggressive environments. In addition to
material replacement, labor costs, and production downtime caused by system failures of 300 series
stainless steels used in very corrosive environments, consideration must also be given to the associated costs of product contamination caused by corrosion related failures. Studies have shown the initial cost comparison of Al-6XN raw material to other alloys as follows:
304L stainless steel = factor of 1 (base)
316L stainless steel = 1.15 (x) 304L stainless steel
AL-6XN Alloy = 3 (x) 304L stainless steel
C-276 / C-22 = 5 (x) 304L stainless steel
When selecting materials for process systems, guidelines should be followed giving consideration to
the service environment. The inclusion of corrosion control and the correct material selection is the
most efficient and economical means for controlling corrosion and adding life to a piping system.
Fabrication
The toughness and ductility of the AL-6XN alloy provides for relative ease of fabrication in the shop
or field environments. Satisfactory machining may be achieved by the selection of the correct tools and
machine set-ups.
General or Uniform Corrosion
General corrosion is rather predictable. The uniform attack of an entire area exposed to a corrosive media usually is expressed as an average loss-of-metal-thickness over a given period of time and
is expressed in units such as mils (0.001 inch) per year, or mpy. Table 1 compares the immersion
corrosion resistance, conducted in accordance with ASTM G-31, of five alloys in eight different boiling acid and alkali solutions. These data illustrate the performance of the alloys in a variety of envi72

CATALOGO

14/11/05

13:35

Página 73

ronments and do not necessarily simulate a particular process or industry environment. Note that
the AL-6XN alloy has a much lower general corrosion rate than the 300 series stainless steels in
these aggressive environments.
Table 1: Corrosion Resistance in Boiling Solutions
Rate ASTM G-31
Test Solution (Boiling)

Type 316L

Corrosion Rate in Mils Per Year (mm/y)
Type 317L
Alloy 904L
Al-6XN

Alloy 276

20% Acetic Acid

0.12 (0.003)

0.48 (0.01)

0.59 (0.02)

0.12 (0.003)

0.48 (0.01)

45% Formic Acid

23.41 (0.60)

18.37 (0.47)

7.68 (0.20)

2.40 (0.06)

2.76 (0.07)

10% Oxalic Acid

44.90 (1.23)

48.03 (1.14)

27.13 (0.69)

7.32 (0.19)

11.24 (0.28)

0.60 (0.02)

0.72 (0.02)

0.47 (0.01)

0.24 (0.006)

0.36 (0.009)

10% Sodium Bisulfate

71.57 (1.82)

55.75 (1.42)

8.88 (0.23)

4.56 (0.12)

2.64 (0.07)

50% Sodium Hydroxide

77.69 (1.92)

32.78 (0.83)

9.61 (0.24)

11.4 (0.29)

17.77 (0.45)

10% Sulfamic Acid

124.3 (3.16)

93.26 (2.39)

9.13 (0.23)

9.36 (0.24)

2.64 (0.067)

10% Sulfuric Acid

645.7 (16.15)

298.3 (7.58)

100.8 (2.53)

71.9 (1.83)

13.93 (0.35)

20% Phosporic Acid

Pitting Corrosion
Probably the most important characteristic of a stainless steel alloy exposed to chloride containing solutions is its resistance to pitting and crevice attack. The pitting resistance of an austenitic
stainless steel may be correlated to alloy composition in terms of the Pitting Resistance Equivalent
Number. PREN = %Cr + 3.3 (%Mo) + 16 (%N); where chromium, molybdenum and nitrogen are in
weight percent. Increasing the molybdenum in the alloy produces greater resistance to pitting. Therefore high molybdenum-high chromium alloys generally provides the best pitting resistance.
Another important consideration is the chloride pitting potential of stainless steel. This is an indication of the susceptibility of the alloy to localized corrosion. If the potential is more positive, the
chances of pitting are reduced.
The Critical Pitting Temperature (CPT) is the minimum solution temperature at which pitting is
first observed. When compared to the other alloys in these tests, the AL-6XN alloy demonstrated
a significantly greater resistance to pitting.
Critical Pitting Temperatures
CCCT1

CPT2

CPT3

Product

°C

°F

°C

°F

°C

°F

304
316
317
904L
AL-6XN

<27.5
27.5
35
68
110

<-2.5
2.5
1.7
20
43

59
66
104
177

15
18.9
40
80.5

77
113
172

25
45
78

1. Based on ASTM G-48B (6% FeCI3 for 72 hours with crevices)
2. Based on ASTM G-48A (6% FeCl3 for 72 hours)
3. Test Solution: 4% NaCI + 1%Fe3(SO4)3 + 0.01M HCI

Increasing the acidity (decreasing the pH), of a solution beyond a certain value may result in a
dramatic increase in the general corrosion rate. This value is referred to as the “depassivation pH”,
above which the rate is low and below which the rate is high. Corrosion rates in an acidified 3.5%
sodium chloride solution at room temperature for austenitic stainless steel, ferritic stainless steel,
and AL-6XN stainless show that AL-6XN alloy is the most resistant of the austenitic stainless alloys.
The AL-6XN alloy corrosion rate does not appreciably increase until the solution pH falls below 0.3.
73

CATALOGO

14/11/05

13:35

Página 74

Crevice Corrosion
Crevice corrosion is another form of localized corrosion that occurs when the corroding metal is in
close contact with anything that makes a tight crevice. Metal degradation at the mating surface of a
sanitary clamp fitting and gasket is usually the result of crevice corrosion. Crevice corrosion is usually
the first to occur and is predictable as to when and where it will take place. Like pitting, the presence
of chlorides makes the reaction proceed at a fast rate. There is a “critical crevice corrosion temperature” (CCCT) below which corrosion will not occur. The greater the difference between the CCCT and
the operating temperature, the greater the probability that crevice corrosion will occur.
Intergranular Corrosion
The most common example of intergranular corrosion is the formation of chromium carbide in
the heat-affected zone (HAZ) of higher carbon stainless steel duringwelding. These carbides form
along the grain boundaries. Because the carbides require more chromium than is locally available,
the carbon depletes chromium from the area around the carbon. The grain boundary zone is left low
in chromium and creates a new, low chromium alloy in that region. A mismatch in galvanic potential between the base metal and the grain boundary results, so galvanic corrosion begins. As the
grain boundaries corrode, the grain and the chromium carbides drop out like particles of rusty sand.
The surface of the metal develops a “sugary” appearance.
Intergranular corrosion also can occur whenever intermetallic compounds such as chi or sigma
phase form. These compounds usually form when some type of heating occurs, such as welding, heat treatment, or metal fabrication. Understanding how they form makes it relatively easy to control
their formation. Since AL-6XN stainless has low carbon, chromium carbide formation usually is not
a problem. However, chi phase may be a problem as it forms when the weld metal cools after welding, especially in the heat affected zone, or if heat treatment is improperly performed, or if the alloy
is held for a short time in the 1200-1800°F (650-1000°C) range.
Stress Corrosion Cracking
Because the AL-6XN alloy has increased resistance to SCC it has been used successfully in applications such as chemical process equipment, brewery equipment, feed-water heaters, and flue gas
reheaters. AL-6XN alloy is very resistant to SCC at temperatures less than 121°C. The threshold
temperature for initiating SCC decreases with increasing chloride content.
Applications
AL-6XN alloy is currently in use in the following industries:
• Food Processing
• Pharmaceutical
• Biopharmaceutical
• Brewery
• Desalination
• Semi-conductor
• Aerospace
• Pulp & paper

It is used in contact with these products:







Sports drinks
Ketchup
Soy sauce
Barbecue sauce
Salsa
Fine chemicals
Cosmetics
Pharmaceuticals

6.º Welding properties:
Good weldability.
The low carbon and high nitrogen contents minimize the precipitation of carbides and secondary
phases that can occur during welding. Field welding can be easily achieved provided that a suitable overmatched filler ring is used and the material has been properly cleaned and prepared for welding. Welding procedures are similar to those used with other austenitic stainless steels.
7.º Products, we supply:
x Plates, sheets
74

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 75

904L®
Alloy: 904L®
(Cr. Ni. Mo alloy)
UNS-N8904
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

23
28

19
23

4
5

Co

Fe

Cu

C

1
2

0,02

Mn

Si

P

S

2

1

0,045

0,035

904L®

N

X

2.º Mechanical properties:
Tensile strength, mini: 490 MPa
Yield strength, mini: 215 MPa

Elongation, mini: 35%
Hardness: Brinell, max: –
HRB, max: 70/90

3.º Physical properties:
Density (lb / cu. in.) .......................................... 0.285 and 8 Kg/dm3
Specific Gravity ........................................................................... 7.9
Specific Heat (Btu/lb/Deg F - [32-212 Deg F]) ............................. 0.12
Electrical Resistivity (microhm-cm [at 68 Deg F]) ............................ 480
Modulus of Elasticity Tension ...................................................... 28.4
4.º Specifications:
Norm
ASTM

Tubes
Seamless Welded

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

Wire

B-674

B-625

B-649

B-625

A-182
B-649

B-366

B-649

B-673
B-674

B.S.
AF-NOR-ZIN CDU 25,20
DIN-1.4539

5.º Characteristics, applications:
Principal Design Features
904L is an austenitic stainless steel designed for moderate to high corrosion resistance. Its low carbon
content improves cleanliness and weld strength.
Corrosion Resistance
High leves of chromium, nickel, molybdenum and copper give 904L good resistance to stress corrosion
cracking, chloride pitting and to reducing media such as hot phosphoric acid and dilute sulfuric acid. In these areas it is superior to 316 and 317.
75

CATALOGO

14/11/05

13:35

Página 76

This austenitic speciality with its high molybdenum and a reduced carbon contets offers excellent resistance to:



reductive acids like sulphuric and phosphoric acid
concentrated organic acids, even at elevated temperatures
salt and soda solutions
sea water

Special characteristic:
Extraordinary resistance to pit corrosion, stress corrosion and intergranular corrosion.
Structure after heat treatment, austenitic.
With application up to 400°C and an operation up to 100000 h, grade 904L is resistant to intercrystalline corrosion acc. to DIN 50914.
Machinability
Slow speeds and positive feeds will minimize this alloy’s tendency to work harden and glaze. Use chip breakers where possible to overcome problems with long draggy chips.
Hot Working
Hot work should proceed after uniform heating to 2000-2200 F. Do not work the material at less than
1800°F. Full annealing should follow any hot work to retain maximum ductility and corrosion resistance.
Cold Working
Although higher forces are required, 904L will respond in a similar fashion to other austenitic stainless
steels like 304, 316 or 317. Most common operations can be successfully performed.
Annealing
1920-1990°F (1050-1090°C), rapid cooling.
Hardening
This alloy does not respond to heat treatment. It may only be hardened by cold reduction.
Applications
Utility scrubber assemblies, acid and fertilizer production equipment. Desalation plants.
For highly critical corrosion problems in the chemical and petrochemical industry, pulp and paper industry
as well as for flue gas desulphurization plants.
6.º Welding properties:
Most common fusion and resistance methods may be employed. For maximum corrosion resistance, it is recommended to use filler metals of equal or higher alloy content.
7.º Products, we supply:
x Plates, sheets

76

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 77

UNS S31803
Alloy: UNS S31803
(Cr. Ni. alloy)
UNS: S31803
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

4,5
6,5

21
23

2,5
3,5

Co

Fe

Cu

C

Mn

0,03

2

Si
1

P
0,03

S

N

0,02

0,08
0,20

UNS S31803

X

2.º Mechanical properties:
At room temperature
heat-treated
condition

0.2 yield
point
min.
N/mm2
psi
480
69600
450
65250

quenched
flat products
profile products

tensile
strength

elongation
(L – 5 d)
% min.

N/mm2
psi
680-880
98600-127600
680-880
98600-126600

long

notch impact, toughness
(ISO-V-specimen) min.
J ft • lbs
transv.
25

30

long.

transv.
72
53

140
103

At higher temperatures:
50
122

100
212

150
302

200
392

250
482

280
536

410
59150

360
52200

335
48575

310
44950

295
42775

285
41325

°C
°F
0.2% yield point min.
N/mm2
psi

3.º Physical properties:

Characteristic temperatures

Specific gravity

g/cm3

7.8

Specific heat

J/kg K

0.377

Thermal conductivity

W/m K

16

expansion 20-100°C

10–6/K

12

Electrical resistivity

microohm • cm

80

Coefficient of linear

Modulus of elasticity
at 20°C

kN/mm2

200

Solidification range
Scaling temperature in air
Sigma phase formation
Carbide precipitation
475 embrittlement
Hot forming
Quench annealing
Stress relief annealing
Range for pressure vessel application

Temp. °C
1445-1385
1000
700-900
450-800
350-525
1150-950
1020-1070
1020-1070
(–10) –280
77

CATALOGO

14/11/05

13:35

Página 78

4.º Specifications:
Norms

Material

Pipes-Tubes
Seamless Welded.

DIN

1.4462

Plates

Rounds,

Strips

Wires

Forgings

Sheets

Bars

Flanges

1.4462

1.4462

F-51

A240

A276

A182

Fittings

BS
ASTM

A479-A182

A789

A790

A815

ISO
AFNOR

Z3CND22.05AZ

5.º Characteristics and applications:
Designed to provide and excellent combination of both strength and corrosion resistance for a wide variety of applications.
The alloy can be considered a second generation of those alloys whose structure consists of approximately 50% austenite and 50% ferrite by design of chemical composition. This duplex or two-phase
structure provides good resistance to stress-corrosion in chloride and hydrogen suphide environments.
The alloy develops almost twice the yield strength of the standard austenitic stainless steels, although
the ultimate tensile strength on which allowable design stress is usually based, is only 20% above the
austenitic grades.
A widely used duplex steel combining high strength and corrosion resistance in various organic
acids, anorganic acids, aggressive coolingwaters and hydrous H2S/NaCl mixtures. With a near equal
mix of austenite and ferrite, the give yield strength 30% higher and tensile strengths marginally higher
than comparable nitrogen-containing austenitics. High resistance to general corrosion and specifically
to pitting and crevice corrosion. Their resistance to stress-corrosion cracking in neutral chlorides is superior to that of the austenites. In high chloride acidic or moderately sour environments where hydrogen or sulphide stress cracking is more likely, higher alloyed austenitics need also to be considered. Impact values are high and transition temperatures of base materials vary around –50°C. However, the
proportion and orientation of ferrite in welds and base materials may significantly affect toughness at
subzero temperatures. Exposure to moderate and high temperatures and less rapid cooling may cause embrittlement.
Metallurgical structure
After solution annealing at 1900-2000°F (1040°C-1100°C), the precipitation free Duplex structure contains about 40% ferrite and 60% austenite.
The ferritic/austenitic structure is maintained also at higher temperatures. This is due to the nitrogen addition, a strongly austenite stabilizing elements, as wel as to the precipitation free state. The presence of nitrogen, dissolved in the austenitic constituent, retards remarkably the carbide precipitation.
This effect, together with the decrease of carbon content to max. 0.03%, results in a very good resistance against intergranular corrosion even after holding in the critical temperature range of 600950°C/1100-1750°F.
Preheat and interpass temperature:
Wall thickness:
max. 6 mm/0.236 in. ................................................. none
6 to 20 mm/0.236 to 0.787 in ................................... 80°C/176°F
more than 20 mm/0.787 in ........................................ 120 to 150°C/248 to 300°F
Micrographs show the heat-affected zones (HAZ) and the as-weld structure of a multilayer welding
of 4.7 inch (12 mm) sheet with matching filler metal, contrary to commercial Duplex steel grades, where no part of the HAZ of Duplex has become completely ferritic. Exposed to the Streichertes (ASTM
78

CATALOGO

14/11/05

13:35

Página 79

262, Practice B), these specimens did not undergo intergranular corrosion and after a 180° bending–
no cracks have been observed.
CORROSION

RESISTANCE

General corrosion is characterized by an uniform attack of the steel surface when it comes into contact with a corrosive medium. The resistance is normally considered good if the corrosion rate is less
than 0.1 mm/year, due to its high chromium and molybdenum content.
Duplex has a better resistance than type 316 and 317 in most mediums.
Intergranular corrosion
Thanks to the Duplex structure and the low carbon content, Duplex has a very high resistance to
intergranular corrosion. In general, when welding ferritic-austenitic steels, a narrow heat-affected zone, close to the fusion line is obtained, where the structure may become fully ferritic. Chromium carbides precipitate rapidly in such a zone; thus, producing a risk of intergranular corrosion. However, Duplex has a balanced composition which ensures a sufficient amount of austenite in the heat affected
zone to minimize the risk of undesirable carbide precipitation.
Sulphide strees corrosion cracking
The presence of hydrogen sulphide in chloride solutions entails the risk of stress cracking also at
lower temperatures. The resistance of Duplex stainless steels varies with the chemical composition and
the microstructure. One example of the types of environments where sulphide stress corrosion cracking may occur is in sour oil and gas wells. Duplex has proved to be very resistant in such environments. Contrary to chloride induced stress corrosion cracking, sulphide stress corrosion cracking also
attacks the ferritic phase. Laboratory tests have shown that Duplex has a high resistance to sulphide
stress corrosion cracking.
Pitting and crevice corrosion
The resistance to these types of corrosion is increased by an addition of chromium, molybdenum
and nitrogen.
Stress corrosion cracking
Conventional austenitic stainless steels may be attacked by stress corrosion cracking in chloride environments at elevated temperatures. Duplex stainless steels with a continuous ferrite phase, are much
less prone to this type of corrosion.
Corrosion fatigue
The high mechanical strength combined with the very good corrosion resistance gives Duplex a high
corrosion fatigue strength.
PROCESSING
Hot forming should be carried out in the temperature range of 1200-900°C/2200-1650°F. After
this a final heat treatment is required.
However, it should be borne in mind that the mechanical stength of the material is low at high temperatures.
At temperatures below 950°C embrittling can take place on account of the combination of strain
and exposure in the sigma phase field.
At room temperature cold working can be done without any problems. Cold working >10% entails also a final heat treatment. Work hardening is higher than that of austenitic stainless steels, necessitates,
however, accordingly higher forces of deformation and tools with higher maintenance of cutting power.

79

CATALOGO

14/11/05

13:35

Página 80

MACHINING
With high speed tools the same cutting data can be applied as with type 316. However, when cemented carbide tools are used the cutting speeds have to be reduced by 20%.
HEAT

TREATMENT

All forms of supply are normally delivered in the solution-annealed condition. The temperature of
solution annealing ranges between 1040 and 1100°C/1900-2000°F. Up to 2 mm/0.078 in. quenching can be carried out in air, for thicknesses greater than 2 mm/0.078 in. water quenching will
be necessary.
Hot working
°C
°F
1200-900
2200-1650

cooling medium
air

heat-treatment
°C
°F
1040-1100
1900-2000

time min.

cooling medium

just soaking

<2 mm/0.78 in. air
>2 mm/0.078 in. water

Structure after heat treatment: ferrite–austenite. Stress relief treatments can in special cases be performed at 550-600°C

6.º Welding properties:
Duplex is easily weldable by all welding processes.
Duplex steels require somewhat more careful attention when being welded than normal austenitic
steels. The following precautions should be observed:
– The material should be welded without preheating.
– Welding should be performed using a low heat input. The material should be allowed to cool, preferably below 150°C between passes. Do not use higher amperage than necessary. Increased
electrode diameter means higher heat input, if not compensated by higher welding speed.
Duplex can be welded using the following methods:
– Manual metal arc with covered electrodes
– Gas shielded arc welding such as TIG, plasma and MIG
– Submerged arc welding
Post weld heat treatment is normally not necessary. In cases where heat treatment is considered,
for example for stress relieving, this should be carried out at the temperature range of between 10201070°C.
7.º Products, we supply:
x Plate-strip

80

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 81

FERRALIUM-255®
Alloy: Ferralium-255 (SD 40)®
(Cr. Ni. Mo. alloy)
UNS-S32550
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

4,5
6,5

24
27

Mo

Co

Fe

Cu

3,5

C

Mn

0,03

2

Si

P

S

1

N
0,08
0,20
FERRALIUM-255®

X

The composition above is that shown for UNS S3250 in ASTM A240. The composition of Ferralium
alloy 255[SD40] falls within this range but the exact proprietary compositional range is confidential and
is not released. The standard requirements for Pitting Resistance Equivalent (PRE.N) are met, where
PRE.N = %Cr + 3.3%Mo + 16%N > 40.0.
2.º Mechanical properties:
At room temperature

0.2% Proof Stress
Tensile Strength

Typical Properties

tons f/in2
N/mm2
tons f/in2
N/mm2

Elongation on 5.65 So, %
Izod Impact
ft•lb
V-notch at 20°C
Joules
Brinell Hardness

Solution
Treated &
Stress Relieved

Solution
Treated
& Aged

31.7
490
47.9
740
25
44
60
220-270

36.9
570
53.7
830
23
37
50
250-330

Solution Treated &
Stress Relieved
Tensile Strength
0.2% Proof Strees
Elongation
Izod Impact
Ultimate Torsional
Stress
0.2% Proof Stress
Angle of Twist

780 N/mm2
540 N/mm2
28%
>100 Joules
800 N/mm2
400 N/mm2
1020 degrees

All figures are minimum, except where a range is quoted.

Ferralium alloy 255 is normally supplied in the solution-treated and stress relieved condition. The excellent mechanical properties obtained in this condition can be raised further by ageing and if required
shoud be stated at the order stage.
ELEVATED

AND LOW TEMPERATURE PROPERTIES

The recommended maximum continuous operating temperature for Ferralium alloy 255-3SF is
275°C. The alloy can be used for occasional short periods at slightly higher temperatures but care
should be exercised.
The lowest temperture for which Ferralium alloy 255-3SF can be considered is around minus 50°C. The
V-notch impact at minus 18°C is typically 80-100 Joules.
FATIGUE

CHARACTERISTICS

Ferralium alloy 255-3SF has excellent resistance to fatigue and corrosion fatigue, making it particularly
suitable for items such as shafts in seawater environments.
81

CATALOGO

14/11/05

13:35

Página 82

3.º Physical properties:
Density at 20°C kg/m3
g/cc
lb./in3
Mean Coefficient of Thermal Expansion, °K-1

7806
7.81
0.282
11.1 x 10-6
11.5 x 10-6
12.0 x 10-6
12.4 x 10-6
12.9 x 10-6
13.6
14.2
14.7
15.2
15.8
16.3
18.4
0.80
80
31
33
29 x 106
199 x 103
11 x 106
75 x 103
0.32

20°-100°C
20°-200°C
20°-300°C
20°-400°C
20°-500°C
0°C
20°C
40°C
60°C
80°C
100°C
200°C
microhm-m
microhm-cm
microhm-in

Thermal Conductivity, W/m°K

Specific Electrical Resistance at 20°C

Magnetic Permeability
Young’s Modulus

Ib.f/in2
N/mm2
Ib.f/in2
N/mm2

Torsional Modulus
Poisson’s Ratio

4.º Specifications:
Norm
ASTM

Tubes
Seamless Welded
A-789
A-790

A-789
A-790

Plates
Sheets
A-240

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

A-240

A-182
A-473/9

A-815

Wire

5.º Characteristics, applications:
Description
Ferralium alloy 255-3SF is a high strength, high alloy duplex stainless steel made under the same Patent
which covers the standard Ferralium alloy 255. It has an even more closely controlled composition and heat treatment so as to achieve the optimum corrosion resistance from the alloy system but can be machined and welded as readily as the alloy 255.
This wrought alloy which complements the advanced cast Ferralium alloy 255-3SC has been developed especially for the more critical applications in oil and gas production both offshore and onshore, and in naval ships – in fact wherever a high degree of resistance to pitting and crevice attack
in addition to general corrosion resistance is important. Its resistance to acids, notably to sulphuric acid up to about 65% concentration, is also significantly improved so that it is very useful for
handling all kinds of contaminated waters.
Compared with other commercially available duplex alloys such as W.NR 1.4462 (often designated
2205) it has higher strength but retains good ductility and its corrosion resistance is of a significantly hig82

CATALOGO

14/11/05

13:35

Página 83

her order in both sea water and acids. Against the conventional high alloy austenitic alloys characterised
by UNS NO8904 it has both higher strength and much better resistance to selective attack, approaching
that of the so-called “6Mo” alloys although the PRE (pitting resistance equivalent) values of the latter are
slightly higher. However it must be appreciated that PRE is not an absolute measure and is merely a broad
method of grading by calculation from the Cr, Mo and N contents of the alloy. The PREN value for Ferralium
alloy 255-3SF exceeds 37. As with Ferralium alloy 255, a significant copper content in Ferralium alloy 2553SF enhances the basic corrosion resistance of the high alloy duplex structure (approximately 50:50) controlled by the chromium, molybdenum, nickel and nitrogen contents. In particular, the copper tends to retard pitting and crevice attack and benefits resistance to sulphuric acid.
Ferralium alloy 255-3SF is relatively “noble” in a galvanic table, comparing with titanium, and has a rest
potential of +0.04 volts (S.C.E.) in 3% Na Cl.
The good resistance to erosion provided by Ferralium alloy 255 is equalled by the alloy 255-3SF, especially in the age-hardened condition.
In the solution-treated condition the hardness of alloy 255-3SF is within the limit set by NACE MR-0175 and Ferralium alloy 255 in the wrought form is now included by name in this Material Recommendation.
The UNS number for Ferralium alloy 255-3SF is S32550.
CORROSION RESISTANCE
Crevice Corrosion
The 300 series austenitic stainless steels are particularly susceptible to a breakdown of their passive film
under crevice conditions in sea water and other corrosive waters. Some highly alloyed ferritic stainless steels resist crevice corrosion attack much more successfully, as can ferritic/austenitic alloys.
Ferralium alloy 255-3SF is even better than wrought Ferralium alloy 255 which already led the field in
resisting this form of attack. For comparison and grading of materials it is widespread practice to use accelerated tests in FeCl3. The table below shows comparisons between Ferralium alloy 255-3SF, some other
wrought duplex alloys and austenitic alloys. The critical crevice temperatures were determined on specimens having a bold (uncovered) to crevice area ratio of approximately 20:1; significant changes in the above ratio may alter the critical crevice temperature.
Critical Crevice Corrosion Temperatures in 10% FeCl36H20 (pH1)
CCT°C
Ferralium alloy 255-3SF
Ferralium alloy 255
2205 (1.4462)

30
20
17.5

CCT°C
CN7M modified (4.5 Mo) (cast)
DP3 (25Cr/7Ni/3Mo + W)
316 stainless steel

0 to 12.5
10
– 2.5

Pitting Corrosion
The pitting resistance of most duplex stainless steels is superior to that of the standard austenitic alloys
such as types 316 and 317 even in low carbon grades.
Ferralium alloy 255-3SF offers a further advance in pitting resistance compared with Ferralium alloy
255, already outstanding in this respect. The critical pitting temperature of alloy 255-3SF in 3% NaCl solution is compared with some other wrought alloys below.
The results presented in the table may be less than claimed elsewhere for the alloys other than the Ferralium alloys. This can be due to the difference in detail between the precise test methods employed. All
the figures were established by an identical procedure used in the same test equipment so that they represent a true comparison.
Critical Pitting Temperatures in 3% NaCl (deaerated)
CCT°C
Ferralium alloy 255-3SF
Ferralium alloy 255
2205 (1.4462)

40
30
20

CCT°C
CN7M modified (4.5 Mo) (cast)
316 stainless steel

20
0

83

CATALOGO

14/11/05

13:35

Página 84

The presence of copper in Ferralium alloy 255-3SF, as in alloy 255, is particularly benefical in aiding the
resistance to initiation and particularly to propagation of pitting attack. A minimum of 1% copper is essential to ensure the optimum resistance to pitting.
Stress Corrosion
The stress corrosion cracking resistance in chloride environments of Ferralium alloy 255-3SF is, in common with standard alloy 255, greatly superior to that of the standard austenitic stainless steels. A considerable amount of test data and service experience with Ferralium alloy 255 has demonstrated the alloy’s
excellent performance in resisting this form of attack. Alloy 255-3SF is identical in performance to the standard alloy and data can be provided if required.
One factor in handling sea water is that in many situations it may be polluted. For example, harbour water and oil field water may contain considerable amounts of dissolved hydrogen sulphide. This can destroy
the passivation of stainless steels, leading to accelerated pitting, increased propensity to crevice attack and
potentially most damagingly to stress corrosion cracking. The beneficial effect of copper in stabilising the
passive film helps Ferralium alloy 255-3SF to combat these forms of attack and the modified chemistry of
the alloy further improves resistance to the stress corrosion hazard created by the presence of H2S. Where Ferralium alloy 255 is required to meet the requirements of NACE MR-01-75, in which it appears by name, this is satisfied by supplying the alloy in the solution treated and stress-relieved condition.
Acids
Ferralium alloy 255-3SF possesses far superior resistance to sulphuric acid compared with conventional austenitic stainless steels such as type 316. For many years alloy 255 has been used very successfully
in the lower and higher concentrations of sulphuric acid.
The selection chart is based on tests on material machined and later tested rather than on freshly abraded samples. Freshly abraded samples or activated samples may exhibit different rates of corrosion. This
is of particular significance in aggressive non-oxidising acid conditions.
The application of Ferralium alloy 255-3SF in sulphuric acid can be further extended in strongly aerated solutions and in the presence of oxidising substances but it is essential to carry out tests to establish suitability.
The outstanding resistance of Ferralium alloy 255-3SF to commercial phosphoric acid containing impurities such as hydrofluoric acid, chlorides and sulphuric acid combined with its excellent resistance to wear
and erosion renders the alloy of special interest for critical components on pumps, valves and fluid handling equipment generally in the production of fertilizer grade phosphoric acid where hot abrasive slurries are
involved. Ferralium alloy 255-3SF and the cast alloy 255-3SC can often replace more expensive highly alloyed stainless steels and nickel based alloys.
Ferralium alloy 255-3SF will successfully resist a wide range of acid mixtures such as sulphuric/nitric,
phosphoric/nitric and nitric/adipic and is highly resistant to acetic, formic and other organic acids where
halide contamination may be present.
PITTING

AND

CREVICE CORROSION

IN

CHLORIDE ENVIRONMENTS

Ferralium 255 & Ferralium SD40 possess outstanding resistance to pitting and crevice corrosion in marine and seawater environments. They match the resistance of any other superduplex stainless steel and
are far superior to the so-called marine grades of stainless steel, such as AISI 316 and 317, and the standard type duplexes such as Alloy 2205. The carefully controlled composition of Ferralium SD40, which is
specifically designed as an offshore grade of superduplex and which has a substantial content of nitrogen
and molybdenum, gives a Pitting Resistance Equivalent (PREN) > 40.0, where PREN = %Cr + 3.3%Mo +
16%N.

84

CATALOGO

14/11/05

13:35

Página 85

CORROSION RESISTANCE GUIDE
FERRALIUM
Temp. °C

Conc.
w/w

alloy

CF-8M (316)

CN-7M

255-3SF

0-50%

Boiling

•1

Acetic Acid Vapour

Hot

Acetic Anhydride

to Boiling

(urea production)

to 120

Ammonium Chloride

All

75

•2

Ammonium Hidroxide

Citric Acid

All

to Boiling

Copper Sulphate + 10% H2SO4

to Boiling

Acetic Acid

Ammonium Carbamate

20

2%

100

5

5

Formic Acid
Hydrochloric Acid
Nitric Acid

0-60%

Nitric Acid

Boiling

70%

Boiling

Phosphoric Acid

All

Phosphoric Acid

0-60%

Phosphoric Acid
Phosphoric Acid
‘Wet Process’

to 100

Boiling

60%-70%

120

88%

Boiling

80

3

80-90

•3

to Boiling

❚2

25%-35%
P2O5
45%-55%

fertilisers
Potassium Chloride

Phosphoric Acid in
production of phosphate

1

P2O5
0-30%

Sea Water

See separate information
0-10%

to Boiling

•2

Sodium Hydroxide

All

20

Sodium Hydroxide

All

Boiling

0-98%

40

Sulphuric Acid

5%-30%

80

Sulphuric Acid

30%-50%

60

Sulphuric Acid

98%

100

Sulphuric Acid

98%

150

Sodium Chloride

Sulphuric Acid

Sulphuric Acid (fuming) –Oleum

4

to 80

100

Sulphuric Acid/Nitric
Acid Misture 43% H2SO4,
25% HNO3, 32% H2O

Excellent resistance, usually at less than 0.15 mm/year



Good resistance, <0.50 mm/year
Suitable under some conditions. Plant tests recommended
Poor resistance. Not normally recommended

Notes:
1. Ferralium alloy 255 more resistant to pitting in the presence of chlorides.
2. Ferralium alloy 255 more resistant to pitting and selective attack under crevice and stagnant conditions.
3. Plant tests recommended.
4. Plants tests recommended.
5. Data relates to CF-8C (347).

85

CATALOGO

14/11/05

13:35

EROSION

Página 86

AND WEAR

The resistance of Ferralium alloy 255-3SF to erosion, cavitation and wear is extremely good, being the
same as that of the standard alloy 255. Many established applications utilise this property to advantage
most notably in pumps and valves.
MACHINING
FERRALIUM alloy 255-3SF can be readily machined and although considerably harder than the austenitic stainless steels, the same techniques can generally be used. High speed tools can be used but speeds
can be substantially increased by the use of carbide tipped tools.
In common with many stainless steels and high strength materials, heavy machining on Ferralium alloy
255-3SF can sometimes result in slight movement during subsequent operations. This may be accetuated
by surface work hardening if blunt tools are used.
Whilst this movement is not significant in most cases, components requiring specially close tolerances
should be given a stress relief.
STRESS CORROSION CRACKING
The stress corrosion cracking resistance in chloride environments is far superior to any of the standard
austenitic grades. Ferralium 255 & Ferralium SD40 have been successfully tested to 100% of yield
strength in boiling seawater and the tests have shown that the alloys are not susceptible to stress corrosion cracking, even under these extreme conditions.
CORROSION

IN ACIDS AND SALTS

The corrosion resistance of Ferralium 255, which is designed specifically as a chemical grade superduplex, is generally superior to that of the standard austenitic types in sulphuric, phosphoric, nitric and many other acids and salts. Ferralium 255 is highly resistant to acetic acid, formic acid and
other organic compounds. They are particulary suitable for the higher concentrations and temperatures where pitting and preferential corrosion are common causes of failure with standard austenitics in the presence of chloride and other impurities.
Ferralium 255 & Ferralium SD40 are proprietary super duplex stainless steels, containing approximately 26% chromium, 6% nickel, 1.6% copper, 3.3% molybdenum and 0.24% nitrogen. The materials are the latest refinement of the Ferralium series of superduplex stainless steels and Ferralium
SD40 was specifically introduced to comply with those specifications calling for a Pitting Resistance
Equivalent (PREN) > 40.0.
The main features of Ferralium 255 & Ferralium SD40 are:
• Excellent corrosion resistance in a wide variety of corrosive chemicals including sulphuric, phosphoric and nitric acids.
• Outstanding resistance to pitting and crevice corrosion in seawater and other chloride containing
environments, Pitting Resistance Equivalent (PREN) exceeds 40.0.
• High strengh compared to austenitic and 22% chrome duplex stainless steels.
• Excellent ductility and impact strength at both ambient and sub-zero temperatures.
• High resistance to abrasion, erosion and cavitation erosion.
• Excellent resistance to stress corrosion cracking in chloride containing environments compared
to standard austenitics.
Since the original Ferralium grade was invented at Langley Alloys in the 1960’s, the Ferralium alloy
series have been providing excellent service in a wide variety of corrosive environments. Some of the
existing industries and applications where the alloys have been successfully used are listed below.
• Chemical Process Industry. Sulphuric Acid Production, Nitric Acid Processes, Polypropylene Production, PVC Production, Titanium Dioxide Production, Caustic Evaporators, Equipment Handling
Organic and Fatty Acids.
86

CATALOGO

14/11/05

13:35

Página 87

• Marine Industry and Shipbuilding. Propellers and Shafts, Rudders, Shaft Seals, Pumps, Bolts
and Fasteners, Valves, Instrumentation, Oil and Chemical Tankers.
• Oil and Gas Industry. Pumps, Valves, Pipe, Vessels, Welllhead Equipment, Subsea Equipment.
• Pollution Control. Fans and pumps, Wet Scrubbers, Incinerators.
• Copper Semlting. ID Fans, Tuyeres bars, Wet Scrubbers, Leaching Area Precipitators.
• Pulp and Paper Industry. Black liquor heater tubes, Digester Blow Valves, Rotary Feed Valves,
I.D. Fans, Brownstock Washers, Precipitators, Bleaching Components.
• Food Industry. Sugar Cane Centrifuges, Corn and Vegetable processing plant.
• Agrochemicals. Fertiliser Production (Wet phosphoric acid).
• Civil Engineering. Statue of Liberty supporting structure, Swimming Pools, Sewage Treatment.
HEAT

TREATMENT

The standard solution heat-treatment for Ferralium alloy 255-3SF is carried out at 1060°C followed by
rapid quench, preferably in water. Uniformity of temperature within a range of ± 10°C is essential and adequate time should be allowed so as to ensure that the material is fully soaked throughout at the temperature. Quenching should be carried out immediately on removal from the furnace, with the minimum of cooling in air during transfer to the quenche tank.
Stress Relief
This should be carried out by heating to 350°C and holding for two hours at temperature followed by air
cool. Depending upon the nature of the component, the extent of machining and the tolerances required,
this treatment may be carried out at one or more stages of the machining cycle.
Ageing
We recommend that ageing heat-treatment is carried out only by the manufacturer, as it requires a very
careful control.
6.º Welding properties:
There is very extensive experience in the welding of the standard wrought Ferralium alloy 255 and
Ferralium alloy 255-3SF can be welded equally readily.
It is recommended that only Ferralium alloy 255 HB flux coated electrodes be used to weld Ferralium
alloy 255-3SF. These electrodes have been specially developed to ensure sound welds and satisfactory
properties in the deposited metal. The use of any other electrodes will be most unlikely to result in
welds with both acceptable ductility and the corrosion resistance of the parent metal.
Pre-heat before weldings is not required and maximum interpass temperature is 300°C. Heat input should be as low as possible consistent with achieving sound welds.
Ferralium alloy 255-3SF is normally supplied in the solution-treated (and stress relieved) condition,
which is the ideal for welding of the alloy.
Welds in light sections and minor repair welds do not generally require post-weld heat-treatment but
heavy section welds should preferably be given a solution treatment after welding so as to ensure maximum corrosion resistance and ductility.
Carbon steel and standard austenitic stainless steels can be welded to Ferralium alloy 255-3SF using
either Ferralium alloy 255 HB electrodes or one of the specialised electrodes developed for welding of
dissimilar materials.
7.º Products, we supply:
x Plates, sheets

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

87

CATALOGO

14/11/05

13:35

Página 88

CATALOGO

14/11/05

13:35

Página 89

SD-F55
UNS S32760
Alloy: UNS-S32760 (Super Duplex) F-55
(Cr. Ni. Mo. alloy)
UNS-S32760
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

6
8

24
26

3
4

Co

Fe

Cu

C

Mn

Si

P

S

N

W

0,5
1

0,03

1

1

0,03

0,01

0,2
0,3

0,5
1

X
SD-F55
UNS S32760

PREN = % Cr + 3.3% Mo + 16% N
PREN > 40
PHASE BALANCE – 50 ± 15% FERRITE
It should be noted that the UNS S32760 designation merely specifies a broad compositional range, whereas the composition is tightly controlled in strict accordance with “MDS” specifications. This
ensures a consistent quality product is produced, and the stated corrosion, mechanical an physical properties are maintained.
2.º Mechanical properties:
The following guaranteed minimum properties are available in the solution annealed condition.
Elevated temperatures:

Room temperature
WROUGHT
(UNS S32760)
YIELD SRENGTH
(0.2% offset)
TENSILE STRENGTH
ELONGATION IN 50 mm
HARDNESS

550 MPa
(80 Ksi)
750 MPa
(109 Ksi)
25%
28 HRC MAX

PRODUCT
FORM

FORGINGS
BAR
PLATES
(up to 30mm)

TEMP

(°C)

(°F)

20
50
100
150
200
250
300

68
122
212
302
392
482
572

PRODUCT
FORM

PLATES
(31 TO 70mm)

TEMP

(°C)

(°F)

20
50
100
150
200
250
300

68
122
212
302
392
482
572

YIELD
STRENGTH
0.2% OFFSET
(MPa)
(ksi)
550
500
470
450
430
400
385

80
73
68
65
62
58
56

YIELD
STRENGTH
0.2% OFFSET
(MPa)
(ksi)
550
470
430
400
380
370
360

80
68
62
58
55
54
52

TENSILE
STRENGTH
(MPa)

(ksi)

750
725
700
680
670
650
635

109
105
102
99
97
94
92

TENSILE
STRENGTH
(MPa)

(ksi)

750
700
670
620
610
600
590

109
102
97
90
88
87
86
89

CATALOGO

14/11/05

13:35

Página 90

The above properties for forgings are typical values for section thicknesses up to 300 mm solid or
250 mm in an annulus with a minimum bore of 100 mm. As the properties from forgings are very dependent upon the product route and the actual forging ratio then properties and design are by agreement for other than standard items.
It is not recommended for uses which involve extended exposure to temperatures greater than
300°C (572°F) as there is a substantial reduction in toughness.
Impact Strength
It has good impact strength. There is no true ductile brittle transition, just a gradual decrease in impact energy as the temperature is lowered. The impact energy varies according to product type and
production route. The impact strength is slightly less than that of parent metal.
3.º Physical properties:
Density
The density is 7.84 g/cm3(7840 kg/m3 or 489 lb/ft3) at 20°C (68°F)
Specific Heat

Thermal Conductivity

Typical specific heats:

Typical values

TEMP
(°C)

SP. HT.
(J KG-1 K-1)

TEMP
(°C)

THERMAL COND
(Wm-1 K-1)

20
100
150
200
250
300

482
500
513
523
535
547

20
100
150
200
250
300

12.9
14.4
15.4
16.3
17.3
18.2

Thermal Expansion

Resistivity

The typical thermal expansion coefficient is much lower
than that of austenitic stainless steel and reasonably close to
that of carbon steel, as follows:

Typical values of resistivity are
shown below.
RESISTIVITY (10-6 ohm m)

LINEAR THERMAL EXPANSION COEFF
(10-6 K-1)
Temperature, °C
ZERON 100
CARBON STEEL
AUSTENITIC
STAINLESS STEEL

20-100
12.8
11.5

20-200
13.3
12.2

20-300
13.8
12.9

16.8

17.2

17.6

TEMP
(°C)
20
100
150
200
250
300

WROUGHT
ZERON 100
0.851
0.897
0.927
0.956
0.985
1.014

Magnetic Permeability
At room temperature the peak relative magnetic permeability is typically 29.
Young’s Modulus
The modulus is a function of austenite/ferrite ratio and production route. Variations of ± 5% are
found with both wrought and cast products. The typical value at room temperature is 190 GPa
(27600 ksi).
Poisson’s Ratio
The typical value at room temperature is 0.32.
90

CATALOGO

14/11/05

13:35

Página 91

4.º Specifications:
Norm

Tubes
Seamless Welded

ASTM

A-790
A-789

A-790
A-789
A-928

B.S.
DIN

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

A-240

A-276
A-479

A-240

A-182
A-988
A-473

A-988
A-815

EN10028-7
EN1088-2

EN10088-3
EN10273

Wire

1.4541

Fasteners ASTM-A-320.
5.º Characteristics and applications:
This is a highly alloyed duplex stainless steel for use in aggresive environments. Its properties include:





Guaranteed corrosion performance (PREN > 40).
High resistance to pitting and crevice corrosion.
Excellent resistance to stress corrosion cracking in both chloride and sour environments.
High resistance to erosion corrosion and corrosion fatigue.
Excellent mechanical properties.
Possibilities for weight reduction over austenitic, standard duplex and nickel base alloys.

The combination of the above properties makes the optimum choice in a range of industries. Oil and
gas industry applications include process, seawater, firewater, and subsea pipework systems, with associated risers, manifolds, pressure vessels, valves and heat exchangers. Applications in other industries
include pipework systems and associated engineering equipment for pollution control, pulp and paper, power generation, flue gas desulphurisation, chemical, pharmaceutical, desalination, mining, metallurgical
and marine industries.
CORROSION RESISTANCE
It is highly resistant to corrosion in a wide range of organic and inorganic acids. The copper content gives excellent resistance to corrosion in many non-oxidising acids. Commercial acid applications often contain chlorides and other impurities which can cause corrosion of some stainless steels. It offers much improved corrosion performance in these environments.
It is also highly resistant to strong alkalis. The production of caustic soda results in hot, strong solutions
and even in 60 wt% caustic soda, SD-F55 has very low corrosion rates (<0.1 mm/y). Caustic soda is often
found with chlorides in extraction processes and even with 10g/l chloride, SD-F55 has excellent corrosion
resistance. Three years service experience of fabricated pipework in 2M caustic soda with chlorides at
230°C has been excellent.
Pitting Corrosion
Exposure to 6% FeCl3 for 24 hours in accordance with ASTM G48 method A to determine the maximum
temperature at which no pitting occurs (the critical pitting temperature, CPT) has given the following results:
Solution annealed wrought: 70-80°C (158-176°F) depending on product form and manufacturing route.
These values are for single exposure testing; testing a single specimen at a series of increasing temperatures gives a higher CPT value.
Crevice Corrosion
The resistance to localised corrosion is often assessed by use of the PREN number (%Cr + 3.3%Mo +
16%N). It is made to a minimum PREN of 40, ensuring a guaranteed and high resistance to pitting and cre91

CATALOGO

14/11/05

13:35

Página 92

vice corrosion. Has been in service in sea water since 1986 as castings, and since 1989 as wrought pipes and fittings giving satisfactory performance.
At sea water temperatures above ambient (20°C) the risk of crevice corrosion increases. Resists crevice corrosion up to 55°C but is limited by the pitting resistance of the welds to about 40°C. With the application of post weld treatments sea-water temperatures up to 65°C have been handled successfully. Short
term elevated temperature upsets are not uncommon in cooling water circuits. Laboratory tests have
shown that does not suffer crevice corrosion easily during short upsets to 70°C, and when corrosion does
initiate, repassivation occurs rapidly on cooling, from 42°C.
Stress Corrosion Cracking
SD-F55 has excellent resistance to stress corrosion cracking (SCC) in both chloride environments, and
process environments containing H2S and CO2.
In brines with lower chloride contents can tolerate much higher pressures of H2S. As the pH, at temperature and pressure, increases, so does the resistance to sulphide SCC.
Hydrogen Embrittlement
In common with all high strength steels, duplex and super duplex stainless steels can be susceptible to
hydrogen embrittlement if stressed above the specified minimum yield strength in the presence of hydrogen.
Hydrogen embrittlement therefore becomes an area for consideration when these steels are used subsea with conventional cathodic protection.
However, the proper application of normal design stress criteria and coating technology has allowed
many subsea projects to utilize duplex and super duplex stainless steels successfully for a number of years.
MANUFACTURING
Heat Treatment
Should be solution annealed in the temperature range 1100-1140°C (2012-2084°F) followed by water
quenching.
Hot Forming
Hot forming should be carried out in the temperature range 1100°C TO 1280°C (2012-2336°F). It is
recommended that this is followed by solution annealing and water quenching. Components should subsequently be pickled or fully machined.
Cold Forming
It can be adequately cold formed by various processes but the high mechanical properties should be taken into account. It is recommended that any cold work in excess of 10%-15% is removed by solution annealing and water quenching. It should be noted that cold working above these limits can result in hardness
levels above standard.
6.º Welding properties:
Good weldability.
Where a solution anneal and quench as a post-weld heat treatment is to be carried out, is usually
welded with matching composition consumables. With overalloyed consumables, no post-weld heat treatment is necessary. Corrosion and mechanical properties similar to the parent metal can be obtained folowing recommended procedures.
7.º Product, we supply:
x Plates

92

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 93

UNS S32750
Alloy: UNS-S32750
(Cr. Ni. alloy)
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

6
8

24
26

3
5

Co

Fe

Cu

C

Mn

Si

P

S

N

0,5

0,03

1,20

0,80

0,035

0,020

0,24
0,32

X

2.º Mechanical properties:
Tensile strength, mini: 700 MPa
Yield strength, mini: 450 MPa

Elongation, mini: 25%
Hardness: Brinell, max: –
RcB, max: 285

UNS S32750

3.º Physical properties:
Density Kg/dm-3
Thermal conductivity
W m-1 K-1 at 20°C
Specific heat capacity J kg-1 K-1
Coefficient of thermal
expansion 10-6 K-1
Electrical resistivity
m ohm m

7.8
12.90
460-500
13
0.916

4.º Specifications:
Norm
ASTM

Tubes
Seamless Welded
A-790
A-789

Plates
Sheets

Shapes,
Bars

Strips

Flanges
Forgings

Fittings

A-240

A-276
A-479

A-240

A-182
A-988
A-473

A-988
A-815

EN10028-7
EN1088-2

EN10088-3
EN10273

A-790
A-789
A-928

B.S.

Wire

DIN – 14410
Fasteners ASTM-A-320.
5.º Characteristics, applications:
Super-Duplex Stainless Steels
The first-generation Duplex stainless steels were developed more than 70 years ago in Sweden for
use in the sulfite paper industry. Duplex alloy were originally created to combat corrosion problems caused by chloride-bearing cooling waters and other aggressive chemical process fluids.
Called Duplex because of its mixed microstructure with about equal proportions of ferrite and austenite, Duplex stainless steels are a family of grades, which range in corrosion performance depending on their
93

CATALOGO

14/11/05

13:35

Página 94

alloy content. The term “Super-Duplex” was first used in the 1980’s to denote highly alloyed, high-performance Duplex steel with a pitting resistance equivalent of >40 (based on Cr% + 3.3 Mo% + 16N%).
With its high level of chromium, Super-Duplex steel provides outstanding resistance to acids, acid chlorides, caustic solutions and other environments in the chemical / petrochemical, pulp and paper industries,
often replacing 300 series stainless steel, high nickel superaustenitic steels and nickel-based alloys.
The chemical composition based on high contents of chromium, nickel and molybdenum improves
intergranular and pitting corrosion resistance. Additions of nitrogen promote structural hardening by
interstitial solid solution mechanism, which raises the yield strength and ultimate strength values without impairing toughness. Moreover, the two-phase microstructure guarantees higher resistance to pitting and stress corrosion cracking in comparison with conventional stainless steels.
From the introduction of its first-generation, Duplex steel has seen a steady increase in popularity.
Recently, the production of highstrength, corrosion resistant super-duplex coil has been implemented
in the marine and chemical industries, architecture and mast riggings, wire lines, lifting and pulley
equipment and well service strands. In fact, development of wire processing techniques has enabled
the production of steel wires down to 1 mm in diameter.
The various Alloys
Super-Duplex falls under the Duplex stainless steel grouping. Duplex stainless steels are graded for
their corrosion performance depending on their alloy content. Today, modern Duplex stainless steel can
be divided into four groups:
• Lean Duplex such as 2304, which contains no deliberate Mo addition;
• 2205, the work-horse grade accounting for more than 80% of duplex usage;
• 25Cr duplex such as Alloy 255 and DP-3;
Benefits









High strength.
High resistance pitting, crevice corrosion resistance.
High resistance stress corrosion cracking, corrosion fatigue and erosion.
Excellent resistance to chloride stress-corrosion cracking.
High thermal conductivity.
Low coefficient of thermal expansion.
Good sulfide stress corrosion resistance.
Low thermal expansion and higher heat conductivity than austenitic steels.
Good workability and weldability.
High energy absorption.

Applications





Heat exchangers, tubes and pipes for production and handling of gas and oil.
Heat exchangers and pipes in desalination plants.
Mechanical and structural components
Power industry FGD systems.
Pipes in process industries handling solutions containing chlorides.
Utility and industrial systems, rotors, fans, shafts and press rolls where the high corrosion fatigue strength can be utilized.
• Cargo tank, vessels, piping and welding consumables for chemical tankers.
• High-strength, highly resistant wiring.
6.º Welding properties:
Good weldability.
7.º Products, we supply:
x Plates, sheets
94

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 95

17-4PH®
Alloy: 17-4PH®
(Cr. Ni. Cu. alloy)
UNS-S17400
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

3
5

15
17

Mo

Co

Fe

Cu

C

Mn

Si

P

S

3
5

0,07

1

1

0,04

0,03

N

Nb
(x)

X

(x) Nb + Ta = 0,15 to 0,45

2.º Mechanical properties:
Tensile strength, mini: 930 MPa
Yield strength, mini: 274 MPa

Elongation, mini: 16%

17-4PH®

Mechanical Properties according to ASTM A564-Type 630 grade 1150M
Solution Annealed &
Age Hardened Condition
Tensile strength, min.
Yield Strength
(0.2% offset), min.
Elongation in 2”,
(or 50 mm) or 4D, min.

psi

Mpa

135,000

931

105,000

724

%

16

Representative Tensile Properties, Longitudinal Direction

Property

UTS
ksi

0.2% YS
ksi

Elong.
% in 2”
or 4XD

Red. of
Area %

H 900**
H 925
H 1025
H 1075
H 1100
H 1150
H 1150-M

200
190
170
165
150
145
125

185
175
165
150
135
125
85

14
14
15
16
17
19
22

50
54
56
58
58
60
68

Hardness
Brinell
Rockwell
420
409
352
341
332
311
277

C 44
C 42
C 38
C 36
C 35
C 33
C 27

Impact,
Charpy V-Notch
ft.lbs.
15
25
35
40
25
30
100

** For applications requiring greater impact toughness, aging for 4 hours develops typical properties UTS – 196 ksi, 0.2% YS – 181 ksi, Elong. In 2” – 14%, Reduction of Area –
52%, Hardness – Rockwell C43, and Charpy V-notch impact – 20 foot-pounds.

3.º Physical properties:
Melting Range 2560-2625°F (1404-1440°C)
For condition H 900:
Density, lb/in3 ................................... 0.282
Electrical resistivity, ohm • circular mil/ft . 463
Magnetic Permeability, at
H = 100 Oersted .................................... 90

H = 200 Oersted .................................... 56
Maximum ............................................ 135

95

CATALOGO

14/11/05

13:35

Página 96

Mean Coefficient of Thermal Expansion, inch/inch °Fx10-6
–100 to 70°F ....................................... 5.8
70 to 200°F ......................................... 6.0
70 to 400°F ......................................... 6.1
Thermal Conductivity Btu
at

ft/ft2

hr

70 to 600°F ......................................... 6.3
70 to 800°F ......................................... 6.5

°F

300°F ...................................... 10.3
500°F ...................................... 11.3
860°F ...................................... 13.0

900°F ...................................... 13.1
Specific Heat, Btu/lb°F ........................ 0.11
Poisson’s Ratio, 70°F ......................... 0.272

Modulus of Elasticity, psi x 106
Tension,

70°F ............................... 28.5
200°F ............................. 28.0
400°F ............................. 27.0

600°F ............................. 26.0
Torsion,

70°F ............................... 11.2

4.º Specifications:
AFNOR = 27 CNU 17.04

ASTM
W. Nr

Bar

Billet

Forgins

A564-Type 630
1.4562

A564-Type 630
1.4562

A564-Type 630
1.4562

5.º Characteristics, applications:
Alloy 17-4 PH is a martensitic, precipitation-hardening, chromium-nickel-copper stainless steel. It
provides an excellent combination of high strength an hardness, short time, low temperature heat treatment and good mechanical properties at temperatures up to 316°C (600°F). In addition, it offers corrosion resistance comparable to that of Type 304 in most applications. This grade may be used in either the solution heat treated condition (Condition A) or in one of a variety of precipitation-hardened
conditions, depending on the particular properties desired.
17-4 PH is an age-hardening martensitic alloy combining high strength with the corrosion resistance of stainless steel. Hardening is achieved by a short-time, simple low-temperature treatment. Unlike
conventional martensitic stainless steels, such as type 410, 17-4 PH is quite weldable. The strength,
corrosion resistance and simplified fabrication can make 17-4 PH a cost-effective replacement for high
strength carbon steels as well as other stainless grades.
Features
• High tensile strength and hardness to 600°F
(316°C).
• Corrosion resistant.
• Excellent oxidation resistance to about 1100°F
(593°C).

• Fabricable.
• Simple low-temperature heat treatment.
• Creep-rupture strength to 900°F (482°C).

Applications



Gate valves.
Aircraft structures, accessories, engine parts.
Chemical processing machinery.
Food processing machinery.

96




Pump shafts, gears, plungers.
Valve stems, balls, bushings, seats.
Pulp & paper mill equipment.
Fasteners.

CATALOGO

14/11/05

13:35

Página 97

Heat Treatment
At the solution treating temperature, 1900°F (1040°C), the metal is austenitic but undergoes transformation to a low-carbon martensitic structure on cooling to room temperature. This transformation
is not complete until the temperature drops to 90°F (32°C). Subsequent heating to temperatures of
900 to 1150°F (480 to 620°C) for one to four hours precipitation strengthens the alloy. This hardening treatment also tempers the martensitic structure, increasing ductility and toughness.
Solution annealing should be performed in air, argon or dry hydrogen. Cracked ammonia and endothermic atmospheres are likely to contaminate the metal. Remove machining oils and forming lubricants
before solution annealing. Plasma cut surfaces should be ground or machined off before heat treatment to avoid possible cracking.
Heat Treatment for 17-4 PH and Their Designation
Designation .............. Processing
Condition A* ............. Heated at 1900°F ± 25°F for 1/2 hour, air (Solution treated) cooled or oil
quenched to below 90°F. Normally performed at mill.
H 900 ..................... Condition A material heated at 900ªF ± 15°F for 1 hour and air cooled. Maximum hardness but low toughness. Sensitive to stress corrosion cracking. Heating 4 hours improves toughness with about 4 ksi reduction in tensile and
yield.
H 925, H 1025, ...... Condition A material heated 4 hours at specified temperature, and air cooled.
H 1075, H 1100
H 1150,H 1150-M ... Condition A material heated at 1400 ± 25°F for 2 hours, air cooled, then heated at 1150 ± 15°F for 4 hours and air cooled. This heat treatment used for
maximum toughness, and for cryogenic applications to -320°F.
*

For most applications 17-4 PH should not be used in Condition A. This is true even though the desired tensile strength may be
provided by that condition. While the alloy is relatively soft in Condition A, the structure is untempered martensite that has low
fracture toughness and ductility, with poor resistance to stress-corrosion cracking. Superior service performance is assured
by using 17-4 HP in the heat-treated condition.

Dimension change in hardening 17-4 PH undergoes a volume-contraction when it is hardened. This
produces a predictable change in dimensions that must be taken into consideration if parts made of
17-4 PH must be manufactured to close tolerances.
The dimensional contraction in hardening Condition A material to Cond. H 900 amounts to 0.00040.0006 inches per inch. Hardening to cond. H 1150 produces a contraction of 0.0008-0.0010 inches per inch. Dimensional changes for other conditions are proportional.
ASME Section VIII, Div. 1 Code Case 2223-2 lists the following allowable design stresses. No welding permitted except nonpressure parts. See case 2223-1 for rules.

Temp

Allowable Stress, ksi

°F

Condition
H 1100

100
200
300
400
500
600

40.0
40.0
40.0
38.9
38.1
37.5

H 1150
38.6
38.6
38.6
37.5
37.6
36.2

97

CATALOGO

14/11/05

13:35

Página 98

6.º Welding properties:
Sections up to 1” thick are normally welded in the annealed (A) condition. Highly restrained joints or
heavier sections are best welded in conditiones H1100 or H1150. Welding of 17-4 PH in conditions
H900 through H1075 is not recommended.
No preheat is usually necessary for sections up to 4” thick. For restrained welds a 200-300°F (100150°C) preheat is beneficial.
Matching composition ER630 wire or E630 covered electrodes (AMS 5803, 5825 or 5827) are
normally used. Joints to carbon or low alloy steel may be made with ERNiCr-3 wire or ENiCrFe-3 covered electrodes. For GMAW, 75%Ar 25%He shielding gas is suggested.
Postweld heat treatment is required. For single pass welds on condition A base metal, simply aging
to codition H 900 through H 1150 usually suffices (H 900 condition has very low notch toughness).
For multipass welds the structure should be solution annealed after welding, followed by an aging treatment 900-1150°F.
Notches must be avoided and partial penetration welds with their built-in notches are quite undesirable. For improved notch toughness in the weld bead, consider making the root pass only with ERNiCr3 (alloy 82) wire to maximize ductility.
7.º Products, we supply:
x Plates, sheets

98

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 99

20CB3®
Alloy: Carpenter: 20 Cb 3®
(Ni. Cr. alloy)
UNS-N08020
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

32
38

19
21

2
3

Co

Fe

Cu
3
4

C

Mn

Si

P

S

Nb
(x)

0,07

2

1

0,045

0,035

X

(*) = Nb + Ta = 8 x C -1

2.º Mechanical properties:
Tensile strength, mini: 591 MPa
Yield strength, 0.2: 241 MPa

Elongation: 30%
HRB: 95

20CB3®

3.º Physical properties:
Density: 8,03 Kg/dm3
4.º Specifications:
Norms

Material

Chemical
composit

Pipes-Tubes

Plates

Rounds,

Seamless

Welded.

Sheets

Bars

B-729

B-474
B-464

B-463

B-473

Strips

Wires Forgings Fittings

B-463

B-473

BS
ASTM

B-462

B-366

5.º Characteristics and applications:
It is un austeritic stainless steel developed to resist maynly sulphuric and chloridric acid, hot solutions, between 20-40%. It also offers higher resistance to corrosion than standard 316. It posses
outstanding resistance to pitting and stress corrosion cracking.
6.º Corrosion data:
Sulphuric acid: 1
Hydrocloric acid: 2
Hydrofluoric acid:
Phosphoric acid: 2

Sea water: 2
Salts: 2
Alkalis: 2

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

99

CATALOGO

14/11/05

13:35

Página 100

CATALOGO

14/11/05

13:35

Página 101

B3®
Alloy: Hastelloy B-3®
(Cr, Ni, Mo, alloy)
UNS-N10675
1.º Chemical composition in %:
Ni
Mini
Max
Balance

Cr

Mo

Co

Fe

1
3

27
32

0,01

1
3

Cu

C

Mn

Si

P

S

N

0,03

3

0,10

0,03

0,015

W
3

X

2.º Mechanical proparties*:

°F

Test
Temperature
°C

Room
200
400
600
800
1000
1200
*

Room
95
205
315
425
540
650

Ultimate Tensile
Strenght
Ksi
MPa
125,0
120,7
110,0
104,4
102,0
97,8
103,5

860
830
760
720
705
675
715

Yield Strength
at 0,2% Offset
Ksi
Mpa
60,6
55,3
47,0
43,5
42,4
39,0
45,6

420
380
325
300
290
270
315

Elongation
in 2 in (51 mm)
%
B3®

53,4
56,9
59,7
63,4
62,0
59,0
55,8

Limited data for 0,125* (3,2 mm)bright annealed sheet

3.º Physical properties:
Physical Property
Density
Melting Temperature
Electrical Resistivity

130 microhm-cm
Mean Coefficient of
Thermal Expansion

Temp., °F
Room
2500-2585
Room
200
400
600
800
1000
1200
1400
78-200
78-400
78-600
78-800
78-100
78-1200
78-1400

British Units
0,333 Ib/in 3
53,8 microhm-in
53,9 microhm-in
54,1 microhm-in
54,3 microhm-in
54,4 microhm-in
55,4 microhm-in
57,5 microhm-in
54,7 microhm-in
5,7 microhm-in.-°F
6,1 microhm-in.-°F
6,3 microches/in.-°F
6,5 microches/in.-°F
6,6 microches/in.-°F
6,5 microches/in.-°F
7,1 microches/in.-°F

Temp., °C
Room
1370-1418
Room
100
200
300
400
500
600
700
25-100
25-200
25-300
25-400
25-500
25-600
25-700

Metric Units
9,22 g/cm3
137 microhm-cm
137 microhm-cm
137 microhm-cm
138 microhm-cm
138 microhm-cm
140 microhm-cm
143 microhm-cm
142 microhm-cm
10,6 x 10-6 m/m-°C
11,1 x 10-6 m/m-°C
11,4 x 10-6 m/m-°C
11,6 x 10-6 m/m-°C
11,6 x 10-6 m/m-°C
11,8 x 10-6 m/m-°C
12,2 x 10-6 m/m-°C
101

CATALOGO

14/11/05

13:35

Página 102

Physical Property
Density
Melting Temperature
Thermal Diffusivity

Physical Property
Thermal Conductivity

Specific Heat

Temp., °F
Room
2500-2585
Room
200
400
600
800
1000
1200
1400
Temp., °F
Room
200
400
600
800
1000
1200
1400
Room
200
400
600
800
1000
1200
1400

British Units
0,333 Ib/in 3
4,6 x 10-3 in2/sec.
4,9 x 10-3 in2/sec.
5,4 x 10-3 in2/sec.
5,8 x 10-3 in2/sec.
6,3 x 10-3 in2/sec.
6,6 x 10-3 in2/sec.
7,3 x 10-3 in2/sec.
7,5 x 10-3 in2/sec.
British Units
78 Btu-in./ft.2 hr.-°F
83 Btu-in./ft.2 hr.-°F
93 Btu-in./ft.2 hr.-°F
104 Btu-in./ft.2 hr.-°F
116 Btu-in./ft.2 hr.-°F
129 Btu-in./ft.2 hr.-°F
142 Btu-in./ft.2 hr.-°F
156 Btu-in./ft.2 hr.-°F
0,089 Btu/Ib.-°F
0,092 Btu/Ib.-°F
0,098 Btu/Ib.-°F
0,102 Btu/Ib.-°F
0,104 Btu/Ib.-°F
0,104 Btu/Ib.-°F
0,112 Btu/Ib.-°F
0,143 Btu/Ib.-°F

Temp., °C
Room
1370-1418
Room
100
200
300
400
500
600
700
Temp., °C
Room
100
200
300
400
500
600
700
Room
100
200
300
400
500
600
700

Metric Units
9,22 g/cm3
3,0 x 10-3 cm2/sec.
3,2 x 10-3 cm2/sec.
3,4 x 10-3 cm2/sec.
3,7 x 10-3 cm2/sec.
4,0 x 10-3 cm2/sec.
4,4 x 10-3 cm2/sec.
4,5 x 10-3 cm2/sec.
4,9 x 10-3 cm2/sec.
Metric Units
11,2 W/m-K
12,1 W/m-K
13,4 W/m-K
14,6 W/m-K
16,3 W/m-K
17,9 W/m-K
19,6 W/m-K
21,4 W/m-K
373 J/kg-K
382 J/kg-K
409 J/kg-K
421 J/kg-K
431 J/kg-K
436 J/kg-K
434 J/kg-K
595 J/kg-K

4.º Specifications:
DIN ..............................
Werkstoff-Nr. .................
VdTÜV-Werkst.-BI. ..........
DIN ..............................
ASTM ...........................
ASME ...........................

NiMo29Cr
2.4600
517
17744, 17750, 17751, 17752, 17753
B-333, B-335, B-564, B-619, B-622
SB-333, SB-335, SB-619, SB-622, SB-626

The alloy is also covered by ASTM specifications B-333 (plate, sheet and strip), B-335 (bar), B-366
(welded fittings), B-564 (forgings), B-619 (welded pipe), B-622 (seamiess pipe and tube and B-626
(welded tube).
5.º Applications, characteristics:
B-3 alloy is an additional member of the nickel-molybdenum family of alloys with excellent resistance to
hydrochloric acid at all concentrations and temperatures. It also withstands sulfuric, acetic, fomic and
phosphoric acids, and other nonoxidizing medis. B-3 alloy has a special chemistry designed to achieve a level of thermal stability greatly superior to that of its predecessore, e.g. HASTELOY B-2 alloy. B-3 alloy has
excellent resistance to pitting corrosion cracking and to knife-line and heat-affected zone attack.
Fabrication
The improved thermal stability of B-3 alloy minimizes the problems associaled with fabrication of
B-2 alloy components. This is due to the reduced tendency to precipitate deleterious intermetalic
102

CATALOGO

14/11/05

13:35

Página 103

phases in B-3 alloy, thereby, affording it greater ductility than B-2 alloy during and following various
thermal cycling conditions.
B-3 alloy has good overall forming. It may be forget or otherwise hotworked, providing that it is held
at 2250°F (1230°C) for a time sufficient to bring the entire piece to temperature. Since it is low carbon alloy, the use of lower hot finishing temperatures may be necesary to achieve grain size control.
B-3 alloy may also be formed by cold working. Although it does work-harden somewhat rapidly, B-3
alloy components can be made using all common cold forming techniques.
Limited tests in boiling 20 percent hydrochloric acid indicate that the uniform corrosion resistance
of B-3 alloy is not affected by cold reductions up to 50 percent as compared to that of the alloy in the
solution heat-treated condition.
B-3 alloy can be welded by all common welding techniques, although oxyacetylene and submerged
arc welding processes are not recommended when the fabricated item is to be used in corrosive service. Special precautions should be taken to avoid excessive heat input.
Heat Treatment
All wrought forms of B-3 alloy are furnished in the solution heatreated condition unless otherwise
specified, B-3 alloy is solution heat- treated al 1950°F (1065°C) and rapid quenched, except for bright
annealed sheet or heat-treated at 2100°F (1150°C) and cooled in hydrogen.
Applications
B-3 alloy is suitable for use in all applications previously requiring the use of B-2 alloy. Like B-2 alloy,
B-3 is not recommended for use in the presence of ferric or cupric salts as these salts may cause rapid corrosion fallure. Ferric or cupric salts may develop when hydrochloric acid comes in contact with
iron or copper.
AQUEOUS CORROSION RESISTANCE
Average Unform Corrosion Resistance in Boiling Acids*

Acid Madium
Acetic Acid

Formic Acid

Hydrochloric Acid

(As-welded)
(50 ppm Fe*)

Concentration
Weight Percent
10
30
50
70
99 (Glacial)
10
20
30
40
60
89
1
2
5
10
15
20
20
20

Aveage
Corrosion Rate Per Year
Mils
mm
0,005
0,2
0,2
0,005
0,2
0,005
0,2
0,005
0,7
0,017
0,4
0,010
0,6
0,015
0,6
0,015
0,5
0,013
0,3
0,008
0,2
0,005
0,3
0,005
1,2
0,03
3,8
0,10
5,5
0,14
6,6
0,22
0,31
12,1
13,6
0,35
60,0
2,0

103

CATALOGO

14/11/05

13:35

Página 104

Acid Madium
Phosphoric Acid
(chemically pure)

Sulfuric Acid

(50 ppm Fe*)

(As-welded)
(Aged 48 Hrs @ 1000°F (540°C)

*

Aveage
Corrosion Rate Per Year
Mils
mm
2,4
0,06
2,0
0,05
3,0
0,08
2,9
0,07
0,4
0,010
0,7
0,018
0,8
0,020
1,2
0,03
1,2
0,03
18,8
0,48
1,2
0,03
1,7
0,04
2,4
0,06
2,0
0,05
2,3
0,06
6,6
0,17

Concentration
Weight Percent
10
30
50
85
2
5
10
20
30
30
40
50
50
50
60
70

Data from three production heats, for material in the solution heat-treated condition, unless noted. Test values were determined from an average of four 24 hour exposures.

Comparative Uniform Corrosion Resistance in Boiling Acids
Average Corrosion Rates Per Year, Mils (mm)
B-3?
alloy

Acid Medium

MONIEL 400
alloy

Type
316L

B-2
alloy

50% Acetic Acid

0,2

(0,005)

0,4

(0,010)

0,2

(0,005)

-

40% Formic Acid

0,5

(0,013)

0,7

(0,018)

41

(1,041)

2,1

(0,053)

50-55% Phosphoric Acid

30,

(0,076)

6

(0,152)

18

(0,457)

4,5

(0,114)

50% Sulfuric Acid

1,7

(0,043)

1,2

(0,030)

>20,000

(>500)

185

(4,699)

20% Hydrochloric Acid

12

(0,305)

15

(0,381)

>20,000

(>500)

1587

(40,310)

Average Uniform Corrosion Resistance in HF Solutions*
Average Corrosions Rates Per Year For Indicated Temperatures
% HF
1
3
5
10
20
48
70
*

125°F (52°C)
Mils
mm

175°F (79°C)
Mils
mm

8,6
8,7
9,0
10,0
11,8
13,4
31,6

11,1
12,7
13,7
15,9
22,8
35,0

0,22
0,22
0,23
0,25
0,30
0,34
0,80

Data from three production heats, for material in the solution heat-treated condition.

104

0,28
0,32
0,35
0,41
0,58
0,89

CATALOGO

14/11/05

13:35

Página 105

6.º Welding properties:
Those in the welding industry, however, should be aware of the potencial hazards associated with
welding fumes, gases, radiation, electric shock, heat, eye injuries, bums, etc.
Nickel-, cobalt-, and iron-base alloy products may contain, in varying concentration, the following elemental constituents: aluminum, cobalt, chromium, copper, iron, manganese, molybdenum, nickel and
tungsten. For specific concentretions of these and other elements present, refer to the Material Safety
Data Sheets (MSDS) available from Haynes International, Inc.
Inhalation of metal dust or fumes may cause adverse health affects. Exposure to dust or fumes
which may be generated in working these alloy may also cause eye irritation, skin rash and effect on other organ systems.
7.º Products, we supply:
x Plates, sheets

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

105

CATALOGO

14/11/05

13:35

Página 106

CATALOGO

14/11/05

13:35

Página 107

C22®
Alloy: Hastelloy-C22®
(Ni. Cr. Mo. alloy)
UNS-06022
1.º Chemical composition in %:
Ni
Mini
Max
Balance

Cr

Mo

20
22,5

12,5
14,5

Co

Fe

2,5

2
6

Cu

C

Mn

0,015

Si

0,5

P

0,08

0,02

S
0,02

V

W

0,35

2,5
3,5

X

2.º Mechanical properties:
Tensile strength, mini: 690 MPa
Yield strength, mini: 310 MPa

Elongation, mini: 45%
HRB= 100 máx

3.º Physical properties:
Density: 8,69 kg/dm3.
Melting point: 2550 °F
Specific heat: 0,1 (Btu/Ib/Deg F-[32-212 Deg F])
Expansion coefficient: 619
Thermal conductivity: 70

C22®

4.º Specifications:
Norms

Material

Chemical

Pipes-Tubes

composit

Seamless

B-622

B-622

Plates

Welded. Sheets

Rounds,

Strips

Wires

Forgings

B-575

B-462

B-574
B-462

Bars

2.4611

DIN
BS
ASTM

B-619

B-575

B-574

5.º Characteristics and applicationss:
A nickel-chromium-molydenum alloy which has outstanding resistance to both reducing and oxidising
media and because of its resistability can be used where ‘upset’ conditions are likely to occur.
By virtue of its contents of chromium, molybdenum and tungsten, and controlled iron, this alloy exhibits
excellent resistance to both oxidizing and reducing acid environments as well as those containing mixed
acids. It is particularly useful for resistance to pitting and crevice corrosion in acid-halide environments.
Applications include the chemical processing, pollution control, flue gas desulfurization, waste incineration, and paper pulp and paper processing industries.
6.º Welding properties:
Good weldability.
7.º Products, we supply:
x Plate-strip

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts
107

CATALOGO

14/11/05

13:35

Página 108

CATALOGO

14/11/05

13:35

Página 109

C276®
Alloy: Hastelloy-C276®
(Ni. Cr. Mo. alloy)
UNS-N10276
1.º Chemical composition in %:
Ni
Mini
Max
Balance

Cr

Mo

14,5
16,5

15
17

Co

Fe

2,5

4
7

Cu

C

Mn

0,010

Si

1

0,08

P
0,04

S
0,03

V

W

0,35

3
4,5

X

2.º Mechanical properties:
Tensile strength, mini: 690 MPa
Yield strength, mini: 293 MPa
Dureza HB < 240

Elongation, mini: 40%
HRB= 100 máx

3.º Physical properties:
Density: 8,89 kg/dm3.
Melting range: 1325 a 1370 °C
Specific heat: 427 J/Kg. K
Expansion coefficient: 11,7x10-6/K at 100°C
Thermal conductivity: 10,6 W/mK

C276®

4.º Specifications:
Norms

DIN

Material

2.4819

Chemical

Pipes-Tubes

composit

Seamless

17744

17751

Welded.

Plates

Rounds,

Strips

Wires Forgings Fittings

Sheets

Bars

17750

17752

17750

B-575

B-574

B-575

B-574

B-564

6208

9723

6208

9724

9725

BS
ASTM
ISO

B-622
NiMo16Cr15Fe6W4

9722

6207

B-619
B-626

B-366

5.º Characteristics and applications:
Alloy C-276 is a nickel-chromium-molybdenum alloy having perhaps the broadest general corrosion
resistance of all commonly used alloys. It was developed initially for use with wet chlorine, but it also
offers excellent resistance to strong oxidizers such as cupric and ferric chlorides, and to a variety of chlorine compounds and chlorine contaminated materials.
This alloy is used extensively to combat the high temperature and high presure corrosive conditions
encountered in drilling for sour petroleum deposits and in other oil field applications.
This alloy is characterised by:
• excellent resistance to a wide range of corrosive media, under oxidising and reducing conditions
• outstanding resistance to localised corrosion such as pitting and crevice corrosion, as well as to
chloride-ion stress-corrosion cracking

109

CATALOGO

14/11/05

13:35

Página 110

Applications
Alloy C-276 finds wide application in the chemical and petrochemical industries.
Typical applications include:











flue gas desulphurisation systems
organic syntheses involving acid choride catalysts
MDI and TDI production
vinyl chloride monomer production
production of hydrofluoric acid
sulphuric acid coolers
chlorine driers
production tubing in corrosive oil and gas wells
melamine production
methionine synthesis
pickling baths
aramide plastics production

Alloy C-276 is the improved version of alloy C and is resistant to numerous media including strongly oxidizing chemicals (for example iron and cupric chloride) warm polluted acids, solvents, chloride and media
contaminated by chloride (organic and inorganic), dry chloride, formic and acetic acid, acetic anhydride,
sea water and saline solutions. Furthemore, alloy C-276 is resistant when exposed to damp chlorine gas,
hypochlorite and chlorodioxide solutions. Alloy C-276 combines this excellent corrosion resistance with immensely improved machineability. This alloy does not separate grain boundaries in the zone influenced by
welding so that it is suited for most chemical applications even without heat-tratament.
Alloy C-276 is a nickel-chromium alloy with high molybdenum and tungsten but low iron and silicon
contents, which provides superior corrosion resistance to a wide variety of environments. The composition is specially formulated to maintain corrosion resistance, even in the weld heat-affected zone, thus
making Alloy 276 suitable even in the as-welded condition. The alloy has excellent resistance to general pitting and stress-corrosion cracking and resists oxidation up to approximately 1038°C (1900°F).
The alloy has shown remarkable corrosion resistance in the especially corrosive areas of flue gas desulphurisation systems, such as outlet ducting leading to the stack. It has also been used to solve corrosive problem areas in sewage treatment plants.
Alloy C-276 is used extensively in severe operating enviroments, including those encountered in chemical processing, pulp and paper, air pollution control, waste treatment and other disposal, and other
applications.
C-276 exhibits excellent resistance to ferric and cupric chlorides, hot contaminated organics and
inorganics, chlorine, firmic acid, acetic acid, acetic anhydride, sea water and brine. It is one of the few
alloys that is resistant to wet chlorine gas, hypochlorite, and chlorine dioxide.
• Chemical Process Equipment –heat exchangers, reactors and vessels, evaporators, pumps, valves and piping for procesing sulfuric acid, pesticides, phenol, styrene, vinyl chloride, chlorine and
other chemicals.
• Pulp and Paper –bleaching, head boxes, and wastegas scrubbers.
• Ore Processing –uranium and aluminium sulfate.
• Waste Treatment and Disposal –sewage sludge incinerators, industrial and municipal incinerators, chemical and toxic waste incinerators.
• Air Pollution Control – power plant scrubbers and related equipment, electrostatic precipitators,
reheaters, wastehert recovery systems, industrial boiler scrubbers, marine inert-gas scrubbers.
6.º Welding properties:
Good weldability.
7.º Products, we supply:
x Plate-strip

110

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 111

C4®
Alloy: Hastelloy-C4®
(Ni. Cr. Mo alloy)
UNS-N6455
1.º Chemical composition in %:
Ni
Mini
Max
Balance

Cr

Mo

Co

Fe

14
18

14
17

2

3

Cu

C

Mn

Si

P

S

Ti

0,015

1

0,08

0,04

0,03

0,7

X

2.º Mechanical properties:
Tensile strength, mini: 690 MPa
Yield strength, mini: 310 MPa

Elongation, mini: 40%
HRB= 100 max

3.º Physical properties:
Density: 8,64 kg/dm3.
Specific heat: 0.102 (Btu/lb/DegF-[32-212 DegF]

Melting point: 2600 °F
Expansion coefficient: 6
Thermal conductivity: 79
C4®

4.º Specifications:
Norms

Material

Chemical
composit

DIN
ASTM

2.4610

Pipes-Tubes
Seamless

Welded.

Plates

Rounds,

Sheets

Bars

1.7744
B-574-85

Strips

2.4610

2.4610
B-622

B-619
B-626

B-575

B-574

Wires Forgings Fittings

B-575

B-366

5.º Characteristics and applications:
An alloy with outstanding resistance to a wide range of severe corrosive environments, including hot
acids. It is also very resistant to stress-corrosion craking in hot chloride and alkaline solutions and to
pitting and crevice corrosion. Applications include fasteners and chemical process equipment.
C-4 alloy is a nickel-chromium-molybdenum alloy with outstanding high temperature stability as evidenced by high ductility and corrosion resistance even after aging in the 1200 to 1900°F (649 to
1038°C) range. This alloy resists the formation of grain-boundary precipitates in the weld heat-affected
zone, thus making it suitable for most chemical process applications in the as-welded condition C-4 alloy
also has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900°F
(1038°C).
C-4 alloy has exceptional resistance to wide variety of chemical process enviroments. These include hot contaminated mineral acids, solvents, chloride and chlorine contaminated media (organic and
inorganic), dry chlorine, formic and acetic acids, acetic anhydride, and seawater and brine solutions.
Laboratory precipitation studies on C-4 alloy indicate that the intermetallic precipitates (Mu phase)
associated with other nickel alloys in the 1200 to 2000°F (649 to 1093°C) temperature range have
not been detected. Fine intergranular M6C carbides can form but their damaging effect is minimal.
C-4 alloy can be forged, hot-upset, and impact extruded. Although the alloy tends to work-harden,
it can be successfully deep-drawn, spun, press formed or punched. All of the common methods of welding can be used to weld C-4 alloy, although the oxy-acetylene and submerged are processes are not
111

CATALOGO

14/11/05

13:35

Página 112

recommended when the fabricated item is intended for use in corrosion service. Special precautions
should be taken to avoid excesive heat input.
Wrought forms of C-4 alloy are furnished in the solution heat-treated condition unless other wise specified. C-4 alloy is a solution heat-treated at 1950°F (1066°C) and rapid quenched.
6.º Welding properties:
Good weldability.
7.º Products, we supply:
x Plate-strip

112

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 113

ALLOY-028®
Alloy: Incoloy-028®
(Ni. Cr. Mo. alloy)
UNS-N08028
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

Mo

29,5
32,5

36
28

3
4

Co

Fe

Cu

C

Mn

Si

P

S

0,6
1,4

0,030

2,5

1

0,030

0,030

V

X

2.º Mechanical properties:
(Annealed)

(Cold Worked)

Tensile Strength,

ksi ...................... 73
MPa .................. 500
Yield Stregth (0,2% Offset), ... ksi ..... 31
MPa .................. 214
Elongation, %
........................... 40
Hardness (HRB) ....................... 80-90

Tensile Strength,
Yield Stregth (0,2%
Elongation, %
Hardness (HRB)

ksi ................ 130
MPa .............. 896
Offset), . ksi ... 110
MPa .............. 758
....................... 15
............... 33 max.

3.º Physical properties:
Density, Ib/in3 ..........................................
g/cm3 .........................................
Specific Heat (32-212°F), Btu Ib °F
(microm/m °C) .........................................
(0-100°C), J/Kg °C .......................
Coefficient of Expansion, 10-6 in/in °F
(microm/m °C)
70-200°F (21-93°C) ......................
70-500°F (21-260°C) ....................
70-800°F (21-427°C) ....................
A

0,29
8,0
0,105
450

8,3 (15,0)
8,8 (15,9)
9,3 (16,8)

Thermal ConducitivityA,
Btu in/ft2 h °F ................
W/m °C ........
Electrical ResistivityA,
ohm circ mil/ft ................
micro ohm m ..
Young’s ModulusA, 103 ksi .
GPa ...............

ALLOY-028®
66
11,4
594
0,99
29,0
200

annealed product, tested al room temperature

4.º Specifications:
Norms

DIN

Material

Pipes-Tubes

composit

Seamless

B-668
B-709

B-668

Welded.

Plates

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

1.4563

ASTM
ISO

Chemical

B-709

B-709

FeNi31Cr27
Mo3,5CuI

AFNOR

ZNINCDU31,27

113

CATALOGO

14/11/05

13:35

Página 114

5.º Characteristics and applications:
Alloy 028 is a highly alloyed austenitic stainless steel offering resistance to a variety of corrosive media. By virtue of its contens of chromium and molybdenum, the alloy offers resistance to both oxidizing
and reducing acids and salts. The presence of copper increases its resistance to sulfuric acid. The alloy
is used in the chemical and petrochemical processing industry. Alloy tubes are cold worked to high
strength levels for downhole service in moderately corrosive deep sour gas wells.
6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: case dependent
Hydrofluoric acid: case dependent
Phosphoric acid: 2

Sea water: 2
Salts: case dependent
Alkalis: case dependent

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

114

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 115

330®
Alloy: Incoloy-330®
(Ni. Cr. Mo. alloy)
UNS-N08330
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

34
37

17
20

Mo

Co

Fe

Cu
1

C

Mn

Si

P

S

2

0,75
1,5

0,03

0,03

0,08

Pb

Sn

0,005 0,025

X

2.º Mechanical properties:
At Room Temperature

Typical Cree-Rupture Properties

Tensile
Strength,
psi

0.2% Yield
Strength, psi

Elongation
%

Hardness
Rb

Temp
°F

Stress, psi, for a
Minimum Creep Rate
of 1% in 10,000 hrs

10,000 hr
Rupture
Strength, psi

85,000

39,000

47

70-85

1400
1600
1800
2000

3600
2100
500

4300
1700
630
(280)

3.º Physical properties:
3

Density Ib/in

Melting Range °F

0.287

2450-2540

330®

Density: 8,08 Kg/dm3
Specific heat: 460 J/Kg

Temp
°F

Coefficient* of
Thermal
Expansion,
in/in °F x 10-6

Thermal
Conductivity
Btu•ft/ft2•hr•°F

Modulus of
Elasticity
Dynamic,
psi x 106

70
1400
1600
1800


9,7
9,8
10,0

7,2
13,7
14,2
14,7

28,5
21,0
19,5
18,0

K

*70°F to indicated temperature.

4.º Specifications:
Norms

Material

DIN

1.4333
1.4886

ASTM

B-511-2
B-535-6

Chemical

Pipes-Tubes

Plates

Rounds,

composit

Seamless

Welded.

Sheets

Bars

B-546
B-710

B-535
B-546

B-715

B-536
B-512

B-511

Strips

Wires Forgings Fittings

B-536

B-511

B-366

B-512
115

CATALOGO

14/11/05

13:35

Página 116

5.º Characteristics and applications:
Performance Profile
A-330 is the workhorse of the heat resistant alloys. It has good strength, carburization and oxidation resistance to about 2200°F. These properties are enhanced by a nominal 1,25% silicon addition.
330 has been designed to withstand the thermal shock of liquid quenching.
A-330 finds wide application in high temperature industrial environments where good resistance to
the combined effects of carburization and thermal cycling is a prime requisite. A-330 remains fully austenitic at all temperatures and is not subject to embrittlement from sigma formation.
A-330 is worked by forming and machining procedures similar to those used with the austenitic
stainless steels or nickel-chromium alloys. Forming at room temperature is suggested whenever possible. Heat treatment is not necesary after most forming or welding operations. When required, the
suggested full anneal is 1900-2050°F, rapid air cool or water quench.
Machinability rating 20-25% of B1112.
A-330 is highly resistant to chloride ion stress corrosion cracking and is a useful engineering choice for those applications where common stainless has failed by stres corrosion.
Features





Oxidation resistant to 2200°F
Resistant to carburization and nitriding
Resistant to thermal shock
Good strength at elevated temperature
Metallurgical stability
Chloride ion stress corrosion cracking resistance

Applications









Furnaces containers-carburizing, carbonitriding, annealing malleablizing
Muffles, retorts
Bar frame heat treating baskets
Quenching fixtures
Radian tubes
Salt pots, both neutral and cyanide
Furnace fans and shafts
Conveyors
Hot pressing platens
Tube hangers for crude oil heaters and steam boilers

6.º Welding properties:
Good weldability.
A-330 may be readily welded using A-330-04 weld fillers of matching composition. Do not use AWS
ER330. Keep interpass temperatures low, do not preheat, do use reinforced stringer beads.
7.º Products, we supply:
x Plate-strip

116

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 117

800®
Alloy: Incoloy-800®
(Ni. Cr. alloy)
UNS-N08800
1.º Chemical composition in %:
Mini
Max
Balance

Ni

Cr

Mo

30
35

19
23

2

Co

Fe

Cu

C

Mn

Si

0,75

0,10

1,50

1

P

S

Al

Ti

0,015

0,15
0,60

0,15
0,60

39,5

2.º Mechanical properties:
Tensile strength, mini: 520 MPa
Yield strength, mini: 205 MPa

Elongation, mini: 30%
HRB= 86 max

3.º Physical properties:
Density: 8,02 kg/dm3.
Specific heat: 502 J/Kg. K

Melting range: 1355 to 1385 °C
Expansion coefficient: 14,2 x 10-6/K
Termal conductivity: 11,7 W/mK

4.º Specifications:
Norms

Material

Chemical
composit

DIN

1.4876

BS

NA15

ASTM

B-408
B-409

Pipes-Tubes
Seamless

Welded.

3074
B-514
B-515

B-407
B-163

B-514
B-515

Plates

Rounds,

Strips

Wires Forgings Fittings

Sheets

Bars

3072

3076

3073

3076

B-409

B-408
B-564

B-409

B-408
B-564

B-366

5.º Characteristics and applications:
Alloy 800 is an iron-nickel-chromium alloy with moderate strenght and good resistance to oxidation
and carburization at elevated temperatures. It is particularly useful for high-temperature equipment in
the petrochemical industry because the alloy does not form the embrittling sigma phase after long time exposure at 1200°F (649°C). Excellent resistance to chloride stress-corrosion cracking is another
important feature of alloy 800.
Applications
Typical application for aloy 800 are - Heat exchangers and process piping; carburizing fixtures and
retorts; furnace components; electric range heating-element sheathing; extruded tubing for ethylene
and steam methane reforming furnaces; ammonia effluent coolers.
6.º Corrosion data:
Sulphuric acid: 2
Nitric acid: 2
Phosphoric acid: 2

Sea water: 2
Salts: 2
Alkalis: 2

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts
117

800®

CATALOGO

14/11/05

13:35

Página 118

CATALOGO

14/11/05

13:35

Página 119

800H®
Alloy: Incoloy-800H®
(Ni. Cr. alloy)
UNS-N08810
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

30
35

19
23

Mo

Co

Fe

Cu

C

Mn

Si

0,75

0,05
0,10

1,50

1

39,5

P

S

Al

Ti

0,015

0,15
0,60

0,15
0,60

2.º Mechanical properties:
Tensile strength, mini: 450 MPa
Yield strength, mini: 170 MPa

Elongation, mini: 30%
HRB= 86 max

3.º Physical properties:
Density: 8 kg/dm3.
Melting range: 1350 to 1400 °F
Specific heat: 500 J/Kg. K
Expansion coefficient: 15,8 x 10-6/K (20-300°C)
4.º Specifications:
Norms

Material

DIN

1.4958

BS

NA15(H)

ASTM
ISO

Chemical

Pipes-Tubes

composit

Seamless

17459/460

17459

Welded.

Plates

Rounds,

Sheets

Bars

17460

17460

3074

3072

3076

3073

B-407
B-163

B-515
B-514

B-409

B-408
B-564

Strips

Wires Forgings Fittings

17460
B-409

B-564

B-366

MC-FeNi32
Cr21APTi

AFNOR
5.º Characteristics and applications:
Alloy 800H is an austenitic heat resistant alloy mean for high temperature structural applications.
The strength of 800H is achieved by controlled levels of carbon, aluminum and titanium alone with a
2100°F (1149°C) minimum anneal to achieve grain size ASTM5 or coarser.
Alloy 800H is essentially the same as Alloy 800, except that the carbon content is maintained at the
upper portion of the carbon range of the alloy.
This, combined with an annealing treatment that produces a coarser grain size, provides an alloy
of higher creep and rupture strength.
These features, in addition to the alloy´s good high-temperature corrosion resistance, produce an
alloy that is most useful for application requiring long-time operation at elevated temperatures and/or
in corrosive atmospheres.
Features
• High desing stresses for ASME Section VIII aplication to 1650°F (899°C)
• Seamless pipe and tube 5” O.D. and under to 1800°F (982°C), Section VIII
119

800H®

CATALOGO

14/11/05

13:35

Página 120

• Useful oxidation resistance through 1900°F(1038°C)
• Resistant to chloride ion stress corrosion cracking
Application
Range of application: alloy 800H is employed where maximum creep-rupture strength is required.



Ethylene furnace quench boilers
Reformer outlet pigtails and manifolds
Heat exchangers
Pressure vessels

6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid:
Nitric acid: 1
Phosphoric acid: 2

Sea water: 2
Salts: 2
Alkalis: 2

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 1
Sufidation resistance: 1

Strength & Stability: 1
Nitriding resistance: –
Carbonitriding resistance: 2

7.º Welding properties:
Good weldability.
800H is commonly joined by 82 (ERNiCr-3) bare wire for applications under 1450°F (788°C). 33004 (N08334) bare wire and 330-04-15 (W88334) covered electrodes offer a close match of thermal
expansion coefficients. For applications 1600°F (871°C) and higher 333 (N06333) bare wire and 33307-16 covered electrodes offer greater strenght.
To avoid possible stress relaxation grain boundary cracking of N08811 in applications above 1000°F
(538°C) the welded fabrication may be heated 1650°F (899°C) for about one hour per inch (25mm) of
thickness, 30 minutes minimum, air cooled.
8.º Products, we supply:
x Plate-strip

120

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 121

800HT®
Alloy: Incoloy-800HT®
(Ni. Cr. alloy)
UNS-N08811
1.º Chemical composition in %:

Mini
Max
Balance

Ni

Cr

30
35

19
23

Mo

Co

Fe

Cu

C

Mn

Si

0,75

0,06
0,10

1,50

1

39,5

P

S

Al

Ti

0,15
0,015 0,60

0,15
0,60

(x)

(x) Al + Ti = 0.85 to 1.20

2.º Mechanical properties:
Tensile strength, mini: 450 MPa
Yield strength, mini: 170 MPa

Elongation, mini: 30%
HRB= 86 máx

3.º Physical properties:
Density: 8 kg/dm3.
Melting point: 1350 to 1380 °C
Specific heat: 455 J/Kg. K
Expansion coefficient: 15,8 x 10-6/K (20-300°C)
4.º Specifications:
Norms

Material

Chemical
composit

DIN

1.4959

BS

NA15HT

ASTM

Pipes-Tubes
Seamless

Welded.

17459/60

Plates

Rounds,

Sheets

Bars

17460
B-407
B-163

B-515

B-409

B-408

Strips

Wires Forgings Fittings

17460

17460

B-409

B-564

B-366

ISO
AFNOR

5.º Characteristics and applications:
The high nickel and chromium contents of Alloy 800HT ensure excellent resistance to oxidation. The
alloy is also very resistant to carburisation, nitriding and oxidising sulphur-bearing atmospheres.
The protective oxide film wich is formed is adherent in both static and cyclic conditions of heating
and cooling, and resistance to carburisation is enhanced when a thin film of oxide is first formed on the
alloy.
Resistance to hydrogen is excellent and alloy 800HT is a standard material used in the prodution
of hydrogen in steam / hydrocarbon reforming processes.
Application
Due to high strength during long periods of service and resistance to carburisation and nitriding,
Alloy 800HT has found many applications in steam/hydrocarbon reforming, for components such as:
121

800HT®

CATALOGO

14/11/05

13:35

Página 122

pigtails, headers/collectors/manifolds, transfer piping, catalyst tubes (in low pressure processes) and
quench-system piping.
Typical applications include:
• ethylene pyrolysis tubing in convection and radiant sections – resistance to carburisation and good mechanical properties.
• ethylene dichloride cracking tubes – resistance to carburisation and to dry hydrogen chloride and
chlorine
• cracking tubes used in the production of acetic anhydride and ketenehigh strength, resistance to
carburisation and the formation of sigma phase
• components, e.g. heat exchangers, piping systems etc, in coal conversion plants
• steam generator tubing in helium cooled, high temperature reactor systems – high strength, resistance to helium and to steam
6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: 3
Hydrofluoric acid: –
Phosphoric acid: 2

Sea water: 2
Salts: 2
Alkalis: 2

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

122

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 123

825®
Alloy: Incoloy 825®
(Cr, Ni, Mo alloy)
UNS-N08825
1.º Chemical composition in %:
Ni

Cr

Mo

Mini

38

19,5

2,5

Max

46

23,5

3,5

Co

Fe

Cu

22

1,5
3

C

Mn

Si

P

S

N

Al

Ti
0,6

0,05

1

0,5

0,03

0,2

1,2

Balance

2.º Mechanical properties (annealed):
Tensile strength, mini = 586 MPa
Yield Strength, mini = 241 MPa

Elongation mini = 30%
Hardness = – Brinell max
90 RCB max

INCOLOY alloy 825 has good mechanical properties from cryogenic temperatures to moderately
high temperatures. Exposure to temperatures above about 1000 °F (540 °C) can result in microstructural changes (phase formation) that significantly lower ductility and impact strength. For that reason,
the alloy is not normally used at temperatures where creep-rupture properties are desing factors.
High-temperature tensile properties are shown. The tests were conducted on cold-drawn rod of
0,75-in. (19-mm) diameter annealed at 1725 °F (940 °C)/1 h.

825®

High temperature tensile properties of annealed bar.

123

CATALOGO

14/11/05

13:35

Página 124

3.º Physical properties:
Some physical constants for INCOLOY alloy 825 are listed in Table 1. Values for thermal expansion,
thermal conductivity, and electrical resistivity at various temperatures are in Table 2. Modulus of elasticity and Poisson’s ratio over a range of temperatures are given in Table 3. Modulus values, which were determined dynamically, were used to compute Posson’s ratio.
Thermal Properties. Table 2.
Temperature
°F
–250
–200
–100
0
78
100
200
400
600
800
1000
1200
1400
1600
1800
2000
°F
–150
–100
0
25
100
200
300
400
500
600
700
800
900
1000
a

Coefficient
of Expansiona
10-6in/in-°F

Physical Constants. Table 1.

Thermal
Conductivity

Electrical
Resistivity

Btu-in/ft2-h-°F ohm-circ mil/ft







7,8
8,3
8,5
8,7
8,8
9,1
9,5
9,7

55
59
66
72,6
76,8
78,4
85,0
97,5
109,6
119,7
130,9
141,8
154,9
171,8
192,0





678
680
687
710
728
751
761
762
765
775
782
793

mm/m–°C

W/m–°C

mW–m





7,8
8,2
8,5
8,6
8,8
8,9
9,3
9,6

7,9
8,9
10,7
11,1
12,3
13,8
15,4
16,9
18,2
19,6
21,2
23,1
25,5




1,13
1,14
1,18
1,21
1,24
1,26
1,27
1,27
1,28
1,29
1,30

Mean coefficient of linear expansion between 80°F (27°C) and
temperature shown.

124

Ib/in3
0,294
MG/m3
8,14
Melting Range,
°F
2500-2550
°C
1370-1400
Specific Heat,
Btu/Ib-°F
0,105
J/kg-°C
440
Curie Temperature,
°F
<-320
°C
<-196
Permeability at 200 oersted (15,9 kA/m)
1.005
Density,

Modulus of Elasticity. Table 3.
Temperature

Young’s
Modulus

Shear
Modulus

Poisson’s

106psi

106psi

Ratio

73
200
400
600
800
1000
1200
1400
1600
1800
2000

29,8
29,2
28,2
27,2
26,1
25,0
23,8
22,5
20,9
19,0
16,8

10,51
10,28
9,87
9,48
9,04
8,60
8,13
7,64
7,12
6,48
5,58

0,42
0,42
0,43
0,43
0,44
0,45
0,46
0,47
0,47
0,47
0,51

°C

GPa

GPa

Poisson’s
Ratio

23
100
200
300
400
500
600
700
800
900
1000

206
201
195
188
181
175
168
160
151
141
128

72,5
70,7
68,2
65,6
63,2
60,3
57,5
54,5
51,4
48,0
43,7

0,42
0,42
0,43
0,43
0,43
0,45
0,46
0,47
0,47
0,47
0,46

°F

CATALOGO

14/11/05

13:35

Página 125

4.º Specifications
DIN-2.4858
Seamless Pipes/Tubes:
Welded Pipes/Tubes:
Plates/sheets:
Bars:
Fittings:
Flanges:

- Code NiCr21Mo
ASTM-B-423
ASTM-B-704/705
ASTM-B-424
ASTM-B-425
ASTM-B-366
ASTM-B-564

5.º Applications, characteristics:
Alloy 825 is a thermally stabilized alloy which is resistant to both inorganic and organic acids. It has
excellent resistance to oxidizing and nonoxidizing hot acid conditions and at temperatures up the boiling
point it is resistant to many acids and alkaline solutions.
INCOLOY alloy 825 is a nickel-iron-chromium alloy with additions of molybdenum, copper, and titanium. The alloy´s chemical composition, is designed to provide exceptional resistance to many corrosive environments. The nickel content is sufficient for resistance to chloride-ion stress.
Corrosion cracking. The nickel, in conjunction with the molybdenum and copper, also gives outstanding resistance to reducing environments such as those containing sulfuric and phosphoric acids. The
molydbenum also aids resistance to pitting and crevice corrosion. The alloy´s chromium content confers resistance to a variety of oxidizing substances such as nitric acid, nitrates, and oxidizing salts. The
titanium addition serves, with an appropriate heat treatment, to stabilize the alloy against sensitization
to intergranular corrosion.
The resistance of INCOLOY alloy 825 to general and localized corrosion under diverse conditions gives the alloy broad usefulness. Applications include chemical processing, polution control, oil and gas
recovery, acid production, pickling operations nuclear fuel reprocessing, and handling of radioactive
wastes.
Corrosion Resistance
INCOLOY alloy 825 is well known for resistance to sulfide corrosion and chloride-ion stress-corrosion
cracking, acid attack, and hydrogen embrittlement cracking. Because it combines corrosion resistance and strength, INCOLOY alloy 825 makes an excellent choice for long-term use with sour crudes and
gases.
Hydrogen Sulfide
INCOLOY alloy 825 is used to resist the corrosive conditions in sour gas and oil wells. The environments include hydrogen sulfide and carbon dioxide in sour crude and gas at high temperatures and
pressures. Table 4 shows the performance of the alloy in a test (NACE test) used to evaluate alloys for
such service. The test consists of exposure of stressed, steel-coupled C-rings to a room-temperature
solution of 5% sodium chloride whith 0,5% acetic acid and saturated with hydrogen sulfide. The specimens of INCOLOY alloy 825 were stressed at 100% of yield strength (0,2% offset). No failure occurred
in the test period of 48 or 50 days.
The result of similar, but more severe tests are given in Table 5. Stressed C-rings were exposed to
the test solutions at high temperatures in pressurized autoclaves. The overpressure gas contained hydrogen sulfide or hydrogen sulfide and carbon dioxide. No cracking of INCOLOY alloy 825 occured in
these tests with specimens stressed at 90% of yield strenght.

125

CATALOGO

14/11/05

13:35

Página 126

NACE C-Ring Tests on Cold-Worked Tubing. Table 4.
Test Stress
Material Condition
27% cold work
27% cold work plus
600 °F (315 °C)/
1000h
49% cold work
49% cold work plus
600°F (315°C) / 1000h
51% cold work
63% cold work
63% cold work plus
600 °F (315 °C)/1000 h

1000psi

MPa

Results

105,0

724

No failure (48 days)

111,9
114,2

772
787

No failure (48 days)
No failure (48 days)

127,4
147,1
133,4

878
1014
920

No failure (50 days)
No failure (48 days)
No failure (48 days)

133,5

920

No failure (50 days)

Autoclave Tests on Cold-Worked Tubing. Table 5.

Tests Environment
25% sodium chloride,
0,5% acetic acid,
1 g/L sulfur
saturated with
hydrogen sulfide,
150psi (1,0 MPa)
overpressure of
hydrogen sulfide,
350 °F (177 °C)
15% sodium chloride,
saturated with
hydrogen sulfide,
1000 psi (6,9 MPa)
overpressure of
nitrogen
with 1% hydrogen
sulfide and 20% carbon
dioxide,
400 °F (204 °C)

Material Condition

27% cold work plus

Yield Strength
(0,2% Offset)
Test Stress
1000psi
MPa 1000psi MPa

Results

111,9

772

101,0

696

No failure (43 days)

49% cold work

114,2

787

103,0

710

No failure (43 days)

27% cold work

105,0

724

94,5

652

No failure (47 days)

49% cold work
51% cold work

111,9
147,1

772
1014

100,0
132,4

690
913

No failure (47 days)
No failure (47 days)

600 °F (315 °C) 1000 h

Stress-Corrosion Cracking
An important property of INCOLOY alloy 825 is its relative freedom from stress-corrosion cracking.
The resistance of austenitic alloys to chloride-ion stress-corrosion cracking depends on nickel content.
INCOLOY alloy 825 contains sufficient nickel (42%) for a high degree of resistance to cracking in chloride environments. Table 6 shows the performance of the alloy in boiling 45% magnesium chloride. The
test were performed on stressed U-bend specimens.
Sea water
INCOLOY alloy 825 has good resistance to general corrosion, pitting, and crevice corrosion in sea
water, although it is subject to biological fouling in continuous immersion. The alloy is also highly resistant to chloride-ion stress-corrosion cracking even in hot sea water.
126

CATALOGO

14/11/05

13:35

Página 127

Stress-Corrosion Cracking tests in Boiling 45% Magnesium Chloride. Table 6.
Alloy

Condition

Test Results

INCONEL alloy 625
INCONEL alloy 825

Annealed
Annealed plus
welded
Annealed

No cracking in 720 h
No cracking in 720 h

Type 316 Stainless
steel

Cracking in 24 h

Intergranular Corrosion
Like other nickel-iron-chromium alloys, INCOLOY alloy 825 can be sensitized to intergranular corrosion in some aggressive oxidizing media. However, INCOLOY alloy 825 contains an addition of titanium,
which, during an appropriate heat treatment, stabilizes the alloy against such sensitization. The mechanisms of sensitization and stabilization for the alloy have been reported. Sensitization of unstabilized material can result from exposure to temperatures of 1200 to 1400 °F (650 to 760 °C) during welding
or service.
Susceptibility to intergranular attack is commonly measured by the Huey Test. It consists of exposure to boiling 65% nitric acid for five consecutive 48-h periods. An average corrosion rate of less than
3 mils per month (36 mpy) (0,91 mm/y) for the five periods is considered to be satisfactory performance. Substantially higher rates indicate sensitization of the material.
FABRICATION
Hot and cold forming
The hot-working range for INCOLOY alloy 825 is 1600 to 2150 °F (870 °C to 1180 °C). For optimum corrosion resistance, final hot working should be done at temperatures between 1600 and 1800
°F (870 and 980 °C)
Cooling after hot working should be air cool or faster. Heavy sections may become sensitized during
cooling from the hot-working temperature, and therefore be subject to intergranular corrosion in certain media. A stabilizing anneal (see above) restores resistance to corrosion. If material is to be welded
or subjected to further thermal treatment and sudsequently exposed to an environment that may cause intergranular corrosion, the stabilizing anneal should be performed regardless of cooling rate from
the hot-working
Cold-forming properties and practices are essentially the same for INCOLOY alloy 825 as for INCONEL alloy 600. Although workhardening rate is somewhat less than for the common grades of austenitic stainless steels, it is still relatively high. Forming equipment should be well powered and strongly
built to compensate for the increase in yield strength with plastic deformation.
Annealing
Work-hardened material can be softened completely by annealing. The treatment requires exposure to
a sufficient temperature for a time long enough to cause full recrystallization of the workhardened grain struture. That removes all of the stresses, softens the material, and decreases mechanical strength.
Recrystallization is a function of time, temperature and amount of cold work as well as alloy composition.
Grain growth occurs when material is heated at higher temperatures or for longer times than those required for recrystallization. Although that results in further softening, a coarse grain structure is
unsuitable for some cold-forming operations and many service conditions (for example, a fine grain is
usually required for good fatigue strength).
A coarse grain cannot be refined in the high-nickel alloys by thermal treatment alone. It can be removed only by cold working to a degree that will result in recrystallization to a finer grain during subsequent annealing. If coarse grain is desired, or if maximum softness is required and coarse grain is not
harmful to the application, the material can be given a solution anneal. Solution annealing, or solution
treating, is performed by heating at temperatures in the upper part of the annealing range. The treatment is also used to dissolve the hardening elements in precipitation-hardenable alloys prior to aging.
127

CATALOGO

14/11/05

13:35

Página 128

Annealing temperatures are critical in maintaining the high degree of corrosion resistance for wich
INCOLOY alloy 825 was designed. For this reason, material leaving the mill has been carefully processed to provide maximum corrosion resistance. Therefore, during subsequent working, interstage and
final anneals should be limited to the 1700 to 1800 °F (930 to 980 °C) range, consistent with selected time and prior cold work. The optimum temperature for stabilization in considered to be 1725 °F
(940 °C) whereas 1800 °F (980 °C) provides the optimum combination of softness and fine grain
structure without sacrificing corrosion resistance. Quenching is usually not necessary for parts of thin
cross section such as those from sheet, strip and wire, but rapid cooling may be desired to avoid sensitization in heavier sections.
Prior to any heat treatment, normal precautions should be taken to remove all lubricants, shop soil,
and markings which could induce intergranular attack and embrittlement.
APPLICATIONS
Alloy 825 is employed for phosphoric acid evaporators, pickiling vats, plants for chemical processing, propeller shafts, transportation means for corrosive media, polution control, oil and gas recovery,
acid production and handling of radioactive wastes.
6.º Welding properties:
Welding methods: Arc welding, TIG, MIG, plasma, autogenous welding.
Note: Take care that the surface is cleaned before welding.
7.º Products, we supply:
x Plates, sheets

128

x Tubes

x Fittings

x Bars

x Forgings

x Bolting

CATALOGO

14/11/05

13:35

Página 129

286®
Allloy: Incoloy-286®
(Ni. Cr. alloy)
UNS-S66286
1.º Chemical composition in %:
Ni

Cr

Mo

Min.

24

13,5

1

Max.

27

16

1,5

Co

Fe

Cu

C

1

Balance

Mn

0,08

2

Si

1

P

0,040

S

Al

0,030

0,35

Ti

V

Bo

1,9

0,10

0,0010

2,325

0,50

0,010

X

2.º Mechanical properties:
Representative Tensile Properties
1800°F/1325°F heat treat
Temp
°F

Ultimate
Tensile
Str, psi

0,2% Yield
Strength,
psi

RT*
RT
400
800
1000
1200
1400

95,000*
145,000
143,000
138,000
131,000
103,000
64,000

50,000*
95,000
93,000
93,000
87,000
88,000
62,000

Typical Rupture Strength
1800°F/1325°F heat treat

Elong Red of Charpy
in 2”, Area, % V-notch
%
ft-Ib
40*
24
21
18
18
13
18


43
53
35
31
14
23



59
51
45
35

Temp
°F

Stress, psi to Rupture
in Indicated Time
100 hrs
1,000 hrs

1000
1100
1200

99,000
81,000
61,000

88,000
71,000
46,000

*

annealed

3.º Physical properties:

a

Density Ib/in3

Melting Range °F

0.286 solution treated
0.287 aged

2500-2600

Temp
°F

Coefficient of
Thermal
Expansiona,
in/in °F x 10-6

Thermal
Conductivity
Btu•ft/ft2•hr•°F

Modulus of
Elasticity
Dynamic,
psi x 106

200
800
1000
1200
1400

9,2
9,6
9,8
9,9
10,3

8,0
9,8
13,0
14,1
-



23,7
21,9
20,1

286®

70°F to indicated temperature

129

CATALOGO

14/11/05

13:35

Página 130

4.º Specifications:
Norms

Material

Chemical
composit

DIN

Pipes-Tubes
Seamless

Welded.

Plates

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

1.4980

BS

A-638

ASTM

A-453 Gr660
A-638 Gr660

A-638

ISO
AFNOR

5.º Characteristics and applications:
Profile
A-286 is an age-hardenable iron base superalloy for applications requiring high strength from -320°F
up to 1000°F long time, 1300-1500°F short time. Oxidation resistance is high for continuous service to
1500°F, intermittent to 1800°F. Aqueous corrosion resistance is comparable to 316 L stainless.
Typical heat treatments are to solution anneal at either 1650°F 2 hours or 1800°F 1 hour, quench, followed by aging 1325°F for 16hours, air cool. The 1650°F solution treatment results in a finer grain size
and superior short time tensile properties at room and elevated temperatures. A two cycle aging treatment is occasionally specified after the 1650°F solution treatment. This is 1300-1400°F 16 hours air cool plus 1200°F 8-12 hours air cool. It is intended to improve notch rupture strength. The 1800°F solution
treatment develops a slightly coarser grain size with superior creep-rupture properties.
Features
• High strength to 1000°F
• Oxidation resistant to 1500°F continuous
• Aqueous corrosion resistance similar to 316L
Applications
• Jet engine components
• High temperature fasteners, springs
• Non-magnetic cryogenic equipment
6.º Corrosion data:
Sea water: 2
Salts: 3
Alkalis: 3

Sulphuric acid: 3
Hydrocloric acid: 3
Hydrofluoric acid: 3
Phosphoric acid: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 2
Sufidation resistance: 2

Strength & Stability: 1
Nitriding resistance: –
Carbonitriding resistance: 2

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip
130

Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 131

DS®
Alloy: Incoloy-DS®
(Ni, Cr alloy)
UNS-N08330
1.º Chemical composition in %:

Min.
Max.
Balance

Ni

Cr

34
37

17
22

Mo

Co

Fe

Cu

C

Mn

Si

P

S

1

0,08

2

0,75
1,50

0,03

0,03

Ti

Pb

Su

0,20 0,005 0,025

X

2.º Mechanical properties:
Tensile strength, mini: 483 MPa
Yield strength, mini: 207 MPa

Elongation, mini: 30%
HRB= 70 to 90

3.º Physical properties:
Density: 8 kg/dm3.
Melting range: 1330 a 1400 °C
Specific heat: 452 J/Kg. K
Expansion coefficient: 15,9 x 10-6/K
Thermal conductivity: 11,4 W/mK
4.º Specifications:
Norms

Material

Chemical
composit

DIN

1.4862

BS

NA17

ASTM

Pipes-Tubes
Seamless

Welded.

3074
B-535

B-546

Plates

Rounds,

Strips

Sheets

Bars

3072
3073

3076

3073

B-536

B-512

B-536

Wires Forgings Fittings

B-512

B-366

ISO
DS®

AFNOR Z12NCS35.16

5.º Characteristics and applications:
Alloy DS is a nickel-iron-chromium solid-solution alloy with the addition of approximately 2% silicon.
This alloy is characterised by:
• excellent oxidation and scale resistance
• good resistance to carburisation and to alternating carburising and oxidising atmospheres
• good mechanical properties with high strength at elevated temperatures

131

CATALOGO

14/11/05

13:35

Página 132

Applications
Alloy DS finds wide application in high-temperature processes:
• fans operating at high temperatures in carburising furnaces – resisting carburisation
• boxes and baskets used in carburising – resisting carburisation and showing weight savings when
compared with cast boxes.
• hangers, hooks and conveyor chains used to carry vitreous-enamelled components during firing – resisting oxide spalling so that oxide does not fall on the enamel
• combustion tubes – resisting oxidation and carburisation and alternating oxidising and carburising
conditions
• jigs and fixtures used in furnace brazing and wire mesh belts to carry components in heat-treatment processes
• thermocouple sheaths – resisting carburisation and nitriding
• flare-stack tips – resisting alternating conditions
• components handling cracked ammonia
6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: 3
Hydrofluoric acid: case dependent
Phosphoric acid: 2

Nitric acid: 1
Sea water: 2
Alkalis: 2
Organic acids: 1

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 1
Sufidation resistance: 1

Strength & Stability: 1
Carbonitriding resistance: 1

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

132

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 133

600®
Alloy: Inconel-600®
(Ni. Cr. alloy)
UNS-N06600
1.º Chemical composition in %:

Min.
Max.
Balance

Ni

Cr

72

14
17

Mo

Co

Fe

Cu

C

Mn

Si

6
10

0,5

0,15

1

0,5

P

S

Ti

0,015

2.º Mechanical properties:
Tensile strength, mini: 550 MPa
Yield strength, mini: 240 MPa

Elongation, mini: 30%

3.º Physical properties:
Density: 8,42 kg/dm3.
Melting range: 1370 to 1425 °C
Specific heat: 455 J/Kg. K
Expansion coefficient: 14,4 x 10-6/K (20 a 300°C)
Thermal conductivity: 14,8 W/mK
4.º Specifications:
Norms

Material

DIN

2,4816

BS

NA14

ASTM
ISO
AFNOR

Chemical

Pipes-Tubes
Welded.

Plates

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

composit

Seamless

17742

17752

17750

17752

17750 17753

17754

3074

3072

3076

3073

3075

3076

B-168

B-166
B-564

B-168

B-166

B-564

B-167
B-163

B-516
B-517

B-366

NiCr15Fe8
NC15Fe

600®
5.º Characteristics and applications:
Alloy 600 is a nickel-base alloy with excellent carburization, and good oxidation resistance at elevated temperatures. The alloy has long been used in the heat treating industry for many of the same application as 330.
Alloy 600 has useful resistance to dry Cl2 and HCl gases at moderately elevated temperatures. Alloy
600 is not suggested for use at red heat when sulfur is present.
Grades 200 and 201 nickel are normally preferred for handling concentrated, high temperature
caustic. However, when sulfur compounds are present as well, or for ammonium hydroxide service,
600 is suggested. Alloy 600 is subject to stress corrosion cracking in hot, concentrated caustic alkalies. To avoid stress corrosion cracking, the 600 fabrication should be fully stress relieved prior to use.
A minium treatment of 1650°F 1 hour is sugested, 1800-1850°F 1 hour preferred.
Alloy 600 shows moderate resistance to mineral acid and good resistance to acetic, formic, stearic and other organic acids.
133

CATALOGO

14/11/05

13:35

Página 134

Excellent resistance is shown in high purity water, as used in the primary and secondary circuits of
some nuclear reactors.
Alloy 600 is particularly resistant to attack by dry chlorine or hydrogen chloride, even at temperatures up to 650°C (1200°F).
At high temperatures in air the annealed and solution treated alloys show good resistance to oxide
scaling and have high strength.
The alloy also resists ammonia bearing atmospheres, as well as nitrogen and carburising gases. Under alternating oxidising and reducing conditions this alloy may suffer from selective oxidation (green
rot).
Applications
Typical applications include:
• thermocouple sheathing in aggressive atmospheres
• vinychloride monomer production; resistance to chlorine, hydrogen chloride, oxidation and carburisation
• conversion of uranium oxide to hexafluoride; resistance to attack by hydrogen fluoride
• production and use of caustic alkalis, particularly in the presence of sulphur compounds
• production of organic and inorganic chlorinated and fluorinated compounds, resistance to attack
by chlorine and fluorine
• nuclear reactor components
• heat treatment furnace retorts and components, particularly with carburising or nitriding atmospheres
• catalyst regenerators in petrochemical production
• production of titanium dioxide by the chlorine route.
6.º Corrosion data:
Sulphuric acid: 2
Nitric acid: 3
Hydrofluoric acid: 2
Phosphoric acid: 2

Sea water: 2
Salts: 1
Alkalis: 1
Chlorydric acid: 2

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 1
Sufidation resistance: 3

Strength & Stability: 1
Nitriding resistance: 1
Carbonitriding resistance: 1

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

134

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 135

601®
Alloy: Inconel-601®
(Ni. Cr. alloy)
UNS-N06601
1.º Chemical composition in %:
Min.
Max.
Balance

Ni

Cr

58
63

21
25

Mo

Co

Fe

Cu
1

C
0,10

Mn
1,5

Si

P

0,5

S

Al

0,015

1
1,7

X

2.º Mechanical properties:
Tensile strength, mini: 559 MPa
Yield strength, mini: 205 MPa

Elongation, mini: 30%
RB = 70-95

3.º Physical properties:
Density: 8,1 kg/dm3.
Specific heat: 461 J/Kg. K
Expansion coefficient: 14,9 x 10-6/K (20 to 300°C)
Thermal conductivity: 11,3 W/mK

Melting range: 1300 to 1370 °C
RB – 70/95

4.º Specifications:
Norms

DIN

Material

2.4851

Chemical

Pipes-Tubes
Welded.

Plates

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

composit

Seamless

17742

17751

17750

17752

17750

B-167
B-163

B-168

B-564
B-166

B-168 B-166 B-564

6207

6208

9723

6208

BS
ASTM
ISO
AFNOR

B-366

NiCr23Fe15Al
NC23FeA

9722

9724

9725

5.º Characteristics and applications:
Alloy 601 is a nickel-chromium alloy, highly resistant to oxidation through 2200°F. Alloy 601 develops
a tightly adherent oxide scale which resists spalling even under conditions of severe thermal cycling. The
alloy has good high temperature strength, and retains its ductility after long service exposure.
Alloy 601 has good hot corrosion resistance, under oxidizing conditions. However 601 is not suggested for use in strongly reducing sulfur bearing environments.
For maximum oxidation resistance, alloy 601 should be welded with matching composition 601
GTAW wire. For GMAW, 333 welding wire has been used. The weld fillers developed for alloy 602 CA
can provide a weld wich is stronger and more oxidation resistant than the 601 base metal.
Corrosion Resistance
An important property of Alloy 601 is resistance to oxidation at temperatures up to 1180°C
(2160°F). Even under severe conditions, such as under cyling heating and cooling, Alloy 601 retains a
tightly adherent oxide layer which is very resistant to spalling.
135

601®

CATALOGO

14/11/05

13:35

Página 136

Resistance to carburisation is good. Alloy 601 has also shown good resistance to carbonitriding
conditions.
Due to its high chromium and aluminium content, Alloy 601 shows good resistance to oxidising sulphur-bearing atmospheres at elevated temperatures.
Applications
Alloy 601 has found a wide variety of applications in industries as diverse as thermal and chemical
processing, pollution control and power generation.
• trays, baskets and fixtures for heat treatment plant
• refractory anchors, strand-annealing and radiant tubes, high velocity gas burners, wire mesh
belts in industrial furnaces
• insulating cans in ammonia reformers and catalyst support grids in nitric acid production
• components in exhaust gas systems
• combustion chambers in solid waste incinerators
• tube supports and ash-handling components
• components of waste-gas detoxification systems
• oxygen preheaters
6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: 2
Hydrofluoric acid: 2
Phosphoric acid: 2

Sea water: 2
Salts: 1
Alkalis: 1
Chloryhidric acid: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 1
Sufidation resistance: 1

Strength & Stability: 1
Nitriding resistance: 1
Carbonitriding resistance: 2

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

136

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 137

625®
Alloy: Inconel-625®
(Ni. Cr. Mo alloy)
UNS-N6625
1.º Chemical composition in %:

Min.

Ni

Cr

Mo

58

20

8

23

10

Max.

Co

Fe

1

5

Cu

C

Mn

Si

P

S

Ti

Al

*

0,10 0,50 0,50 0,015 0,015 0,40 0,40

(*) Nb+Ta=3,15 a 4,15

2.º Mechanical properties:
Tensile strength, mini: 827 MPa
Yield strength, mini: 414 MPa

Elongation, mini: 30%

3.º Physical properties:
Density: 8,5 kg/dm3.
Specific heat: 415 J/Kg. K

Melting range: 1290 to 1350 °C

Density Ib/in3

Melting Range °F

0.305

2350-2460
a

Coefficient of Thermal
Expansion, in/in °F x 10-6

7.3
7.4
7.6
7.8
8.2
8.5
8.8

Temp
°F
70
400
600
800
1000
1200
1400
1600

Thermal Conductivity
Btu•ft/ft2•hr•°F
5.7
7.2
8.2
9.1
10.1
11.0
12.0
13.2

Modulus of Elasticity
Dynamic, psi x 106
29.8
28.4
27.5
26.6
25.6
24.4
23.1

ª 70ºF to indicated temperature

4.º Specifications:
Norms

Material

DIN
BS
ASTM

2,4856
NA21

ISO
AFNOR

NiCr22Mo9Nb
NC22DNb

Chemical

Pipes-Tubes

composit

Seamless

17744

17751
B-444

Welded.

B-704
B-705

Plates

Rounds,

Sheets

Bars

17750
3072
B-443

17752
3076
B-446
B-564

Strips

17750
3072
B-443

Wires Forgings Fittings

17752
B-564

625®
B-366

5.º Characteristics and applications:
Alloy 625 shows excellent corrosion resistance in a wide range of media:
• outstanding resistance to pitting and crevice corrosion in chloride bearing media and to impingement corrosion or intergranular attack.
137

CATALOGO

14/11/05

13:35

Página 138

• High resistance to corrosive attack by mineral acids, such as nitric phosphoric, sulphuric and hydrochloric acids, as well as to alkalis and organic acids in both oxidising and reducing conditions.
Alloy 625 is used both for its high strength and outstanding aqueous corrosion resistance. The strength
of 625 is primarily a solid solution effect from molybdenum and columbium. Alloy 625 has excellent weldability, and is frequently used to weld AL-6XN®. Matching filler metals are also used to join dissimilar metals.
Alloy-625 is a low-carbon nickel-chromium-molybdenum-niobium alloy which shows excellent resistance to a variety of corrosive media.
Due to its low carbon content and stabilising heat treatment, Alloy 625 shows little tendency to sensitisation even after 50 hours at temperatures in the range 650-900 ºC (1200-1650 ºF).
The alloy is supplied in the soft-annealed condition for applications involving wet corrosion, and is approved by TUV for pressure vessels in the temperature range –196 to 450ºC (–321 to 840 ºF).
The mechanical properties of Alloy 625 can be increased by age-hardening.
This alloy is characterised by:









outstanding resistance to pitting, crevice corrosion, impingement corrosion and intergranular attack.
almost complete freedom from chloride-induced stress-corrosion cracking.
good resistance to mineral acids, such as nitric, phosphoric, sulphuric and hydrochloric acids.
good resistance to alkalis and organic acids.
good mechanical properties.
in special high-temperature applications where very high strength and creep values are required,
the high-carbon, solution treated version (Alloy 625, grade 2) should be used.
virtual immunity to chloride-induced stress-corrosion cracking.
practically no corrosive attack in marine and industrial atmospheres. High resistance to seawater and brackish water, even at high temperatures.
no sensitisation during welding.
good resistance to carburisation and to oxidation under static and cyclic conditions, and to chlorine containing gases.

Applications
The soft annealed, low carbon Alloy 625 is widely used in chemical process technology, as its good
corrosion resistance and high strength permit the use of thin structural parts. Alloy 625 is used for
structures in contact with seawater and subject to high mechanical stresses.



flue gas scrubber components.
• chimney linings.
superphosphoric acid production equipment. • nuclear waste reprocessing equipment.
sour gas production tubes.
• product piping systems and sheathing of risers.
offshore industry, marine equipment.

For high-temperature applications, up to about 1000 ºC (1830 ºF), the solution-annealed, high carbon version (Alloy 625, grade 2) is recommended, due to its excellent creep properties.
6.º Corrosion data:
Sulphuric acid: 1
Hydrocloric acid: 1
Hydrofluoric acid: 1
Phosphoric acid: 1

Sea water: 1
Salts: 1
Alkalis: 1

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 1
Sufidation resistance: 2

Strength & Stability: 1
Nitriding resistance: 1
Carbonitriding resistance: 1

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip
138

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 139

718®
Alloy: Inconel-718®
(Ni. Cr. alloy)
UNS-N07718
1.º Chemical composition in %:
Ni

Cr

Mo

Co

Min.

50

17

2,80 4,75

Max.

55

21

3,30 5,50

Fe

Cu

C

Mn

Si

P

S

Ti

Al

Co

0,65 0,20
0,30

0,08 0,35 0,35 0,015 0,015 1,15 0,80

Bo
(X)

1

0,006

X
(X) Cb + Ta=4,75 to 5,5

2.º Mechanical properties:
Tensile strength, mini: 1241 MPa
Yield strength, mini: 1034 MPa

Elongation, mini: 12%
HRC = 40 max

3.º Physical properties:
Density: 8,2 kg/dm3.
Melting range: 1260 to 1340 °C
Specific heat: 432 J/Kg. K
Expansion coefficient: 12,6 x 10-6/K
Thermal conductivity: 11,1 W/mK
4.º Specifications:
Norms

Material

Chemical
composit

DIN

2,4668

ASTM

B-637

ISO
AFNOR

Pipes-Tubes
Seamless

Welded.

Plates

Rounds,

Sheets

Bars

B-670

B-637

AIR9165

AIR9165

Strips

Wires Forgings Fittings

B-670

B-637

NiCr19NbMo
B-637

NiCr19Nb5-Mo3
NC19FeNb

AIR9165

5.º Characteristics and applications:
Alloy 718 is a precipitation hardenable nickel based alloy with high strength, good corrosion resistance, ease of formability and can be welded with good resistance to strain-age cracking. The major
melting route is vacuum induction melting followed by consumable electrode re-melting.
Alloy 718 was initially developed for the aerospace industry but the oil field technology companies realised its benefits of high strength and corrosion resistance and the alloy is now recognised as one of
the most important nickel based alloys in this industry.
The aerospace specifications calls for heat treatments designed to give maximum strength, creep
rupture resistance and hardness. This hardness of approximately 44-46 Rockwell C is in contravention
of the hardness limit of 40 Rockwell C imposed by the National Association of Corrosion Engineers in
194 (NACE MR-01-75).
The mechanical properties on this page are typical of most oil field equipment companies' requirements. In order to obtain the requirements of high strength with maximum hardness of 40 Rockwell C,
specialised heat treatments and production processes, especially in the manufacture of bar below 2"
diameter, are required.
139

718®

CATALOGO

14/11/05

13:35

Página 140

The major applications of Alloy 718 in the oil field industry are Gate Valves, Choke Stems, Fasteners,
Tubing Hangers and Fire Safe Valves.
Alloy 718 i also used for hotworking shear blades, extrusion-dies and liners where conventional tool steels do not have sufficient strength at the high extrusion temperatures required.
Features
• Good mechanical properties –tensile, fatigue and creep-rupture
• Oxidation resistant throughout its useful temperature range
• Resistant to aqueous corrosion and chloride ion stress corrosion cracking
Heat Treatment
718 alloy is strengthened by a precipitation hardening reaction involving columbium, titanium, aluminum and nickel, with a degree of solid solution strengthening by molybdenum. Two commonly used heat treatments are:
Anneal 1700-1850 ºF air cool or faster. Age 1325 ºF 8 hr, furnace cool to 1150 ºF, hold at 1150
ºF for a total aging time of 18 hr, air cool.
Size change in hardening –annealed 718 will show a contraction of 0.0008 inch/inch after precipitation hardening.
Anneal 1900-1950 ºF, air cool or faster. Age 1400 ºF 10 hr, furnace cool to 1200 ºF, hold at
1200 ºF for a total aging time of 18 hr, air cool.
The 1700-1850 ºF treatment is optimum for rupture and notch rupture strength, and rupture ductility. This treatment develops the highest room temperature tensile and yield strengths, but with somewhat reduced transverse ductility. Because of a fine grain size this anneal is used for high cycle fatigue strength.
The 1900-1950 ºF treatment improves transverse tensile ductility, impact strength and low-temperature notch tensile strength. The disadvantages of this treatment are notch brittleness in stress
rupture and, because the higher temperature anneal develops a coarser grain size, reduced fatigue
strength.
Applications:
Gas turbine engine parts. Liquid fuel rocket motor components, springs, fasteners, cryogenic tanks.
6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: 2
Hydrofluoric acid:
Phosphoric acid: 2

Sea water: 1
Salts: 1
Alkalis: 1

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 1
Sufidation resistance: 2

Strength & Stability: 1
Nitriding resistance: 1
Carbonitriding resistance: 1

7.º Weldability:
Excellent welding characteristics, resistant to postweld age cracking.
8.º Products, we supply:
x Plate-strip

140

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 141

X-750®
Alloy: Inconel X-750®
(Ni. Cr. alloy)
UNS-N07750
1.º Chemical composition in %:

Min.

Ni

Cr

Mo

70

14

0,7

17

1,20

Max.

Co

Fe

Cu

C

Mn

Si

P

S

5
1

9

0,50

0,08

1

0,50

0,01

Al

Ti

0,4

2,25

1

2,75

(x)

(X) Nb+Ta = 0,7 to 1,20

2.º Mechanical properties:
Tensile strength, mini: see ASTM-B-637
Yield strength, mini: see ASTM-B-637

Elongation, in 2”: see ASTM-B-637

3.º Physical properties:
Density: 8,3 kg/dm3.
Melting range: 1395 to 1430 °C
Specific heat: 430 J/Kg. K
Expansion coefficient: 12,9 x 10-6/K (20 to 100°C)
Thermal conductivity: 12 W/mK
4.º Specifications:
Norms

Material

Chemical
composit

DIN

Pipes-Tubes
Seamless

Welded.

Plates

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

2,4669

ASTM

B-637

ISO

NiCr15Fe5Ti
2Al

AFNOR

NC15TNbA

B-637 B-637 B-637

B-366

5.º Characteristics and applications:
Alloy X750 is a precipitation hardenable nickel-chromium alloy used for its corrosion and oxidation
resistance and high strength at temperatures to 704 ºC (1300 ºF). Although much of the effect of precipitation hardening is lost with increasing temperature over 704 ºC (1300 ºF), heat- treated material
has useful strength up to 982 º C (1800 º F). Alloy X-750 also has excellent properties down to cryogenic temperatures.
Depending on the application and the properties desired, various heat treatments are employed. For
service above 593 º C (1100 º F), particulary where loads are to be sustained for long times, optimum
properties are achieved by solution treating (1148 ºC, 2100 º F) plus stabilization treating (843 ºC,
1550 º F) plus precipitation treating (ageing) (704 º C, 1300 ºF).
Applications:
The major oil field application for Alloy X-750 is seal rings for connectors and fire safe valves and
choke stems. The mechanical properties detailed are typical of the major oil field equipment companies'
141

X-750®

CATALOGO

14/11/05

13:35

Página 142

requirements and are achieved after an extensive 47 hour heat treatment operation. Other applications
are heatreating fixtures, forming tools, extrusion dies, and test machine grips. For springs and fasteners, Alloy X-750 is used from sub-zero to 648 ºC, (1200 º F).
6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: 2
Hydrofluoric acid:
Phosphoric acid: 2

Sea water: 2
Salts: 1
Alkalis: 1
Nitric acid: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 1
Carburization resistance: 1
Sufidation resistance: 2

Strength & Stability: 1
Nitriding resistance: 1
Carbonitriding resistance: 1

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

142

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 143

400®
Alloy: Monel-400®
(Ni. Cu. alloy)
UNS-N04400
1.º Chemical composition in %:
Ni
Min.

Cr

Mo

Co

Fe

Cu

63

C

Mn

Si

0,30

2

0,5

P

S

Al

Ti

28

Max.

2,5

34

0,024

2.º Mechanical properties:
Tensile strength, mini: 485 MPa
Elongation A5 = 35 % min.

Yield strength 0.2: 195 MPa min.
HRB = 68 to 83

3.º Physical properties:
Density: 8,85 Kg/dm3.
Specific heat: 430 J/Kg.K
Expansion coefficient: 15,8 x 10-6/K
Thermal conductivity: 26 W/mK

Melting range: 1300 to 1350 ºC

4.º Specifications:
Norms

Material

DIN

2.4360

BS

NA13

Chemical

AFNOR

NICU30

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

Seamless

17743

17751

17750

17752

17750 17753 17754

3074

3072

3076

3073

9722

Welded.

Plates

composit

ASTM
ISO

Pipes-Tubes

3075

B-163
B-165

B-725
B-730

B-127

B-164
B-564

B-127 B-164 B-564

6207

6208

9723

6208

9724

B-366

9725

NU30

5.º Characteristics and applications:
This alloy is characterised by:
corrosion resistance in a wide range of marine and chemical environments
freedom from chloride induced stress-corrosion cracking
good mechanical properties from sub-zero temperatures up to about 550 ºC (1020 ºF)
approval for pressure vessels with wall temperatures form -10 to 425 ºC (14 to 800 ºF) according to VdTÜV-Wbl.263 and up to 900 ºF (480 ºC) according to ASME Boiler and Pressure Vessel Code
• good workability.



Corrosion Resistance
Alloy 400 has outstanding resistance to neutral and alkaline salts. It has been a standard material
for salt plants for many years.
143

400®

CATALOGO

14/11/05

13:35

Página 144

This alloy is one of the few metallic materials which can be used in contact with fluorine, hydrofluoric acid, hydrogen fluoride or their derivatives.
Alloy 400 shows very high resistance to caustic alkalies. Behaviour in seawater is also excellent,
with improved resistance to cavitation corrosion compared with copper-base alloys. It can be used in
contact with dilute solutions of mineral acids such as sulphuric and hydrochloric acids, particularly if
they are air-free. However, as the alloy contains no chromium, corrosion rates may be increased significantly in oxidising conditions.
Whilst Alloy 400 can be considered immune to chloride-ion stress cracking, it can stress crack in
the presence of mercury or in most aerated HF vapours. A stress relieving heat treatment is applied in
such cases.
Applications









feed-water and steam generator tubing in power plants
brine heaters and evaporator bodies in salt plants
sulphuric and hydrofluoric acid alkylation plants
industrial heat exchangers
cladding for crude oil distillation columns
splash-zone sheathing in offshore structures
propeller and pump shafts for seawater service
plants for uranium refining and isotope separation in the production of nuclear fuel.
pumps and valves used in the manufacture of chlorinated hydrocarbons
monoethanolamine (MEA) reboiler tubes

6.º Corrosion data:
Sulphuric acid: 1
Hydrocloric acid: 1
Hydrofluoric acid: 1
Phosphoric acid: 1

Sea water: 1
Salts: 1
Alkalis: 1
Nitric acid: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 3
Carburization resistance: 3
Sufidation resistance: –

Strength & Stability: 3
Nitriding resistance: –
Carbonitriding resistance: –

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

144

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 145

K500®
Alloy: Monel K-500®
(Ni. Cu. alloy)
UNS-N05500
1.º Chemical composition in %:
Ni
Min.

Cr

Mo

Co

Fe

Cu

C

Mn

Si

P

S

27

63

Max.

2

33

0,18

1,5

0,50

0,010

Al

Ti

2,3

0,35

3,15 0,85

2.º Mechanical properties:
Tensile strength, mini: 965 MPa
Elongation A5 = 20 % min

Yield strength 0.2: 690 MPa mini
HRC = 27 mini

3.º Physical properties:
Density: 8,9 Kg/dm3.
Specific heat: 456 J/Kg.K
Expansion coefficient: 14,9 x 10-6/K
Thermal conductivity: 17,4 W/mK

Melting point: 1310 to 1350 ºC

4.º Specifications:
Norms

Material

DIN

2.4375

BS

NA18

Chemical

Pipes-Tubes

composit

Seamless

Welded.

17743

17743

17743

3074

ASTM
ISO
AFNOR

Plates

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

17752
3072

3076
B-865

17754
3073

3075
B-865 B-865

NICU30Al3Ti
NU30AT

5.º Characteristics and applications:
Alloy K-500 is a nickel-copper alloy with age-hardening properties imparted by alloying additions of
aluminium and titanium. Its basic composition is similar to that of Alloy 400 but the alloying additions
make it age hardenable under controlled conditions of temperature and time.
The alloy can be delivered in the annealed, stress equalised, hot finished or age-hardened conditions.
This alloy is characterised by:
• excellent corrosion resistance in an extensive range of natural and chemical environments
• excellent resistance to chloride-ion stress-corrosion cracking
• very high strength and hardness

K500®

Corrosion Resistance
In general the corrosion resistance of Alloy K-500 is similar to that of Alloy 400.
145

CATALOGO

14/11/05

13:35

Página 146

Excellent resistance is shown to a wide range of media from pure water to mineral acids, salts and
alkalis. Alloy K-500 is virtually immune to chloride-ion stress corrosion cracking. In the aged condition,
the alloy may be susceptible to stress-corrosion cracking in moist, aerated hydrofluoric acid vapour at
stresses near the yield strength.
In high velocity seawater and in marine atmospheres, good resistance is shown but, in slow moving or
stagnant seawater, pitting may occur. Alloy K-500 also shows good resistance in sour-gas environments.
Applications
Alloy K-500 finds wide application in the marine, chemical, petrochemical and shipbuilding industries.
• valve seals, pump sleeves and wear rings in marine environments – high strength and resistance
to seawater
• pump shafts for fire-fighting pumps – high strength (resulting in smaller diameter shafts) and resistance to flowing seawater
• propeller shafts – high strength (resulting in smaller diameter shafts and thus smaller bearings)
and resistance to seawater
• fasteners e.g. bolts, used in marine atmospheres and tidal waters – resistance to chloride – containing environments
• doctor blades and scrapers
• towing cable armouring – high strength, non-magnetic properties and resistance to seawater
• springs – resistance to a variety of corrosive media
• oil well drilling equipment such as non-magnetic drill collars, valves and instrumentation sleeves –
resistance to chloride-containing media and sour gas environments
• aviation instrument components – non-magnetic properties
6.º Corrosion data:
Sulphuric acid: 1
Hydrocloric acid: 1
Hydrofluoric acid: –
Phosphoric acid: 1

Sea water: 1
Salts: 1
Alkalis: 1
Nitric acid: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

6.1. Corrosion data at high temperatures:
Oxidation resistance: 3
Carburization resistance: 3
Sufidation resistance:

Strength & Stability: 3
Nitriding resistance: –
Carbonitriding resistance: –

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

146

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 147

NICKEL-200
Alloy: Nickel-200
(Ni alloy)
UNS-N02200
1.º Chemical composition in %:
Ni
Min.

Cr

Mo

Co

Fe

Cu

C

0,40

0,25

Mn

Si

P

S

99

Max.

0,15 0,35

0,35

0,010

2.º Mechanical properties:
Tensile strength, mini: 380 MPa
Elongation A5 = 40 % mini

Yield strength 0.2: 100 MPa mini

3.º Physical properties:
Density: 8,9 Kg/dm3.
Expansion coefficient: 14,3 x 10-6/K (20 to 300°C)

Specific heat: 456 J/Kg.K
Thermal conductivity: 74 W/mK

4.º Specifications:
Norms

Material

DIN

2.4066

BS

NA11/12

Pipes-Tubes

Plates

Rounds,

Strips

Wires Forgings Fittings

composit

Seamless

Welded.

Sheets

Bars

17740

17751

17751

17750

17752

17750 17753 17754

3072

3076

3073

3075

B162

B160
B564

B162

B160

3074
B161
B163

ASTM
ISO

Chemical

B725
B730

B564

B366

Ni99.0

5.º Characteristics and applications:
Alloy 200 is technically pure nickel with good mechanical properties and excellent resistance to alkali hydroxides, dry halogen hydrides as well as organic compositions. Even when exposed to high temperatures, alloy 200 retains its strength and is ductile at low temperatures. Alloy 200 is a multipurpose grade and is used in applications where alloys are not essential. It also has good magnetic and
magnet ostrictive properties, high thermal and electrical conductivity as well as low gas content in the
electronics industry.
Applications:
Chemical and food industry, loading plants, electrical and electronical parts, parts and equipment
for aircrafts and rockets, transducers, textile industry, glass industry, soap industry, handling of fatty
acids, etc.

147

NICKEL-200

CATALOGO

14/11/05

13:35

Página 148

6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: 2
Hydrofluoric acid: 1
Phosphoric acid: 2

Sea water: 1
Salts: 1
Alkalis: 1
Nitric acid: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

148

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 149

NICKEL-201
Alloy: Nickel-201
(Ni alloy)
UNS-N02201
1.º Chemical composition in %:
Ni
Min.

Cr

Mo

Co

Fe

Cu

C

0,40

0,25

Mn

Si

P

S

99

Max.

0,02 0,35

0,35

0,01

2.º Mechanical properties:
Tensile strength, mini: 380 MPa
Elongation = 40 % mini

Yield strength 0.2: 100 MPa mini

3.º Physical properties:
Density: 9,89 Kg/dm3.
Specific heat: 440 J/Kg.K
Thermal conductivity: 76 W/mK

Melting range: 1435 to 1445 °C
Expansion coefficient: 13,5 x 10-6/K

4.º Specifications:
Norms

Material

DIN

2.4068

BS

NA12

ASTM
ISO

Chemical

Pipes-Tubes

Rounds,

Sheets

Bars

Strips

Wires Forgings Fittings

composit

Seamless

17740

17751

17750

17752

17750 17753 17754

3074

3072

3076

3073

B-162

B-160
B-564

B-162

B-161
B-163

Welded.

Plates

B-725
B-730

3075
B-564

B-366

LcNi.99

5.º Characteristics and applications:
Alloy 201 is an alloy similar to Nickel 200. The carbon content of the former is a little above that
of Nickel 200. Due to this difference, alloy 201 is preferred in caustic soda above 300 ºC. Alloy 201
disposes of the same high thermal and electrical conductivity and of the same magnetic and magnetostrictive properties as the grade Nickel 200.
Applications:
Caustic evaporators, plating rods, combustion boats, chemical plants with operating temperatures
above 300 ºC, for example in caustic soda manufacturing plants.

NICKEL-201

149

CATALOGO

14/11/05

13:35

Página 150

6.º Corrosion data:
Sulphuric acid: 2
Hydrocloric acid: 2
Hydrofluoric acid: 1
Phosphoric acid: 2

Sea water: 1
Salts: 1
Alkalis: 1
Nitric acid: 3

Symbols:
1. Good to excellent
2. Acceptable
3. Inadequate

7.º Welding properties:
Good weldability.
8.º Products, we supply:
x Plate-strip

150

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 151

TANTALUM
Metal: TANTALUM
It is a industrialy pure metal.
Chemical composition:
Average composition in mg/g:
Ta

Ta+Nb Ag

99,85 99,90

C

Cd

Co

Cr

Cu

Fe

H

K

Mg

Mn

Mo

N

Na

Nb

<5

15

<10

<10

<10

<10

50

<1

<5

<5

<5

50

5

<5

150

Fe

H

K

Mg

Mn

Mo

N

Na

Nb

Ni

O

Pb

S

Ti

W

Zn

Zr

30

20

<10

<5

<15

200

<5

<5

K alloy (average composition):
Ta
99,98
Ni

Ta+Nb Ag

C

Cd

Co

Cr

Cu

S

Ti

W

Zn

Zr

As previous
O

Pb

200
Grades = ASTM-B-364 and 365.

Introduction:
The tantalum has been accepted as a preferred material for a wide variety of applications.
Tantalum is not a new material. Its first commercial use at the turn of the century was as filaments
in light bulbs. Later, when it became apparent that tantalum was practically inert to attack by most
acids, applications in the laboratory and in the chemical and medical industries were developed. The
rise of the electronics industry accelerated the development of many new applications.
Much of this growth can be attributed to a broader range of tantalum powders and mill products
available from the producers and increasing utilization of tantalum's unique properties – high melting
point, ability to form a dielectric oxide film and chemical inertness. Encouraging these applications, new
reduction, melting, and fabrication techniques have led to higher purities, higher reliabilities and improved yields to finished products.
Physical Properties:
Pure tantalum has a body centered cubic crystal lattice. There is no allotropic transformation to the
melting point which means that unalloyed tantalum cannot be hardened by heat treatment. Additions of
oxygen, carbon or nitrogen above normal levels, either purposefully or accidentally, are considered as
alloying additions no matter what the concentration.

TANTALUM
151

CATALOGO

14/11/05

13:35

Página 152

TABLE I Physical Properties of Tantalum:
Atomic Weight

180.9
16,6 gm/cc, 0.601 Ib/in3

Density
Melting Point

2996 ºC, 5432 ºF
9.525 x 10-11 mmHg

Vapor Pressure at 1727 ºC

1135 ºK 5.76 x 10-6/ºC
1641 ºK 9.53 x 10-6/ºC
2030 ºK 12.9 x 10-6/ºC
2495 ºK 16.7 x 10-6/ºC

Linear Coefficient of Expansion

Thermal Conductivity

20 ºC
100 ºC
1430 ºC
1630 ºC
1830 ºC

Specific Heat

100 ºC

0.130 cal/cm-sec ºC
0.131 cal/cm-sec ºC
0.174 cal/cm-sec ºC
0.186 cal/cm-sec ºC
0.198 cal/cm-sec ºC
0.03364 cal/gm

Electrical Conductivity

13.9 % IACS

Electrical Resistivity

-73ºC
75ºC
127ºC
1000ºC
1500ºC
2000ºC

9.0 micro-ohm/cm
12.4 micro-ohm/cm
18.0 micro-ohm/cm
54.0 micro-ohm/cm
71.0 micro-ohm/cm
87.0 micro-ohm/cm

Mechanical properties:
The room temperature mechanical properties of tantalum are dependent on chemical purity,
amount of reduction in cross-sectional area and temperature of final annealing. Annealing time does
not appear to be critical. Close control over the many parameters which affect mechanical properties
are mandatory to insure reproducible mechanical behavior.
TABLE II Typical Mechanical Properties Annealed Tantalum Sheet

Thickness
0.005 Deep Draw
0.005 Regular
0.010 Regular
0.030 Regular
0.060 Regular

.2% Yield
Strength PSI

Ultimate
Tensile
Strength PSI

Elongation %

29,000
44,000
40,000
35,000
35,000

41,000
55,000
52,000
45,000
45,000

22
18
32
40
42

Hardness
Rockwell
15 T
B



75
75





48

Tantalum can be strengthened only by cold work with resulting loss in ductility. As certain residual impurities have pronounced effects on ductility levels and metallurgical behaviour, the purpose of most consolidation techniques is to make the material as pure as possible. Cold working methods are used almost
without exception to preclude the possibility of embrittlement by exposure to oxygen, carbon, nitrogen and
hydrogen at even moderate temperatures. Temperatures in excess of 800ºF should be avoided.
152

CATALOGO

14/11/05

13:35

Página 153

METALLURGICAL CONDITION ... There are basically three structures which can be ordered: (1)
unannealed, (2) stress-relieved, and (3) annealed.
Unannealed ... In the unannealed condition, the structure will be typically wrought fibrous. Yield and
tensile strength will be increased with corresponding decreases in elongation as shown in Table III. The
amount of work-hardening will be dependent on the amount of cold reduction since the last anneal. The
rate of work-hardening is rapid for the first 30% of reduction. The rate then diminishes so that there
will be no appreciable strengthening until reductions of over 90% are taken. There is actually no limit
to the amount of cold work which the metal can take; there are only equipment limitations or mechanical limitations, such as, poor shape control in rolling or excessive thinning when forming which dictate periodic heat treatment in vacuum to soften the metal.
Unannealed tantalum may be preferred for machinability although our provider’s machinists indicate
no preference. Corrosion behavior is not affected nor is the susceptibility to interstitial contamination
changed. Unannealed sheet .030" thick and under can make a 1 x thickness bend, but the annealed
condition is preferred when bending since the metal is not as stiff or as springy.
TABLE III Typical Mechanical Properties. Tantalum Sheet with Increasing Cold Work

Percent
Cold Work

.2% Yield
Strength PSI

Ultimate
Tensile
Strength PSI

30
50
80
90
95
98

70,600
82,200
100,500
117,800
127,000

74,200
86,000
109,200
123,400
135,500
135,500

Elongation %

Hardness
VHN

18
9
4
2
1
1

189
192
235
239
265
280

Stress-Relieved ... Stress-relieving at 1850 ºF in vacuum reduces yield and tensile strengths and raises elongation levels. These properties will be intermediate between annealed and unannealed. Stressrelieving has been used more as a matter of expediency than design. Fabricators need some ductility
to allow them to roll tubes into tube sheets. Until recently, the only tubular heat treating vacuum furnaces were limited to 1850 ºF maximum. This equipment limitation dictated the use of stress-relieving.
As newer furnaces allowing full annealing in vacuum are now on stream, stress-relieving may gradually
fall into disuse.
Annealed ... Tantalum specified in the annealed condition is in its softest, most ductile condition. The
usual objective of the procedure is to choose an annealing temperature which will result in compIete
recrystallization but avoid excessive grain growth. This temperature will be about 2150 ºF ±75 ºF. The
temperature for recrystallization is, however, considerably affected by the purity and amount of cold
work prior to annealing.
When the amount of reduction is limited, complete recrystallization is very difficult unless the annealing
temperature is substantially increased. Purity is at the core of this problem. Unless sufficient work (about
75% reduction) is put into the material, tantalum does not have the impurities present to act as nucleation sites for grain growth unless an inordinate amount of energy in the form of annealing heat is added.
This will result in recrystallization, but to a very large grain size. The larger the cross-section, the more severe is this problem. Recrystallization to a finer grain size becomes more readily obtainable. The tensile
test is normally used to determine the state of anneal. ASTM specifications for annealed tantalum are
shown in Table IV.
This test is backed by hardness tests, Olsen cups, and grain size determinations to insure product
quality. The Olsen test is particularly effective for thin sheet as tensile test elongations decrease as a
function of material thickness. The Olsen cup has the added advantage of detecting any strong directionality tendencies or to show “orange peel” indicating a coarse grain. (See Table V).
153

CATALOGO

14/11/05

13:35

Página 154

Tantalum sheet develops directionality if a producer does not choose his rolling and annealing schedules with care. Directionality is a term used to describe non-uniform sheet properties in the rolling direction and transverse to the rolling direction. Sheet with directionality has reduced elongations in the
transverse direction which may affect performance in spinning and deep drawing operations. When
these metal working functions are to be performed, it is helpful for the user to so specify when ordering the material.
TABLE IV ASTM Specification Limits for Tensile Properties. Test Procedure ASTM E8-61T
Ultimate PSI
Maximun
Minimum

Yield PSI
Maximun

Elongated
Minimum %

Hardness
Maximum

Cold Worked

75,000

2

Stress-Relieved
any section exceeding .021"
any section less than .021"

55,000
55,000



10
7,5



55,000
55,000

45,000
45,000

25
15

Annealed
any section exceeding .021”
any section less tahn .021" to
.005 minimum

80

15T

TABLE V Annealed Tantalum Sheet. Olsen Cup Data 7/8" Ball

.030 Regular
.020 Regular
.010 Regular
.005 Deep Draw
.005 Regular

Typical

Depth
Specification
Minimum

Force (Ibs.)
Typical

.450
.425
.350
.380
.250



.320
.320

3920
3200
1540
820
504

FORMING ... Tantalum in the annealed condition is an extremely ductile material. Unusually high reductions without annealing are possible because of its low rate of work hardening characteristics. Tubing 11/16" diameter with a 1/8" wall by 16" long has been drawn from circular blanks without annealing in a series of seven draws. It is nevertheless recommended that the producer be advised when
spinning or drawing is planned.
Spinning ... Successful tantalum spinning can be accomplished using conventional spinning techniques. The slow work hardening rate permits repeated drafts without in process anneals, unless unusually severe formations are to be attempted. Spinning thinner material such as .010" or .020" thick
may have to be annealed more often.
Mandrels should be made of steel or aluminum bronze. Hardwood and composition mandrels are
usually too soft to permit sufficient ironing for good surface finish. If steel mandrels are used, bottoms
should be faced with aluminium bronze to prevent galling of the blank. Steel roller wheels or yellow
brass tools are used with generous amounts of yellow soap. A commercial compound, Warren's Spinning Compound #1, has been found to offer good lubricating characteristics for tantalum.
Deep Drawing ... Although tantalum is a soft, ductile metal, certain precautions are suggested for
optimum results. Conventional reductions are possible provided due allowance is made for tantalum's
galling characteristics. The metal will have more of a tendency to seize on the punch and/or draw ring.
This friction may result in premature failure unless lubrication is generous. Aluminum bronze is recommended for the draw ring when justified.
154

CATALOGO

14/11/05

13:35

Página 155

The metal can be stretched and ironing is feasible with aluminum bronze dies. As in any deep drawing operation, some experimentation with holddown, punch and draw ring radii and clearance may be
necessary to prevent wrinkling. Initial reductions of 50% are possible. Drawing may be continued although gradually decreasing the amount of reduction per draw is recommended.
Niobium and tantalum can be clad onto other metals such as steel, aluminum and copper to produce cost effective composites.
Niobium and tantalum can be machined using standard equipment and cutting tools. Water soluble
oil is used as a cutting fluid for turning, drilling, milling and sawing. Chlorothane is used as an assist for
tapping.
Niobium and tantalum can be welded to themselves and to several other metals by resistance welding, tungsten-inert gas, plasma welding and electron beam welding. Formation of brittle intermetallic
phases is likely with many metals and must be avoided. Surfaces to be heated above 300 °C should
be protected by and inert gas (argon or helium) to prevent embrittlement.
Corrosion resistance:
Selecting any material for corrosive service can be fraught with hazards. Operating conditions can
be substantially different from the conditions used in the laboratory to establish base line data. Whenever possible, a welded sample should be exposed to the expected operating environment. The following
comments are based on laboratory data which should be used only as a guide for preliminary screening
when material selection problems exist.
Tantalum is extremely resistant to corrosion by most acids. Like glass, one of the few exceptions to
its general acid resistance is hydrofluoric acid which will attack tantalum readily. Any solution containing
the fluoride ion should be avoided. Concentrated sulfuric acid and to a lesser degree, hot 85% phosphoric acid will attack tantalum. Hydrochloric, nitric and 80% phosphoric acid provided fluorine is kept
below 5 ppm, chromic, oxalic and organic acids should not be detrimental.
Tantalum is less resistant to alkaline solutions. Boiling solutions of strong alkalies will rapidly attack
the metal. This attack is somewhat temperature and concentration dependent, but in general, service
in strong alkalies above room temperature should be avoided.
The material is not usually attacked by salt solutions except those which contain or will hydrolyze to
strong alkalies or by fluorides. Chlorides and bromides such as ferric chloride, mercuric and stannous
chloride up to 350 ºF should be satisfactory.
Great care should be exercised to prevent hydrogen embrittlement by electrolytic action in practically
all electrolytes particularly at elevated temperature. Embrittlement may result from either galvanic coupling or because of stray electric currents. To prevent this embrittlement from occurring, tantalum
should be insulated from other metals in the equipment and any stray currents should be located and
eliminated.
At temperatures not exceeding 300 ºF and in the absence of fluorine, free SO3 or strong alkalies,
most organic and inorganic liquids will not effect tantalum. The same is true of nearly all corrosive gases including either wet or dry chlorine or bromine. Temperatures in excess of 300 ºF could lead to longer term embrittlement problems unless there is protection from interstitial contamination. Tantalum
has shown excellent resistance to attack by such liquid metals as sodium, lithium, magnsium, potassium and mercury in temperatures to 2000 ºF.
Corrosion rates for tantalum, miobium, titanium and 304 stainless steel are listed for comparison
in table VI.

155

CATALOGO

14/11/05

13:35

Página 156

TABLE VI Comparison of corrosion rates for Tantalum, Niobium, Titanium, 304 Stainless Steel and
Platinum
Medium

Acetic Acid
AlCl3 (10% soln)
NH4Cl(10% soln)
HCl, 20%
, conc.
HNO3, 20%
, 70%
, 65%
H3PO4, 85%
H2SO4, 10%
, 40%
, 98%
, 98%
, 99%
, 98%
, 98%
H2SO4, fuming (15% So3)
Aqua regia
Chlorine, wet
H2O, Cl2 sat
, sea
Oxalic acid
NaOH, 5%
, 10%
, 40%
HF, 40 %
(a) indicates no data
(b) embrittled

156

Temp.

Corrosion Rate (mils/yr.)

ºC

ºF

Ta

100
100
100
21
100
21
100
100
100
170
25
100
25
25
25
50
100
200
250
23
70
25
75
25
25
21
96
21
100
100
80
25

212
212
212
70
212
70
212
212
212
338
76
212
76
76
76
122
212
392
482
73
158
78
167
76
76
70
205
70
212
212
176
76

nil
nil
nil
nil
nil
nil
nil
nil
nil
<1
nil
nil
nil
nil
nil
nil
nil
3
rapid
0.5
rapid
nil
nil
nil
nil
nil
0.1
nil
0.7
<1
rapid
rapid

Nb

Ti

–(a)
nil

nil
nil
<0.5
0.04


175
0.1

4(b)
rapid
nil
nil
nil
nil

<5
<1
8
3(b)
40
nil
7
0.1
60
0.2

0.8 (b)

115(b)
high
rapid
rapid


(assume rapid)


nil
35
nil
nil
nil
5
nil
nil
0.6(b)



1.1


rapid

8

5
rapid
rapid

s.s.
304

Pt

20
20
>20

high

rapid

7
> 50
> 50

> 50
>> 50









> 50
50



<1
<1
5

nil
nil
nil
nil


1
nil
nil



nil
nil
nil
nil
nil




800
0.1
nil
nil



nil
nil
nil
nil

CATALOGO

14/11/05

13:35

Página 157

NIOBIUM AND TANTALUM IN MATERIALS SELECTION
Introduction:
Niobium and tantalum are members of the refractory metals family, characterized by their very high
melting points.
The similarity of these two metals goes far beyond their occurrence and discovery. Their chemical
properties are so similar that it was difficult to positively establish their individual identities in early work.
Both tantalum and niobium are tough, ductile metals which can be formed into almost any shape. Because of their resistance to chemical attack, and their excellent formability, they are often used in corrosion resistant applications for environments which no other metals can withstand. Their major limitation is reactivity with oxygen and nitrogen in the air at temperatures above 300 to 400 ºC.
Tantalum and niobium have many unique applications as pure metals, and form the basis for a family
of alloys having similar chemical, physical and high temperature properties.
Material properties:
Niobium and tantalum are tough, ductile, silvery gray metals with a unique combination of mechanical and physical properties. Physical property data for both metals are summarized in Table I. Niobium
has a density close to that of copper, but only about half the density of tantalum and tungsten. The good thermal conductivity values for both tantalum and niobium make them good candidate materials for
heat transfer applications.
Mechanical property data for niobium and tantalum are summarized in Table II. They have moderate strengths and can be work hardened to a considerable degree. In addition, both tantalum and niobium display good toughness at very low temperatures. Alloys of these metals are available with improved elevated temperature tensile and creep properties to temperatures as high as 1650 ºC.
Regarding chemical characteristics,5 Niobium resists most organic acids and mineral acids at all
concentrations below 100 ºC, except HF. Tantalum is more corrosion resistant to these at higher concentrations and at higher temperatures (190ºC). Resistance to many liquid metals makes them candidates for applications ranging from metallurgical process equipment to liquid metal cooled nuclear reactors. Niobium and tantalum are resistant to attack in many liquid metals: Li<1000 ºC, Na, K + NaK
<1000 ºC, ThMg<850 ºC, U<1400 ºC, Zn<450ºC, Pb<850 ºC, Bi<500 ºC, and Hg<600 ºC. Because of their ability to form stable, passive oxide films niobium and tantalum can provide unique solutions
to many corrosion problems. A good example is the use of niobium heat components in fluoride catalyzed chrome plating operations. Neither metal, however, can be used in air at temperatures above 200
ºC for niobium or 300 ºC for tantalum. Typical comparative corrosion data for niobium and tantalum
are presented in Table III.
Because of their bcc crystal structure, niobium and tantalum are very ductile metals which can undergo cold reductions of more than 95% with out failure. Heavy sections can be heated for forging to ~450
ºC without protection. Both metals can be rolled, drawn, and extruded to produce a wide range of products. Tantalum and niobium have a tendency to stick to tooling during metal forming operations. As a result, specific lubricant and die material combinations are required in high pressure forming operations.
Niobium and tantalum –two refractory metals with unique properties that dictate a number of high
performance applications– are often used in areas where long range cost effectiveness becomes a primary consideration. By illustrating some of niobium and tantalum's similarities, and by contrasting some of their differences, this paper provides some interesting and new insights into the metals themselves. It is intended as a guide to metallurgists, applications engineers and others concerned with finding
long range solutions to specialized and highly demanding materials selection problems.
Niobium and tantalum can be clad onto other metals such as steel, aluminum and copper to produce cost effective composites.
Niobium and tantalum can be machined using standard equipment and cutting tools. Water soluble oil is
used as a cutting fluid for turning, drilling, milling and sawing. Chlorothane is used as an assist for tapping.
Niobium and tantalum can be welded to themselves and to several other metals by resistance welding, tungsten-inert gas, plasma welding and electron beam welding. Formation of brittle intermetallic
phases is likely with many metals and must be avoided. Surfaces to be heated above 300 ºC should
be protected by an inert gas (argon or helium) to prevent embrittlement.
157

CATALOGO

14/11/05

13:35

Página 158

Table I. Physical Properties of Niobium and Tantalum

Atomic Weight
Density
Melting Point
Boiling Point
Coefficient of Thermal Expansion (RT)
Electrical Resistivity
Electrical Conductivity
Specifie Heat
Thermal Conductivity
Crystal Structure
Thermal Neutron Cross Section

Niobium

Tantalum

92.9064
8.66g/cc
2468 ºC
4927 ºC
7,1 x 10-6/ºC
15 /cm
13.2% IACS
.126 J/g
.523 J
bcc
1.1 b

180.95
16.6g/cc
2996 ºC
5431 ºC
6.5 x 10-6/ºC
13.5 /cm
13.9% IACS
.140 J/g
.544 J
bcc
21.3 b

Table II. Mechanical Properties of Niobium and Tantalum
Annealed:
Ultimate Tensile Strength
Yield Strength
% Elongation
% Reduction in Area

Niobium:
195 M Pa(28 ksi)
105 M Pa(15 ksi)
30 % +
80 % +

Tantalum:
285 M Pa(41 ksi)
170 M Pa(25 ksi)
30 % +
80 % +

Cold Worked:

Ultimate Tensile Strength
% Elongation

585 M Pa(85 ksi)
5%

650 M Pa(95 ksi)
5%

Hardness:

Annealed
Cold Worked

60 HV
150 HV

90 HV
210 HV

Poisson's Ratio

.38

.35

Strain Hardening Exponent

.24

Elastic Modulus

.24
6

Tension
Shear

Ductile Brittle. Transition Temperature

103 G Pa(15 x 10 psi)
37.5 G Pa(5.4 x 106psi)

186 G Pa(27 x 106psi)

<147 ºK

<75 º K

800-1100 ºC

900-1200 ºC

(Significantly affected
by increasing interstitial contents.)
Recrystallization Temperature

Table III. Comparative Corrosion Resistance Of Refractory Metals
Media
Acetic Acid
Bromine
Chlorine
Chromic Acid
Hydrochloric Acid
Hydrochloric Acid
Nitric Acid
Sodium Hydroxide
Sulfuric Acid
Sulfuric Acid

Concentration

Temp.

Nb

Ta

Ti

Zr

50%
Dry
Wet
50 %
5%
30 %
65 %
10 %
40 %
98 %

Boiling
200 F
220 F
Boiling
200 F
200 F
Boiling
Room
Boiling
Boiling

Nil
Nil
Nil
1mpy
1mpy
5mpy
<2mpy
(1)
20mpy
attacked

Nil
Nil
Nil
Nil
Nil
Nil
<2mpy
(1)
Nil
<2mpy

Nil
attacked
Nil
5mpy
>100mpy
rapid
<2mpy
Nil
rapid
rapid

Nil
Nil
10mpy
5mpy
Nil
Nil
<2mpy
Nil
3mpy
<200

Material may become brittle due to hydrogen attack.

158

CATALOGO

14/11/05

13:35

Página 159

Both niobium and tantalum are more expensive than other specialty engineering materials. However,
when the metal costs are incorporated into finished equipment costs, the cost differences are not nearly as great as one might expect. The cost premium associated with niobium and tantalum chemical
process equipment can be justified in many applications requiring long life and low maintainance costs.
Niobium and tantalum applications:
The most common application for niobium is as an alloy addition to steels and superalloys for elevated temperature service, particularly in aerospace applications. Niobium itself is used in many applications, including heat exchangers for chromeplating solutions, cathodic protection systems, electronic
components and nuclear applications.
Niobium's combination of strength, melting point, resistance to chemical attack and low neutron absorption cross-section promotes its use in the nuclear industry. Tantalum does not have a low neutron
absorption cross-section and is used for radiation shielding. Niobium has been identified as the preferred construction material for the first reactors in the space power systems programs.
Although the electronics industry consumes the majority of tantalum produced (approximately 60%)
for capacitors, other industries concerned with corrosion, especially the chemical processing industry,
are accounting for an increasingly large percentage of the market.
Superconductivity may be the most exciting future application for niobium. Niobium itself becomes superconductive at temperatures less than 9.1K, but the niobium 48% titanium alloy is the
most widely used superconducting material. Magnetic fields of up to 10 tesla have been achieved
using the Nb-48Ti alloy at temperatures below 18K. These magnets can be used in medical diagnostic equipment, nuclear fusion power systems, high energy physics research, energy storage
systems, magnetic separation of minerals and scrap, superconducting motors and generators and
many other applications.
Tantalum and niobium mill products are used in the fabrication of corrosion resistant process equipment, including reaction vessels, columns, bayonet heaters, shell and tube heat exchangers, U-tubes,
thermowells, spargers, rupture diaphragms and orifices.
Three basic types of construction are used to fabricate tantalum or Niobium into vessels and other
components for the chemical process industry: loose-lined, integrally-clad and solid.
In loose-lined construction, the tantalum or niobium liners are fabricated and formed into the shell
without bonding. This "loose-lined" construction is the most economical and most widely used method of fabrication. Although economical, this type of construction has some disadvantages such as
unsuitability for use in vacuum service and poor heat transfer qualities due to air space between the
liner and shell.
Because of niobium's chemical inertness, strength, and heat transfer capability, a compact and
maintenance free unit can replace the teflon unit without the need for a steam desuperheating system at a significantly lower cost. Again, tantalum's corrosion resistance, strength and heat transfer
capability combine to make the tantalum unit a very cost effective replacement for the graphite heat
exchanger.
Welding properties:
Good weldability.
Performed as standard but it must be protected with and inert gas such as Argon/Helium or an
industrial mixture, during thewhole process. If the weld becomes contaminated it will be fragile.
Products, we supply:
x Plate-strip

x Pipes-tubes

x Accessories

x Bars

Forgings

x Nuts & Bolts

159

CATALOGO

14/11/05

13:35

Página 160

CATALOGO

14/11/05

13:35

Página 161

NIOBIUM
General:
Niobium [or columbium] metal is more resistant to corrosion than most common materials, but is
considerably poorer than tantalum. Niobium has the advantages of lower density and a low thermal
neutron cross section.
Corrosion Resistance of Niobium (Columbium):
At room tempe rature niobium metal is inert to almost all salt solutions and to the mineral acids. As
with tantalum, the exceptions are hydrofluoric acid, fuming sulfuric acid and strong alkalis. As the temperature is raised, niobium's corrosion resistance falls rapidly. At 100 ºC noticeable corrosion of the metal
occurs in acid media, with the exception of nitric acid to which it remains inert. Acids will often cause hydrogen embrittlement at moderate temperatures, although the corrosion rate may still be quite low. The
list of materials to which niobium is resistant at 100°C, is shown in Table 1. Niobium is very corrosion
resistant when compared to most metals. Data on the corrosion rate of niobium are given in Table 2; the
tendency toward hydrogen embrittlement is noted. Even dilute alkalis attack niobium. 5% caustic attacks
niobium at 20°C more rapidly than it does tantalum at 100 ºC. (Compare data in Table 2)
Oxidation of niobium at high temperatures by air, oxygen and nitrogen is about the same as for tantalum. Little data are available for other gases.
TABLE 1. Materials to which Niobium is completely inert up to 100 ºC (212 ºF)
Air
Chlorine gas, wet
Hydrochloric acid, dilute

Nitric acid, conc.
Nitrogen
Oxigen

Sulfuric acid, 20%
Tartaric acid

Miscellaneous Corrosion Information
Both niobium and tantalum are resistant to mass transport and corrosion by many liquid metals at
high temperatures.
Tantalum-niobium alloys containing more than about 5-10% Nb are much less corrosion resistant
than tantalum itself.
Tantalum-tungsten alloys containing more than 18 percent tungsten are inert to 20 percent hydrofluoric acid at room temperature. Little data are available on the 90Ta-10W alloy. It is known to be somewhat more oxidation resistant (e.g. to air at higher temperatures) than tantalum. The indication is
that it has about the same corrosion resistance to acids as tantalum itself.
Comparison of Tantalum and Niobium to 304 Stainiess Steel, Titanium and Platinum
Corrosion rates for tantalum, niobium, titanium and 304 stainless steel are listed for comparison in
Table 2. Titanium is very resistant to many industrial chemical environments and has a considerable price advantage over tantalum and niobium. However, the data clearly show the superiority of niobium
and especially of tantalum at high acid concentrations and higher temperatures. While platinum is resistant to hydrofluoric acid and alkalis, tantalum is much better in aqua regia and hot, concentrated hydrochloric acid.
Suggested Applications:
Due to its relatively high price, tantalum can only be recommended for use in extremely corrosive
media, in areas where no corrosion of the part can be tolerated or where very high purity materials are
being processed. While some plastics and even glass fill these requirements to a large extent, tantalum is a structurally sound material of construction, can take considerable mechanical abuse and has
a much higher heat transfer coefficient. Tantalum should be used as a material of construction in locations and for equipment where hot, concentrated hydrochloric, sulfuric or phosphoric acid will be present. Tantalum is used by the medical profession for instruments and for metal implants in the body.
161

NIOBIUM

CATALOGO

14/11/05

13:35

Página 162

In the manufacture of high purity chemicals and pharmaceuticals, tantalum insures that no impurities
are introduced from the container or reactor.
Niobium lies between titanium and tantalum in price, density and corrosion resistance. Thus far, its
main use has been in the nuclear reactor field. It has the great advantage of a low nuclear cross section. That, combined with its good corrosion resistance to hot aqueous systems and capability of handling molten metals, has made it an important material of construction in the nuclear field.
TABLE 2 Comparison of corrosion rates for Tantalum, Niobium, Titanium, 304 Steel and Platinum
Medium

Temp.

Acetic Acid
AlCl3 (10% soln)
NH4Cl(10% soln)
HCl, 20%
,conc.
HNO3, 20%
, 70%
, 65%
H3PO4, 85%
H2SO4, 10%
, 40%
, 98%
, 98%
, 99%
, 98%
, 98%
H2SO4, fuming (15% So3)
Aqua regia
Chlorine, wet
H2O, Cl2 sat
, sea
Oxalic acid
NaOH, 5%
, 10%
, 40%
HF, 40 %

Corrosion Rate (mils/yr.)

ºC

ºF

Ta

Nb

100
100
100
21
100
21
100
100
100
170
25
100
25
25
25
50
100
200
250
23
70
25
75
25
25
21
96
21
100
100
80
25

212
212
212
70
212
70
212
212
212
338
76
212
76
76
76
122
212
392
482
73
158
78
167
76
76
70
205
70
212
212
176
76

nil
nil
nil
nil
nil
nil
nil
nil
nil
<1
nil
nil
nil
nil
nil
nil
nil
3
rapid
0.5
rapid
nil
nil
nil
nil
nil
0.1
nil
0.7
<1
rapid
rapid

Ti

–(a)
nil

nil
nil
<0.5
0.04


175
0.1

4(b)
rapid
nil
nil
nil
nil

<5
<1
8
3(b)
40
nil
7
0.1
60
0.2

0.8 (b)

115(b)
high
rapid
rapid


(assume rapid) –


nil
35
nil
nil
nil
5
nil
nil
0.6(b)



1.1

rapid


8

5
rapid
rapid

304

Pt

20
20
>20

high

rapid

7
> 50
> 50

> 50
>> 50









> 50
50



<1
<1
5

nil
nil
nil
nil


1
nil
nil



nil
nil
nil
nil
nil



800
0.1
nil
nil



nil
nil
nil
nil

(a) indicates no data; (b) embrittled

Welding properties:
Good weldability.
Products, we supply:
x Plate-strip
162

x Pipes-tubes

x Accessories

x Bars

Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 163

TITANIUM
Metal = Titanium
1.º General
Titanium as an industrially pure metal has a great resistance to aggresive environments due to a
self-healing coating that naturally forms, together with its workability and machinability make it a very interesting metal for many situations.
2.º Physical properties:
Density: see table 1
Specific heat: 520 J/Kg.xºK

Melting point: see table 1
Thermal conductivity: see table 1

3.º Chemical composition in %:
Grado
1

ASTM

C≤

H≤

N≤

O

Ti

Fe≤

Others

DIN

B-381GrF1

0,08

0,0125

0,05

0,10

balance

0,20

17864

0,08

0,0125

0,06

025

balance

0,25

17864

0,10

0,013

0,06

.025

balance

0,30

17864

0.10

0,013

0,06

0,25

balance

0,30

17864

0,08

0,0125

0,05

<

balance

0,30

B-348Gr1
2

B-348Gr2
B-381GrF2

3

B-348Gr3
B-381GrF3

4

B-348Gr4
B-38GrF4

5

B-384Gr5
B-381GrF5

0,20

Al

17864

5,5 a 6,5
V3,5 a 4,5

7

B-265

0,08

0,0125

0,03

0,25

balance

0,30

0,12 a 0,12 a 0,25 Pd

12

B-265

0,08

0,0125

0,03

0,25

balance

0,30

0,6 a 0,9 Ni y 0,2 a 0,4 Mo

4.º Specifications:
Tubes: ASTM B337/B338

Plates: ASTM B265

Fittings: ATSME B366

5.º Characterics and applications
The reafter strength diminishes rapidly while oxidization increases.
Titanium does not become brittle at low temperatures, as is the case with steel. It retains its toughness down to -270 ºC. Titanium is also one of the few materials which becomes superconductive near absolute zero. For this reason superconductive magnets are wound titanium-niobium alloy at -269 ºC.
The rate of diffusion of oxygen and hydrogen in titanium is high, which is a factor that limits the range of applications at high temperatures.
Chemically, titanium is distinguished by its high reactivity which is only surpassed by metals such as
magnesium, calcium and sodium. In fact, titanium metal is produced through reduction with these
highly reactive metals. That titanium can be employed under circumstances where most other structural material would be subject to severe corrosion is entirely dependent upon the properties of its oxide, TiO. It is highly resistant and forms a self-healing coating which is normally only about 0.01 mm
thick. If the coating is damaged and the environment contains oxygen in some form, e.g. water, the titanium reacts with the oxygen and rebuilds the oxide. On the other hand in deoxidated or reduction environments the oxide protection is weakened and the metal becomes exposed to corrosion. Corrosion
163
TITANIUM

CATALOGO

14/11/05

13:35

Página 164

resistance can be improved through the introduction of an oxidation agent into the environment or through thickening of the existing oxide coating. Alternatively, an alloy with Mo or Pd can be considered.
Current applications
Aero Engines

Components operating up to 600 ºC, discs, blades, spacer rings, structural parts, auxiliary equipment, etc.

Air Frames

Fastenings, struts and ties, skins, main structural components in airframes, landing gear, hydraulic equipment, airducting, firewalling, floors,
etc.

Performance Engineering

Racing cars, motorcycles and cycles, reciprocating parts where inertia
loss is significant. Ultracentrifuges. Applications requiring stability with time, e.g. geophysical equipment.

Chemical and
Petrochemical Engineering

Vessels, plate and tubular heat exchangers, mixers, stirrers filter bodies,
driers, conveyors, pumps and valves. Thermowells, probes, level controls, analyser, etc. especially for crude oil handling and processing and
plant for production of urea, ammonium nitrate and ammonia, fibre and
fertilizer products, chlorine and synthetic resins.
Heat Exchangers and
Titanium will provide protection against environmental pollution and cross
Surface Condensers
pollution form process streams as well as metal ion loss in cooling waters.
(Especially for Power
Titanium tubes are currently available in several extended surface configuGeneration and Desalination) rations, including fine integral fin, roped and clad high fin. Design for corrosion resistance and optimum heat transfer with all liquid systems, liquid/air
systems, condensing and evaporating is therefore possible.
Brewing, Dairy, Food and
The inert nature of titanium aids product purity, provides ease of cleaning
Pharmaceuticals Manufacture and sterilisation, etc.
Metal Finishing Industry

Jigs and fixtures for anodizing of aluminium and electroplating anode baskets for containing nickel and copper chips and residues, hooks for nickel anodes, heating and cooling coils for plating tanks, baskets and jigs
for pickling and descaling, supports and hangers for articles for hot dip
galvanizing.

Pollution Control
and Waste Processing

Titanium resists attack form a wide range of corrosive media. Waste
processors handle materials of widely varying composition both as input
and end product. Titanium offers the designer the opportunity to achieve
all round protection.

Specialised
Applications

Surgical implants for the human body, including hip prostheses, bone plates and screws, denture posts. Precision instrument manufacture, pressure sensitive transducers, transistors etc. Artistic and architectural applications, personal jewellery, plaques, dart shafts, etc.

6.º Design stress values at 20 ºC and higher
Temp. ºC

Gr.2 N/mm

-40 + 20
50
75
100
150
200
250

173
173
167
153
126
102
85

164

Even at 20 ºC, titanium's creep properties must taken into consideration in the calculation of design strength values. The following values are
based on creep-rupture ratings for 100,000 hours.
From a strength perspective the maximum temperature for the usage
of unalloyed titanium grades is approximately 350 ºC. For components not
subject to stress oxidation sets a limit at aproximately 500 ºC.

CATALOGO

14/11/05

13:35

Página 165

Table 1. Comparative Values
Material

Density
Kg/m3

Melting Point
ºC

Thermal
Expansion
Coefficient

Thermal
Conductivity
W/(m.K)

Electrical
Resistance
Ohm x m

Elasticity
Modulus
MPa

Titanium

4505

1688

8.4 x 10-6

17

55 x 10-8

106.4 x 103

Iron

7900

1530

12 x 10-6

63

9.7 x 10-8

206.0 x 103

Aluminum

2700

660

23 x 10-6

205

2.7 x 10-8

69.2 x 103

Nickel

8900

1453

15 x 10-6

92

9.5 x 10-8

206.0 x 103

Copper

8900

1083

17 x 10-6

385

1.7 x 10-8

107.9 x 103

Stainless Steel 18-8

7900

1410

17 x 10-6

16

72 x 10-8

200.1 x 103

Brass

8400

970

18.5 x 10-6

100

7.5 x 10-8

107.9 x 103

Monel

8800

1325

14 x 10-6

26

48 x 10-8

179.5 x 103

7.º Titanium & Titanium Alloy Specifications
Grade/

ASTM

DIN

Ref. N.º

Aerospace Specifications
British
Standard

American

American

A.M.S.

MIL–T–

TA

Ti35A/115
Ti50A/125

1
2

3.7025 1
3.7035 2,3,4,5

9046

Ti65A/130
Ti75A/160

3
4

3.7055 –
3.7065 6,7,8,9


4902, 4941
4942, 4951
4900
4901

Ti0.2% Pd
Ti-Code 12

7.11
12



Ti-6Al-4V/318

5

Ti-4Al-4Mo-2.5Sn
(550)
Ti-6Al-2Sn4Zr-2Mo
Ti-6Al-2Sn4Zr-6Mo

3.7165 10,11,12, 4911, 4928
28.56

45-51

and 57


4975, 5976


Remarks

4981


1A


1C
1B

3C

3G

9047




Comp
1.2


Comp
3.6

Comp
11
Comp
14

Commercially
Pure Titanium

Industrial Alloys
with superior
corrosion resitance

Aerospace/Engineering
Alloys having high
strength developed
by heat treatment

165

14/11/05

13:35

Página 166

8.º Room Temperature Mechanical and other Poperties
Grade/Ref. N.º
(see above)

0.1 % Proof Stress

Ultimate Tensile
Strength

Elongation

Youngs
Modulus

Density

Weldability
Rating

tons/sq.in

kg/mm2

tons/in2

kg/mm2

%

tons/in2

kg/mm2

Ib/in3

gm/cc

Ti35A/115

13 min

20 min

26 max

41 max

25 min

6,650

10,500

.163

4.51

Excellent

Ti50A/125

18 min

28 min

25-35

39-55

20 min

6,650

10,500

.163

4.51

Excellent

Ti65A/130

22 min

34 min

30-40

46-62

20 min

6,650

10,500

.163

4.51

Excellent

Ti75A/160

25 min

39 min

35-45

55-71

18 min

6,650

10,500

.163

4.51

Excellent

Ti0.2% Pd (Gr. 7)

13 min

20 min

25-35

39-55

20 min

6,650

10,500

.163

4.51

Excellent

Ti Code 12

22 min

35 min

27 min

34 min

20 min

6,800

10,700

.163

4.51

Excellent

Ti-6Al-4V/318

54 min

85 min

58 min

92 min

10 min

7,360

11,600

.161

4.45

Good

Ti-4Al-4Mo-2.5 Sn

56 min

88 min

68 min

107 min

10 min

7,500

11,800

.167

4.60

Poor

Ti-6Al-2Sn-4Zr-2Mo

54 min

85 min

58 min

92 min

10 min

7,370

11,600

.164

4.54

Good

Ti-6Al-2Sn-4Zr-6Mo

58 min

92 min

67 min

106 min

10 min

7,370

11,600

.168

4.65

Fair

9.º Properties at high temperatures and corrosion resistance:
Temperature
resistance
>540 °C

4

4

1

3

Salts

5

Alkalies

3

Organic Acids

4

3

5

Nitric Acid

7

5

1

5

5

1

1

5

5

1

1

1

5

5

1

1

2

5

5

2

2

1

5

5

1

1

ASTM-B Norms

3

1

1

Brinell Hardness

3

4

4

1

3

5

Elongation %

4

4

4

5

3

5

Yield S.
02,%MPA

4

4

1

Tensile S.MPA

5

4

3

Mechanical
properties aprox.

Sea Water

Chlorhydric Acid
5

3

4

4

3

Phosforic Acid

Sulphuric Acid
3

4

4

2

Fluorhydric Acid

Strenght Stability
4

Carburization

5

Oxidation

3

4

1

Corrosion resistance

4

4

Titanio Grade

CATALOGO

1

240

170

24

70

265-337-338-348-363-367

1

345

275

20

80

265-337-338-348-363-367

1

450

380

18

90

265-337-338-348-363-367

1

550

485

15

100

265-337-338-348-363-367

1

895

830

10

*

265-348; W.3.7165

1

345

275

20

80

265-338-348-W.3.7235

Key: 1 = Good or excellent; 2 = Acceptable; 3 = Inadequate; 4 = Non applicable; 5 = Case dependent
* =36 HRC

For comparison of corrosion rates for Tantalum, Niobium, Titanium, 304 stainless steel and Platinum see Niobium (table 2).
10.º Welding properties:
Good weldability. Performed as standard but it must be protected with an inert gas such as
Argon/Helium or an industrial mixture, during the whole process. If the weld becomes contaminated
it will be fragile.
11.º Products, we supply:
x Plate-strip

166

x Pipes-tubes

x Accessories

x Bars

x Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 167

ZIRCONIUM
Metal: ZIRCONIUM
1.º General
It is a very reactive metal that reacts naturally with the atmospheric oxygen forming a protecting coat that adheres to the metal as a self-healing layer.
2.º Machining:
Good machinability, but shavings must be kept in water.
3.º Chemical composition:
There are 4 grades (2 pures and 2 alloyed).
Grade/composition
ASTM
Zr+Hf mini
Hf max.
Fe+Cr max.
H. max.
N. max.
C. max.
NbO max.

Grade 702

Grade 704

Grade 705

Grade 706

R60702
90,2
4,5
0,20
0,0005
0,025
0,05

0,16

R60704
97,5
4,5
0,2 a 0,4
0,005
0,025
0,05

0,18

R60705
95,5
4,5
0,2
0,005
0,025
0,05
2a3
0,18

R60706
95,5
4,5
0,2
0,005
0,025
0,05
2a3
0,16

Grade 702

Grade 704

Grade 705

Grade 706

379
207
16
6,51

413
241
14
6,57

552
379
16
6,64

510
345
20
6,64

4.º Mechanical properties:

Tensile S. MPa
Yield S. MPa
Elongation %
Density Kg/dm3

mini
mini
mini

5.º Specifications:
Plates B551
Bar B550
Forgings B493 wires

Tubes-B523 seamless and welded
Fittings B653 elbows, tees, …
Welding material = AWS A5.24 electrodes and fils.

6.º Characteristics and applications:
Zirconium is highly resistant to a wide range of acids and bases, both organic and inorganic, which
makes it an interesting and exceptional long life alternative to other materials in highly demanding applications. The seamless tube zirconium grade, produced for heat exchanger applications, is Zirconium
702*, which offers the process industry a high quality and competitive product concept.
167
ZIRCONIUM

CATALOGO

14/11/05

13:35

Página 168

Zirconium 702 seamless tubing is characterized by:







High heat transfer efficiency
Very low thermal expansion
Immunity to stress corrosion cracking
High resistance to localized (pitting and crevice) forms of corrosion
Very good corrosion resistance in most organic acids
Exceptional corrosion resistance to mineral acids
Good corrosion resistance in strong alkalis
Interchangeability between acid and alkali conditions

Main application areas







*

Acetic acid
Urea
Formic acid
Sulphuric acid
Citric acid
Methyl methacrylate
Nitric Acid

As per ASTM/ASME B, SB523 or equivalent.

7.º Welding properties:
Good weldability. Performed as standard but it must be protected with an inert gas such as
Argon/Helium or an industrial mixture, during the whole process. If the weld becomes contaminated
it will be fragile.
8.º Products, we supply:
x Plate-strip

168

x Pipes-tubes

x Accessories

x Bars

Forgings

x Nuts & Bolts

CATALOGO

14/11/05

13:35

Página 169

DISCLAIMER:
TECNOCOMMERZ EUROPA, S.L. makes no warranty of any
kind with respect to the subject matter or accuracy of the
information contained herein. Specifically disclaims all
warranties, expressed, implied or otherwise, including
without limitation, all warranties of merchantability and
fitness for a particular purpose.
In no event shall be liable for any special, incidental, indirect
or consequential damages of any kind or any damages
whatsoever resulting from loss of use, data, profits, whether
or not advised of the possibility of damage, and on any
theory of liability, arising out of or in connection with the use
of the information contained herein.
This publication may include technical inaccuracies or
typographical errors. Changes may be periodically made to
the information herein.

CATALOGO

14/11/05

13:35

Página 170