You are on page 1of 478

CISCO

Guía de estudio para la
certificación CCNA 640-802

2aEDICIÓN

Par garantizar que los profesionales de las redes posean los conocimientos necesatlízár las tareas de soporte y administración, Cisco Systems ha desarrollado una serie de
rtifieariones que actúan como punto de referencia de las tecnologías de redes. Los
e certificación están diseñados para superar las pruebas de habilidades teóricas y de
inífe dispositivos eri varias jerarquías. Las certificaciones Cisco son muy valoradas por
s y van desde et nivel asociado CCNA (Cisco Certified NetWork Associate), el nivel profe* {Cisco Certified NetWork Professional) hasta el nivel experto CCIE (Cisco Certified

sdel examen de certificación CCNA 640-802. Esta obra proporciona los conceptos, comancás¡ necesarias para configurar routers y swítches Cisco para que funcionen en las redes
s>^|parafá[carrzar dicha certificación. Aunque este libro fue creado para aquellos que
r^r^cáefonCCNA,tambiénesútil para administradores, personal de soporte o para los
nertt^ &sean entender más claramente el funcionamiento de las LAN, las WAN, sus
j.está dividido en diez capítulos bien definidos cumpliendo los objetivos del examen de
n CENA, según el criterio y experiencia de su autor, con métodos claros y rápidos incluso
íujrode subredos, VLSM y Wildcards. Diseminados por el texto hay muchas notas, conse­
ctarios que ayudan a la comprensión y memorización del temario.
tifica s e incorporali, apéndices compierne ntarios-con comandos. CiscoiOS adicionales,
¡¡mijares a lasque, aparecen en el examen de certificación CCNA y un completo glosario
wids mías usuales utilizados en reties.
/oleado; su, amplía experiencia en este material y su trabajo en Europa y Latinoamérica ha
^ t e creación de este libro no solo desde el punto de vista técnico, sino también desde
óflíSu comprensión metódica y la complementación con prácticas harán, sin duda, llegar
obtención de la Sfi-valoradí certificación CCNA, convirtiéndose
titeen urtdfgufá de consulta permanente.
lanelto es .ingeniera de comunicaciones, instructor certificado de Cisco Networking Academy, imparte
onados con redes y comunicaciones. Especialista en electrónica de hardware de alta complejidad,
certificaciones, entre éifas el CCNP y CCAI. Es catedrático y consultor especializado en comunicaciones
^ é s W é i^ S S ^ r&Éee\hs:'fíe(fés Cisco. Guía de estudia para la certificacTóñ CCNP.

il 2a EDICION

7 8 ó O 7 7 0 732Ó0

e acerca al conocimiento’

REDES CISCO
Guía de estudio para
la certificación
CCNÄ 640-802
2a Edición

REDES CISCO
Guía de estudio para
la certificación
CCNA 640-802
2a Edición
Ernesto Ariganello

Alfaomega

Ra-Ma*

D a to s c a ta lo g rá fic o s

Ariganello, Ernesto
Redes Cisco. Guía de estudio para la certificación
CCNA 640-802
Segunda Edición
Alfaoraega Grupo Editor, S.A. de C.V., México
ISBN: 978-607-707-326-0
Formato: 17 x 23 cm
Páginas: 480
Redes Cisco. Guía de estudio para la certificación CCNA 640-802,2a Edición
Ernesto Ariganello
ISBN: 978-84-9964-094-5, edición original publicada por RA-MA Editorial, Madrid, España
Derechos reservados © RA-MA Editorial
Segunda edición: Alfaomega Grupo Editor, México, septiembre 2011
© 2011 Alfaomega Grupo Editor, S.A. de C.V.
Pitágoras 1139, Col. Del Valle, 03100, México D.F.
Miembro de la Cámara Nacional de la Industria Editorial Mexicana
Registro No. 2317
Pág. Web: http://www.alfaomega.com.mx
E-mail: atencionalciknie@alfaoniega.coin.rnx
ISBN: 978-607-707-326-0
Derechos reservados:
Esta obra es propiedad intelectual de su autor y los derechos de publicación en lengua
española- han sido legalmente -transferidos al editor. Prohibida su reproducción parcial c total
por cualquier medio sin permiso por escrito del propietario de los derechos del copyright.
Nota importante:
La información contenida en esta obra tiene un fin exclusivamente didáctico y, por lo tanto, no está
previsto su aprovechamiento a nivel profesional o industrial. Las indicaciones técnicas y programas
incluidos, han sido elaborados con gran cuidado por el autor y reproducidos bajo estrictas normas
de control. ALFAOMEGA GRUPO EDITOR, S.A. de C.V. no será jurídicamente responsable
por: errores u omisiones; daños y perjuicios que se pudieran atribuir al uso de la información
comprendida en este libro, ni por la utilización indebida que pudiera dársele.
Edición autorizada para venta en México y todo el continente americano.
Impreso en México. Printed in México.
Empresas del grupo:
M éxico: Alfaomega Grupo Editor, S.A. de C.V. - Pitágoras 1139, Col. Del Valle, México, D.F. - C.P. 03100.
Tel.: (52-55) 5575-5022 - Fax: (52-55) 5575-2420 / 2490. Sin costo: 01-800-020-4396
E-m ail: atencionalcliente@ alfaom ega.com .mx
C o lo m b ia: Alfaom ega Colombiana S.A . - C arrera 15 No. 64 A 29, Bogotá, C olom bia,
Tel.: (57-1) 210 0 1 22- F a x : (57-1) 6068648 - E-mail: cliente@ alfaom ega.com .m x
C hile: Alfaom ega Grupo Editor, S.A. - Dr. La Sierra 1437, Providencia, Santiago, Chile
T el.: (56-2) 235-4248 - Fax: (56-2) 235-5786 - E-m ail: agechile@ alfaomega.cl
A rgentina: Alfaomega Grupo E ditorA rgentino,S.A .- Paraguay 1307 PB . Of. 11, C.P. 1057, Buenos Aires,
Argentina, -T e l/F a x : (54-11)4811-0887 y 4811 7 1 8 3 -E -m ail: ventas@alfaomegaeditor.com.ar

ÍNDICE
IN T R O D U C C IÓ N .......................................................................................................................... 15
C A P ÍT U L O 1: IN T R O D U C C IÓ N A LAS R E D E S ............................................................... 19
1.1 CONCEPTOS B Á S IC O S ..................................................................................................... 19
1.2 M ODELO DE REFERENCIA O S I .................................................................................... 20
1.2.1 Descripción de las siete cap as..................................................................................... 22
1.3 FUNCIONES DE LA CAPA FÍSIC A .................................................................................24
1.3.1 Dispositivos de la capa físic a .........................

24

1.3.2 Estándares de la capa física......................................................................................... 24
1.3.3 Medios de la capa física ............................................................................................... 26
1.3.4 Medios inalám bricos........................................................................................

29

1.4 FUNCIONES DE LA CAPA DE ENLACE DE D A T O S................................................30
*. 1.4.1 Dispositivos de capa de enlace de d a to s....................................................................31
1.4.2

Características de las redes conm utadas

....................................................... 33

1.5 FUNCIONES DE LA CAPA DE R E D .............................................................................. 33
1.5.1 Direcciones de capa tre s............................................................................................... 34
1.5.2 Comparación entre IPv4 e I P v 6 ..................................................................................35
1.5.3 Operación AND..............................................................................................................36
1.5.4 Dispositivos de la capa de re d .....................................................................................37
1.6 FUNCIONES DE LA CAPA DE TRA N SPO RTE...........................................................40
1.7 ETH ERN ET........................................................................................................

43

1.7.1 Dominio de colisión......................................................................................................43
1.7.2 Dominio de difusión......................................................................................................43

6

REDES CISCO: G U ÍA D E ESTU D IO PA RA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

1.7.3 CSM A/CD....................................................................................................................... 45
1.7.4 Formato básico de una trama Ethernet....................................................................... 47
1.7.5 Proceso de encapsulación de los datos....................................................................... 48
1.8 MODELO JERÁRQUICO DE TRES C A P A S ................................................................. 51
1.8.1 Capa de a c c e so ............................................................................................................... 52
1.8.2 Capa de distribución.......................................................................................................52
1.8.3 Capa de n ú c le o ............................................................................................................... 53
1.9 MODELO TC P/IP...................................................................................................................54
1.9.1 Protocolos de la capa de aplicación............................................................................55
1.9.2 Protocolos de la capa de transporte.....................................

56

1.9.3 Números de puertos........................................................................................................57
1.9.4 Protocolos de la capa de In te rn e t................................................................................58
1.10 CASO PR Á C T IC O .............................................................................................................. 59
1.10.1 Prueba de conectividad T C P /IP ................................................

59

1.11 MATEMÁTICAS DE R E D E S ..........................................................................................60
1.11.1 Números b in ario s.........................................................................................................60
1.11.2 Conversión de binario a decim al..........................................

61

1.11.3 Conversión de decimal a binario............................................................................... 62
1.11.4 Números hexadecim ales.................................................................................

63

1.11.5 Conversión de números hexadecim ales...................................................................64
1.12 DIRECCIONAMIENTO IP v 4 ........................................................................................... 65
1.12.1 Tipos de direcciones IP v 4 ................................................

66

1.12.2 Tipos de comunicación IP v 4 ..................................................................................... 66
1.12.3 Tráfico unicast.............................................................................................................. 66
1.12.4 Tráfico de broadcast.................................................................................................... 67
1.12.5 Clases de direcciones IP v 4.........................................................................................67
1.12.6 Direcciones IPv4 especiales.......................................................................................68
1.12.7 Subredes........................................................................................................................ 69
1.12.8 Procedimiento para la creación de subredes...........................................................71
1.13 MÁSCARAS DE SUBRED DE LONGITUD VA R IA B LE......................................... 78
1.13.1 Proceso de creación de V L S M .................................................................................. 78
1.14 RESUMEN DE RUTA CON V L S M ................................................................................ 81
1.14.1 Explicación de funcionamiento de C ID R ................................................................81
1.15 DIRECCIONAMIENTO IP v 6 ........................................................................................... 82
1.15.1 Formato del direccionamiento IP v 6 ......................................................................... 84
1.15.2 Tipos de comunicación IP v 6 ......................................................................................85
1.16 FUNDAMENTOS PARA EL EX A M E N ........................................................................ 85

ÍNDICE

© RA-MA

7

C A PÍT U L O 2: EN R U TA M IEN TQ IP .......................................................................................87
2.1 DETERMINACIÓN DE RUTAS IP ................................................................................... 87
2.2 RUTAS ESTÁ TICA S............................................................................................................89
2.2.1 Rutas estáticas por defecto...........................................................................................90
2.3 SISTEMA A U TÓ N O M O ..................................................................................................... 91
2.4 DISTANCIA ADM INSTRATIVA..................................................................................... 91
2.5 PROTOCOLOS DE EN R U TA M IEN TO .......................................................................... 92
2.5.1 Clases de protocolos de enrutaraiento........................................................................ 93
2.6 ENRUT AMIENTO POR VECTOR DISTANCIA........................................................... 94
2.6.1 M étricas.................................

94

2.7 BUCLES DE ENRUT A M IE N T O ...................................................................................... 95
2.7.1 Solución a los bucles de enrutam iento....................................................................... 96
2.7.2 Métrica m áxim a..............................................................................................................96
2.7.3 Horizonte dividido......................................................................................................... 96
2.7.4 Envenenamiento de ru ta s............................................................................................. 97
2.7.5 Temporizadores de espera............................................................................................97
2.8 ENRUTAMIENTO PO R ESTADO DE ENLACE........................................................... 97
2.9 FUNDAMENTOS PARA EL EX A M E N ........................................................................ 101
C A P ÍT U L O 3: C O N FIG U R A C IÓ N IN IC IA L D EL R O U T E R ....................................... 103
3.1 PANORÁMICA DEL FUNCIONAMIENTO DEL R O U T E R ....................................103
3.1.1 Componentes principales de u n router

.....

„....................................

104

3.1.2 Interfaces.......................................................................................................................105
3.1.3 WAN y routers.............................................................................................................106
3.2 CONECTÁNDOSE POR PRIM ERA VEZ AL R O U T E R ............................................107
3.2.1 Secuencia de arranque..................................................................................... i........ 108
3.3 CONFIGURACÓN IN IC IA L ............................................................................................ 108
* 3.3.1 Comandos ay u d a......................................................................................................... 110
3.3.2 Asignación de nombre y contraseñas............. ........................................................ 112
3.3.3 Contraseñas de consola, auxiliar y telnet................................................................ 113
3.4 CASO PR Á C TIC O ..............................................................................................................114
3.4.1 Configuración de usuario y contraseña....................................................................114
3.4.2 Configuración por navegador.................................................................................... 115
3.5 INTERFAZ SD M ................................................................................................................. 116
3.5.1 Configuración de S D M .............................................................................................. 117
3.6 CONFIGURACIÓN DE IN TER FA C ES......................................................................... 118
3.7 COMANDOS SH O W ......................................................................................................... 120
3.7.1 Comandos show más usados..................................................................................... 121

8

REDES CISCO: GUÍA DE ESTU D IO P A R A LA CERTIFICACIÓN CCNA 640-802_____________ © RA-MA
^

3.8 CASO PR Á C T IC O ...............................................................................................................122
3.8.1 Configuración de una interfaz E th ern et...................................................................122
3.8.2 Configuración de una interfaz Serie..........................................................................122
3.9 MENSAJES O B A N N E R S................................................................................................. 122
3.10 RESOLUCIÓN DE N O M BRES DE H O S T ..................................................................123
3.11 CASO PR Á C T IC O .............................................................................................................123
3.11.1 Configuración de una tabla de h o st........................................................................ 123
3.12 GUARDAR Y CO PIA R.................................................................................................... 124
3.12.1 Borrado del contenido de las m em orias.................................................................126
3.12.2 Copia de seguridad del IO S ......................................................................................126
3.13 COMANDOS DE E D IC IÓ N ........................................................................................... 128
3.14 NOMBRES DEL CISCO IO S .......................................................................................... 129
3.15 REGISTRO DE CO N FIG U RA CIÓ N ............................................................................. 129
3.15.1 Comando show v e rsio n .............................................................................................129
3.16 RECUPERACIÓN DE CO N TRA SEÑ A S..................................................................... 132
3.16.1 Proceso para la recuperación de contraseña.......................................................... 132
3.17 COMANDOS BOOT S Y S T E M ......................................................................................135
3.18 PROTOCOLO C D P ........................................................................................................... 136
3.18.1 Verificación C D P .......................................................................................................137
3.19 D H C P....................................................................................................................................138
3.20 CONFIGURACIÓN D H C P ................
3.20.1 Configuración del servidor........................................................

139
139

3.20.2 Configuración de un D H C P R elay..........................................................................140
3.20.3 Configuración de un cliente D HCP........................................................................ 140
3.21 HERRAMIENTAS DE D IA G N Ó STICO ...................................................................... 140
3.22 FUNDAMENTOS PARA EL E X A M E N ...................................................................... 143
C A PÍT U L O 4: E N R U T A M IE N T O B Á S IC O ....................................................................... 145
4.1 CONFIGURACIÓN DE ENRUTAMIENTO I P ............................................................ 145
4.1.1 Enrutamiento estático.................................................................................................. 145
4.1.2 Situaciones en las que se aconsejan las rutas estáticas..........................................147
4.1.3 Configuración de rutas estáticas por defecto.......................................................... 148
4.1.4 Configuración de una red de último recurso........................................................... 149
4.2 ENRUTAMIENTO D IN Á M IC O ......................................................................................149
4.3 INTRODUCCIÓN A R I P ..............................................................................

150

4.3.1 Características de R IP vl y R IP v2.............................................................................151
4.3.2 Sintaxis de la configuración de R IP ..........................................................................151
4.3.3 Redistribución estática en R I P .................................................................................. 152

© R A -M A

ÍNDICE 9

4.4 CASO PR Á C T IC O .............................................................................................................. 152
4.4.1 Configuración de redistribución estática en RIP..................................................... 152
4.5 VERIFICACIÓN DE R IP ................................................................................................... 154
4.6 INTRODUCCIÓN A IG R P ................................................................................................ 155
4.7 FUNDAMENTOS PARA EL EX A M E N .........................................................................157
C A P ÍT U L O 5: EN RU T A M IEN TO A V A N Z A D O .............................................................. 159
5.1 INTRODUCCIÓN A E IG R P..............................................................................................159
5.1.1 Métricas E IG R P ........................................................................................................... 161
5.2 CONFIGURACIÓN DE E IG R P........................................................................................ 162
5.2.1 Equilibrado de carga.................................................................................................... 163
5.2.2 Ajustes de los tem porizadores....................................................................................163
5.2.3 Filtrados de ru ta s..........................................................................................................164
5.2.4 Desactivación de una interfaz EIG RP...................................................................... 164
5.2.5 Redistribución estática en E IG R P.............................................................................164
5.2.6 Configuración de intervalos h e lio

.................................................................... 164

5.3 AUTENTICACIÓN E IG R P ...............................................................................................165
5.4 CASO PR Á CTIC O .............................................................................................................. 165
5.4.1 Configuración de un AS con E IG R P ...........................................................

165

5.4.2 Configuración de filtro de ruta E IG R P .................................................................... 166
5.4.3 Configuración de redistribución estática en E IG R P .............................................. 166
5.5 VERIFICACIÓN E IG RP

.............

:...................................167

5.6 INTRODUCCIÓN A O SPF................................................................................................168
5.6.1 OSPF en una topología multiacceso con difusión...................................................169
5.6.2 Elección del router designado......................................

170

5.6.3 OSPF en una topología N BM A ................................................................................. 171
5.6.4 OSPF en una topología punto a punto...................................................................... 171
5.6.5 Mantenimiento de la información de enrutam iento............................................... 172
5.7 CONFIGURACIÓN DE OSPF EN UNA SOLA Á R E A ............................................... 172
5.7.1 Administración de la selección del DR y BD R.......................................................172
5.7.2 Cálculo del coste del en lace.......................................................................................173
5.7.3 Autenticación O SPF.................................................................................................... 173
5.7.4 Administración del protocolo H elio......................................................................... 174
5.8 OSPF EN MÚLTIPLES Á R E A S .......................................................................................174
5 .9 CASO PRÁ CTICO .............................................................................................................. 175
5.9.1 Configuración de OSPF en una sola área.................................................................175
5.9.2 Configuración de OSPF en múltiples áre a s............................................................ 176
5.10

VERIFICACIÓN O SPF...............................................................

177

10

REDES CISCO: GUÍA DE ESTU D IO PA RA LA CERTIFICACIÓN CCNA 640-802____________ © RA-M A

5.11

FUNDAM ENTOS PARA EL EX A M EN ................................................................... 178

C A PÍT U L O 6: R E D E S IN A L A M B R IC A S ............................................................................179
6.1 CONCEPTOS BÁSICOS SOBRE W LA N ...................................................................... 179
6.2 ESTÁNDARES W LA N .......................................................................................................180
6.2.1 802.11b...........................................................................................................................180
6.2.2 802.1 1 a...........................................................................................................................181
6.273 802.1 l g ...........................................................................................................................181
6.2.4 802.l l n ...........................................................................................................................181
6.2.5 Alianza W i-Fi................................................................................................................182
6.3 FUNCIONAM IENTO Y DISPOSITIVOS W LA N ........................................................ 182
6.4 RADIOFRECUENCIA EN W LA N ...................................................................................184
6.4.1 M edición de la señal de radio frecuencia.................................................................186
6.5 AUTENTICACIÓN Y ASOCIACIÓN............................................................................ 187
6.6 M ÉTODOS DE A U T E N T IC A C IÓ N ............................................................................... 187
6.6.1 W E P ................................................................................................................................187
6.6.2 W P A ................................................................................................................................188
6.6:3 W PA -2............................................................................................................................ 189
6.7 CASO PR Á C T IC O ...............................................................................................................189
6.7.1 Configuración básica de un punto de acceso

...........................................189

6.8 FUNDAM ENTOS PARA EL E X A M E N .........................................................................191
C A PÍT U L O 7: L IS T A S D E A C C E S O .....................................................................................193
7.1 CRITERIOS DE FILTR A D O .............................................................................................193
7.1.1 Administración básica del tráfico I P ........................................................................ 193
7.1.2 Prueba de las condiciones de una A C L .................................................................... 195
7.2 TIPOS DE LISTAS DE A C C E SO .........................

195

7.2.1 Listas de acceso estándar.............................................................................................195
7.2.2 Listas de acceso extendidas........................................................................................ 196
7.2.3 Listas de acceso con nom bre......................................................................................196
7.3 APLICACIÓN DE UNA LISTA DE A CCESO...............................................................196
7.3.1 Lista de acceso entrante...............................................................................................196
7.3.2 Lista de acceso saliente............................................................................................... 197
7.4 M ÁSCARA CO M O D ÍN ......................................................................................................198
7.5 CASO PR Á C T IC O ...............................................................................................................199
7.5.1 Cálculo de w ilcard........................................................................................................199
7.6 PROCESO DE CONFIGURACIÓN DE A C L ............................................................... 200
7.6.1 Listas de acceso num eradas.....................................

200

© R A -M A

ÍN D IC E

7.6.2 Configuración de ACL estándar........................

11

201

7.6.3 Asociación de la ACL estándar a una interfaz........................................................202
7.6.4 Configuración de ACL ex ten d id a............................................................................ 202
7.6.5 Asociación de las ACL extendida a una interfaz................................................... 204
7.6.6 Aplicación de una ACL a la línea de telnet............................................................. 204
7.7 CASO PR Á C T IC O .............................................................................................................. 205
7.7.1 Configuración de una ACL estándar........................................................................ 205
7.7.2 Configuración de una ACL extendida....................................................

205

7.7.3 Configuración de ACL con su b red .......................................................................... 206
7.8 BORRADO DE LAS LISTAS DE A C C ESO ..................................................................207
7.9 LISTAS DE ACCESO IP CON NO M BRE......................................................................207
7.9.1 Configuración de una lista de acceso nombrada.....................................................207
7.10 CASO PR Á C TICO ............................................................................................................208
7.10.1 Configuración de una A C L nom brada...................................................................208
7.11 COMENTARIOS EN LAS A C L .................................................................................... 208
7.12 OTROS TIPOS DE LISTAS DE A C C E SO ...................................................................209
7.12.1 Listas de acceso dinám icas................................................................................... .209
7.12.2 Listas de acceso reflexivas...................................................................................... 209
7.12.3 Listas de acceso basadas en tiem p o .......................................................................209
7.13 TUERTOS TCP MÁS UTILIZADOS EN LAS A C L .................................................. 209
7.14 PUERTOS UDP MÁS UTILIZADOS EN LAS A C L ................................................. 211
7.15 PROTOCOLOS MÁS U Ü U Z A D O S EN LAS A CL.................................................. 212
7.16 VERIFICACIÓN A C L ..................................................................................................... 213
7.17 FUNDAMENTOS PARA EL EX A M EN ......................................................................215
C A PÍT U L O 8: C O N M U T A C IÓ N DE LAN

...................................................................217

8.1 C ONMUTACIÓN DE CAPA 2 ........................................................................................ 217
8.1.1 Conmutación con sw itch

.....................

218

8.2 TECNOLOGÍAS DE C O N M U T A C IÓ N ........................................................................219
8.2.1 Almacenamiento y envío............................................................................................ 219
8.2.2 Método de corte............................................................................................................219
8.2.3 Libre de fragm entos....................................................................................................219
8.3 APRENDIZAJE DE D IR E C C IO N E S............................................................................. 220
8.3.1 Bucles de capa 2 ...........................................................................................................221
8.4 PROTOCOLO DE ÁRBOL DE EX PA N SIÓ N .............................................................. 222
8.4.1 Proceso S T P ................................................................................................................. 223
8.4.2 Estados de los puertos de S T P ..................................................................................224
8.5 PROTOCOLO DE ÁRBOL DE EXPANSIÓN RÁPIDO..............................................225

12

REDES CISCO: GUÍA DE ESTUDIO PA RA LA CERTIFICACIÓN CCNA 640-802____________© RA-M A

8.6 REDES V IRTU A LES......................................................................................................... 225
8.7 TRUNKING.......................................................................................................................... 226
8.7.1 Etiquetado de tram a.....................................................................................................227
8.8 VLAN TRUNKING PRO TO CO L.................................................................................... 229
8.9 MODOS DE OPERACIÓN V T P ...................................................................................... 229
8.9.1 M odo servidor..............................................................................................................230
8.9.2 M odo cliente................................................................................................................. 231
8.9.3 M odo transparente....................................................................................................... 231
8.9.4 Recorte V T P ................................................................................................................. 232
8.10 FUNDAMENTOS PARA EL E X A M EN ......................................................................233
C A P ÍT U L O 9: C O N G IF IG U R A C IÓ N D EL S W IT C H ..................................................... 235
9.1 CONFIGURACIÓN INICIAL DEL SW ITCH ............................................................... 235
9.1.1 Asignación de nombre y contraseñas....................................................................... 236
9.1.2 Asignación de dirección I P ....................................................................................... 236
9.1.3 Guardar y borrar la configuración.............................................................................237
9.1.4 Configuración de p u erto s........................................................................................... 238
9.1.5 Seguridad de puertos................................................................................................... 238
9.2 RECUPERACIÓN DE CONTRASEÑAS....................................................................... 238
9.2.1 Procedimiento para switches series 2900.................................................................239
9.3 CONFIGURACIÓN DE V L A N ....................................................................................... 240
9.3.1 Configuración de VLAN en un switch C ataly st.................................................... 241
9.3.2 Configuración de VLAN en un switch 1900...........................................................242
9.4 ELIM INACIÓN DE UNA V L A N .................................................................................... 242
9.5 HABILITACIÓN DEL ENLACE TRONCA L............................................................... 243
9.6 ENRUTAM IENTO ENTRE V L A N ......................

243

9.7 CASO PR Á C T IC O .............................................................................................................. 245
9.7.1 Configuración de V L A N ............................................................................................ 245
9.7.2 Configuración del troncal en el ro u ter..................................................................... 246
9.8 VERIFICACIÓN DE V L A N ............................................................................................. 247
9.9 CONFIGURACIÓN DE STP............................................................................................. 247
9.10 CONFIGURACIÓN DE V T P .......................................................................................... 248
9.10.1 Guardar y borrar la configuración.......................................................................... 249
9.11 FUNDAMENTOS PARA EL EX A M EN ...................................................................... 250
C A P ÍT U L O 10: R ED ES DE Á REA A M PL IA ...................................................................... 251
10.1

INTRODUCCIÓN A LAS W A N ................................................................................. 251

10.1.1 Conectividad W A N ...................................................................................................251

© RA-M A

ÍNDICE

13

10.1.2 Terminología W AN...................................................................................................252
10.1.3 Estándares de línea serie W A N ...............................................................................253
10.1.4 Encapsulación de capa 2 de W A N ......................................................................... 254
10.1.5 Intefaces W A N .......................................................................................................... 255
10.2 PROTOCOLO PUNTO A P U N T O ................................................................................257
10.2.1 Establecimiento de una conexión P P P .................................................................. 258
10.2.2 Autenticación P A P....................................................................................................258
10.2.3 Configuración de PPP con P A P ..............................................................................259
10.2.4 Autenticación C H A P................................................................................................ 259
10.2.5 Configuración de PPP con CH A P.......................................................................... 260
10.3 CASO PR Á C T IC O ........................................................................................................... 261
10.3.1 Configuración PPP con autenticación C H A P ...................................................... 261
10.3.2 Verificación P P P ....................................................................................................... 262
10.4 TRADUCCIÓN DE DIRECCIONES DE R ED ............................................................ 263
10.4.1 Terminología N A T....................................................................................................263
10.4.2 Configuración de NAT estático

....................................................................264

10.4.3 Configuración de NAT dinám ico........................................................................... 265
10.4.4 Configuración de P A T ............................................................................................. 266
10.5 CASO PR Á C T IC O ........................................................................................................... 266
10.5.1 Configuración dinámica de N A T ........................................................................... 266
10.5.2 Verificación N A T......................................................................................................267
10.6 FRA M E-RELA Y ..............................................................................................

:.........268

10.6.1 Terminología Fram e-Relay..................................................................................... 268
10.6.2 Topologías Fram e-Relay..........................................................................................269
10.6.3 Funcionamiento de Fram e-R elay..................................................................¡........ 270
10.6.4 Configuración básica de Fram e-Relay.................................................................. 271
* 10.6.5 Configuración estática de Frame-Relay.................................................................272
10.6.6 Configuración de las subinterfaces Fram e-R elay................................................272
10.7 CASO PR Á C T IC O ........................................................................................................... 273
10.7.1 Configuración estática de Fram e-Relay.................................................................273
10.7.2 Configuración de una nube Fram e-R elay............................................................. 274
10.7.3 Verificación Fram e-Relay....................................................................................... 278
10.8 INTRODUCCIÓN A V PN ............................................................................................... 279
10.8.1 Funcionamiento de las V PN .................................................................................... 279
10.8.2 IPSec............................................................................................................................ 280
10.8.3 M odos de operación de IPSec................................................................................. 281
10.9 CASO P R Á C T IC O ........................................................................................................... 282

14

REDES CISCO: GUÍA DE E ST U D IO PA RA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

10.9.1 Configuración de una V PN de router a ro u te r..................................................... 282
10.10 ACCESO R E M O T O ........................................................................................................285
10.10.1 Acceso por c a b le ..................................................................................................... 285
10.10.2 Acceso por D C L ...................................................................................................... 285
10.11 FUNDAMENTOS PA RA EL EX A M EN ....................................................................286
APÉNDICE A: PREPARATIVOS PARA EL EX A M EN .................................................. 287
11.1 VISIÓN GENERAL DEL EX A M EN .............................................................................287
11.1.1 Titulación y certificació n.........................................................................................288
11.1.2 Requisitos para el exam en........................................................................................289
11.1.3 Características del ex am en ...................................................................................... 289
11.1.4 Preparativos para el exam en.................................................................................... 291
11.1.5 Recomendaciones para la presentación al exam en..............................................292
11.2 CUESTIONARIO T E M Á T IC O ..................................................................................... 292
APÉNDICE B: RESUM EN DE COMANDOS CISCO IO S..............................................421
APÉNDICE C: G LO SA R IO ...................................................................................................... 427
ÍNDICE ALFABÉTICO..............................................................................................................473

INTRODUCCIÓN
Este libro representa una herram ienta de apoyo y d e autoestudio para el
aprendizaje de los tem as y requisitos necesarios para lograr la certificación CCN A
640-802. Ha sido concebido com o com plem ento a los diferentes m ateriales de
capacitación que Cisco provee a sus alum nos como así tam bién a aquellos que
desean examinarse de m anera independiente.
D eb id o a la id ea p rá c tic a y co n creta de este m an u al se dan p o r entendidos
m u c h o s tem as b ásico s, p o r lo q u e es recom endable p o s e e r alg ú n conocim iento
m ín im o p rev io a la lectu ra d e estas p ág in as.
.. .

Es im portante que el alum no asimile y ejercite los contenidos de cada
capítulo antes de seguir adelante con el siguiente. El libro tiene un form ato
secuencial y lógico de tal m anera que permite seguir todos los tem as en orden
ascendente. Los apéndices finales contienen un listado de com andos Cisco IO S,
u n a .serie de recom endaciones para la presentación al exam en y 400 preguntas
sim ilares a las que aparecen en la certificación CCNA, com o apoyo y nivelación de
conocim ientos y un glosario con los térm inos más usados en redes.
El objetivo de este libro es instruir al lector acerca de las tecnologías del
netw orking, configurar y entender el funcionam iento de los routers y switches no
sólo con la finalidad de obtener la certificación CCNA sino tam bién para aquellos
que lo quieran utilizar com o m aterial de consulta. Está enfocado también p ara
profesores e instructores que lo quieran emplear como apoyo para sus clases en
centros de estudios o academ ias.

16

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

O R A -M A

Las características de este libro ayudan a facilitar la com prensión de los
tem as presentados de m anera resum ida pero detallada con explicaciones, notas y
llam adas para perm itir que el lector recuerde lo fundam ental y concreto a la hora de
presentarse al exam en de certificación. Los casos prácticos son ejem plos de
ejercicios hechos en clase por el autor siendo m uy recom endable que el lector los
realice en equipos reales o en sim uladores para su com pleta com prensión y
análisis.
L as preguntas finales son ejem plos sim ilares a las que aparecen en el
exam en de certificación C CN A 640-802, por tanto, es im portante para lograr el
éxito deseado, leerlas y analizarlas detenidam ente buscando si fuese necesario la
referencia en la página correspondiente hasta tener un com pleto dom inio de cada
tema.
Los libros de la serie REDES CISCO son un com plem ento a esta guía de
estudio. Para aquellos que persiguen la certificación profesional de C isco la Guía
de estudio para la certificación CCNP y la Guía de estudio para profesionales
serán sin duda el m aterial necesario para obtener la certificación CCNP.

Editorial Alfaomega - RA-MA
ISBN: 978-607-707-182-2

Editorial Alfaomega - RA-MA
ISBN: 978-607-7854-79-1

© EIA-MA

INTRODUCCIÓN

17

Agradecimientos
A gradezco al lector por confiar en mi trabajo y por honrarm e con su interés
de aprender con este libro.
A todos los alum nos e instructores con los que h e tenido el placer de
trabajar todos estos años, de los cuales siem pre he aprendido cosas, a todos ellos
tam bién va este agradecim iento.
A m is editores una vez m ás por confiar en mí, dándom e la posibilidad de
otra nueva publicación.
A mi fam ilia, a mis com pañeros de trabajo y a los am igos de A rgentina y
España por su apoyo constante, especialm ente a los que la lejanía los hace aún m ás
cercanos.
Por últim o y fundam entalm ente a Elizabeth, m i esposa, luchadora
incansable de la vida, y a mi hijo Germán, cuyos m éritos superan con creces los
deseados p or cualquier padre; a am bos gracias por estar conm igo en los m om entos
m ás difíciles.
Ernesto Ariganello

Acerca del autor
E rnesto A riganello es instructor certificado de la Cisco Networking
Academy, im parte cursos relacionado con redes y com unicaciones. Especialista en
electrónica de hardw are de alta complejidad. Posee varias certificaciones, entre
ellas el CCN P. Es, adem ás, consultor especializado en com unicaciones de datos
para varias em presas de la U nión Europea. Su trabajo en educación y form ación es
sum am ente valorado en Europa y Latinoam érica, fundam entado en clases claras,
dinám icas y m uy prácticas, por donde han pasado m ás de 1.000 alumnos por
diferentes centros de form ación y empresas.
H a editado varios libros de la serie REDES C ISC O , de los cuales su
prim era obra Guía de estudio para la certificación CCNA y la Guía de estudio para
la certificación CCNP son reconocidas como las pioneras con contenidos escritos
íntegram ente en español.

18

REDES CISCO : GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN C C N A 640-802

© R A -M A

Advertencia
Se ha realizado el m áxim o esfuerzo para hacer de este libro una obra tan
com pleta y precisa com o sea posible, pero no se ofrece ninguna garantía im plícita
de adecuación a un ñ n en particular. L a inform ación se sum inistra “tal com o está”.
Los autores n o serán responsables ante cualquier persona o entidad con respecto a
cualquier pérdida, daño o perjuicio que pudieran resultar em ergentes de la
inform ación contenida en este libro.
T odos los térm inos m encionados en este libro que, según consta,
pertenecen a m arcas com erciales o m arcas de servicios, se utilizan únicam ente con
fines educativos. No debe considerarse que la utilización de un térm ino en este
libro afecte la validez de cualquier m arca comercial o de servicio.
Los conceptos, opiniones y gráficos expresados en este libro por los
autores no son necesariam ente los m ism os que los de C isco Systems, Inc.
Los iconos y topologías m ostradas en este libro se ofrecen con fines de
ejem plo y no representan necesariam ente un m odelo de diseño p ara redes.
Las configuraciones y salidas de los routers, sw itches y/o cualquier otro
dispositivo se han tom ado de equipos reales y se h a verificado su correcto
funcionam iento. N o obstante, cualquier error en la transcripción es absolutam ente
involuntario.

Capítulo 1

INTRODUCCIÓN A LAS REDES
1.1 CONCEPTOS BÁSICOS
Antes de com enzar la lectura de este libro el estudiante debe tener claros
ciertos conceptos que harán posible la m ejor com prensión de cada uno de los tem as
descritos en estas páginas. E sta guía de estudio apunta principalm ente a la
certificación CCN A, profundizando en el temario cada vez m ás en cada capítulo.
Estos prim eros párrafos servirán com o base a todo lo que sigue posteriormente.
Las infraestructuras de red pueden variar dependiendo del tam año del área,
del núm ero de usuarios conectados y del número y los diferentes tipos de servicios
disponibles. A dem ás del dispositivo final, hay otros com ponentes que hacen
posible que se establezca el enlace entre los dispositivos de origen y destino. Uno
de los com ponentes críticos en u n a red de cualquier tam añ o es el router, de la
m ism a forma que el sw itch, el funcionam iento y configuración de ambos se
detallarán en los capítulos siguientes.
Todos los tipos de m ensajes se tienen que convertir a bits, señales digitales
codificadas en binario, antes de enviarse a sus destinos. Esto es así sin im portar el
form ato del m ensaje original. Generalm ente, las redes utilizan cables para
proporcionar conectividad. E thernet es la tecnología de re d m ás común en la
actualidad. Las redes cableadas son ideales para transm itir grandes cantidad de
datos a altas velocidades. L as redes inalámbricas perm iten el uso de dispositivos
conectados a la red en cualquier lugar de una oficina o casa, incluso en el exterior.

20

R E D E S CISCO: GUÍA DE ESTUDIO P A R A LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

Las redes de área local y las redes de área amplia, es decir las LA N y las
W A N conectan a los usuarios dentro y fuera de la organización. Perm iten gran
cantidad y tipos de com unicación.
Sin embargo, los aspectos más im portantes de las redes no son los
dispositivos ni los m edios, sino los protocolos que especifican la m anera en que se
envían los m ensajes, cóm o se direccionan a través de la red y cóm o se interpretan
en los dispositivos de destino.

1.2 MODELO DE REFERENCIA OSI
A principios de los años ochenta los fabricantes inform áticos más
im portantes de la época se reúnen para unificar diferencias y recopilar la m ayor
inform ación posible acerca de cóm o poder integrar sus productos hasta el momento
no com patibles entres sí y exclusivos para cada uno de ellos. Como resultado de
este acuerdo surge el m odelo de referencia O SI, que sigue los parám etros comunes
de hardw are y software haciendo posible la integración m ultifabricante.
El m odelo OSI (m odelo abierto de intem etw ork, no confundir con ISO)
divide a la red en diferentes capas con el propósito de que cada desarrollador
trabaje específicam ente en su cam po sin tener necesidad de depender de otras
áreas. Un program ador crea una aplicación determ inada sin im portarle cuáles serán
los m edios por los que se trasladarán los datos, inversam ente u n técnico de
com unicaciones proveerá com unicación sin im portarle qué datos transporta.
7

A PLIC A C IÓ N

6

P R ESEN TA C IÓ N

5

SESIÓN

4

TR A N SPO RTE

3

RED

2

ENLACE DE
DATO S

1

FÍSIC A

Las siete capas del modelo OSI

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS REDES 21

© R A -M A

En su conjunto, el m odelo OSI se com pone de siete capas bien definidas
que son: A plicación, Presentación, Sesión, Transporte, R ed, Enlace de D atos y
Física.
C ada una de estas capas presta servicio a la capa inm ediatam ente superior,
siendo la capa de aplicación la única que no lo hace ya que al ser la últim a capa su
servicio está directam ente relacionado con el usuario. Así m ism o, cada una de estas
siete capas del host origen se com unica directam ente con su sim ilar en el host de
destino. Las cuatro capas inferiores tam bién son denom inadas capas de M edios (en
algunos casos capas de Flujo de Datos), m ientras que las tres superiores capas se
llam an de H ost o de Aplicación.
PC USUARIO

APLICACIÓN
PRESENTACIÓN
SESIÓN
TRANSPORTE
RED
ENLACE DE
DATOS
FÍSICA

w
n t—
oo c/i
$ °
<
u
cn
O
Q
W
S
w
Q
c/0
<
Cu
<
U

M odelo O S Í:
® Proporciona una form a de entender cóm o operan los dispositivos en una
red.
• Es la referencia para crear e im plementar estándares de red, dispositivos
y esquem as de internetw orking.
® Separa la com pleja operación de una red en elem entos m ás simples.

22

RED ES CISCO: GUÍA DE ESTUDIO PA R A LA CERTIFICACIÓN C C N A 640-802

© RA-M A

• Perm ite a los ingenieros centrarse en el diseño y desarrollo de funciones
m odulares ocupándose cada uno de su parte específica.
® Proporciona la posibilidad de definir interfaces estándar
com patibilidad “plug-and-play” e integración m ultifabricante.

para

1.2.1 Descripción de las siete capas
C a p a de aplicación. Es la única capa que no presta servicio a otra puesto
que es la capa de nivel superior del modelo O SI directam ente relacionada con el
usuario. L a aplicación a través del software dialoga con los protocolos respectivos
para acceder al m edio. Por ejem plo, se accede a un procesador de textos por el
servicio de transferencia de archivos de esta capa. A lgunos protocolos relacionados
con esta capa son: H TTP, correo electrónico, telnet.
C apa de presentación. L os datos form ateados se proveen de diversas
funciones de conversión y codificación que se aplican a los datos provenientes de
la capa de aplicación. Estas funciones aseguran que estos datos enviados desde la
capa de aplicación de un sistem a origen podrán ser leídos por la capa de aplicación
de otro sistem a destino. Un ejem plo de funciones de codificación sería el cifrado de
datos una vez que éstos salen de una aplicación. P or ejem plo, los formatos de
im ágenes jp eg y g if que se m uestran en páginas web. Este form ato asegura que
todos los navegadores web puedan m ostrar las im ágenes, con independencia del
sistem a operativo utilizado. A lgunos protocolos relacionados con esta capa son:
JPEG, M IDI, M PEG, Q UICK TIM E.
C apa de sesión. Es la responsable de establecer, adm inistrar y concluir las
sesiones de com unicaciones entre entidades de la capa de presentación. La
com unicación en esta capa consiste en peticiones de servicios y respuestas entre
aplicaciones ubicadas en diferentes dispositivos. U n ejem plo de este tipo de
coordinación podría ser el que tiene lugar entre un servidor y un cliente de base de
datos.
C a p a de tra n sp o rte . Es la encargada de la com unicación confiable entre
host, control de flujo y de la corrección de errores entre otras cosas. Los datos son
divididos en segm entos identificados con un encabezado con u n núm ero de puerto
que identifica la aplicación de origen. En esta capa funcionan protocolos como
UDP y TC P, siendo este últim o uno de los m ás utilizados debido a su estabilidad y
confiabilidad.

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS REDES

© R A -M A

23

C a p a d e red . En esta capa se lleva a cabo el direccionam iento lógico que
tiene carácter jerárquico, se selecciona la m ejor ruta hacia el destino m ediante el
uso de tablas de enrutam iento a través del uso de protocolos de enrutam iento o por
direccionam iento estático. Protocolos de capa de red: IP, IP X , RIP, IGRP, A pple
Talk.
C a p a de enlace de d ato s. Proporciona las com unicaciones entre puestos
de trabajo en una prim era capa lógica, transform a los voltios en tram as y las tram as
en voltios. El direccionam iento físico y la determ inación de si deben subir un
m ensaje a la pila de protocolo ocurren en esta capa. Está dividida en dos subcapas,
la LLC Logical Link C ontrol y la subcapa MAC. Protocolos de capa 2: Ethernet,
802.2, 802.3, HDLC, Fram e-Relay.
C a p a física. Se encarga de los m edios, conectores, especificaciones
eléctricas, lum ínicas y de la codificación. Los bits son transfonnados en pulsos
eléctricos, en luz o en radiofrecuencia para ser enviados según sea el m edio en que
se propaguen.

7

A P LIC A C IÓ N

HTML, HTTP,
telnet, FTP,
TFTP...

6

P R E SE N ( ACIÓN

JPEG, MIDI,
MPEG, A SCII,
Quicktime...

5

SESIÓ N

Control de
diálogo

4

TR A N S P O R TE

Control de flujo,
TCP, UDP...

RED

Enrutam iento,
IP, IPX, RIP,
IGRP, APPLE
TALK...

3

11

ESMLACE

LLC

DE
D A TO S

MAC

FÍSICA

Ethernet, 802.2,
802.3, HDLC,
Frame-Relay...
Bits, pulsos...

24

REDES CISCO: GUÍA DE ESTUDIO P A R A LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

1.3 FUNCIONES DE LA CAPA FÍSICA
L a capa física define el m edio, el conector y el tipo de señalización. Se
especifican los requisitos necesarios para la correcta transm isión de los datos. Se
establecen las características eléctricas, m ecánicas y funcionales para activar,
m antener y desactivar la conexión física entre sistem as finales.
La capa física especifica tam bién características tales com o niveles de
voltaje, tasas de transferencia de datos, distancias m áxim as de transm isión y
conectores, cada m edio de red posee a su vez su propio ancho de banda y unidad
m áxim a de transm isión (M TU).
El medio físico y los conectores usados para conectar dispositivos al m edio
vienen definidos por estándares de la capa física.

1.3.1 Dispositivos de la capa física
La capa física com prende los m edios (cobre, fibra, RF), los conectores,
transceivers, repetidores y hubs. N inguno de ellos m anipula los datos transm itidos
sino que solo se encargan de transportarlos y propagarlos por la red.
Los repetidores se encargan de retransm itir y de retem porizar los pulsos
eléctricos cuando la extensión del cableado supera las m edidas específicas.
Los hubs son re p e tid o re s m ultipuesto, tam bién llam ados concentradores.
Al recibir una tram a inundan todos sus puertos obligando a todos los dispositivos
conectados a cada uno de sus puertos a leer dichas tram as. Los transceivers son
adaptadores de un m edio a otro.

1.3.2 Estándares de la capa física
Los estándares de cableado se identifican siguiendo
conceptos:

los siguientes

10 B ase T
Donde:
® 10 hace referencia a la velocidad de transm isión en M bps (mega-bits
por segundo), en este caso 10 M bps.

CAPÍTULO 1. INTR O D U CC IÓ N A L A S REDES 25

© R A -M A

• Base es la tecnología de transm isión (banda base, analógica o digital),
en este caso digital.
• T se refiere al m edio físico, en este caso par trenzado.
El siguiente cuadro m uestra las características de las estándares m ás
comunes:

Estándar

M edio físico

Distancia
máxima

C om entarios

lOBase 2

Cable coaxial fino de
50 ohms thinnet

185 metros

Conectares BNC

lOBase 5

Cable coaxial grueso
de 50 ohms Thinknet

500 metros

Conectores BNC

lOBase FB

Fibra óptica

2000 metros

Cableado de
backbone

100Base FX

Fibra óptica
multimodo de 62,5/125
micrones

400 metros

Conectores ST, SC

100Base FX

Fibra óptica
• monomodo

10000
metros

Cableado de
backbone

lOOOBase SX

Fibra óptica
multimodo

260 metros

Varias señales a la
vez

100Base LX

Fibra óptica
monomodo de 9
micrones

3000 a
10000
metros

Cableado de
backbone

lOBase T

UTP categoría 3,4, 5

100 metros

Conectores RJ-45

100Base T

UTP categoría 5

100 metros

Conectores RJ-45

100BaseTX

UTP, STP
categoría 6, 7

1OOOBase T

UTP categoría 5, 6

100 metros

100 metros

Conectores RJ-45
Conectores RJ-45
categoria 6

26

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

1.3.3 Medios de la capa física
L a norm ativa EIE/TIA 568 fue creada en 1991 y establece los estándares
de cableado estructurado, am pliada posteriorm ente a 568-A y 568-B.
Pin

P ar

Función

Golor

1

-i
D

Transmite +

Blanco/verde

2

3

Transmite -

Verde

3

2

Recibe +

Blanco/ naranja

4

l

Telefonía

Azul

5

1

Telefonía

Blanco/ azul

6

2

Recibe -

Naranja

7

4

Respaldo

Blanco/marrón

8

4

Respaldo

Marrón

Orden de los p in es correspondiente a la norma 568-A sobre un conectar R J 4 5

Función

Color

Pin

Par

1

3

Transmite +

Blanco/ naranja

2

3

Transmite -

Naranja

3

2

Recibe +

Blanco/ verde

4

1

Telefonía

Azul

5

1

Telefonía

Blanco/ azul

6

2

Recibe -

Verde

7

4

Respaldo

Blanco/marrón

8

4

Respaldo

Marrón

Orden de los pines correspondiente a la norma 568-B sobre un conector RJ-45

O R A -M A

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS RED ES

27

Cable directo: el orden de los pines es igual en am bos conectores, se debe
utilizar la m ism a norm a en cada extremo.
Extremo 1

Extremo 2

Blanco/naranja

Blanco/naranja

Naranja

Naranja

B lanco/verde

Blanco/verde

Azul

Azul

Blanco/azul

Blanco/azul

Verde

Verde

Blanco/marrón

Blanco/marrón

Marrón

Marrón
Cable directo 568 B

Extremo 1

Extremo 2

Blanco/verde

Blanco/verde

Verde

Verde

Blanco/naranja

Blanco/naranja

Azul

Azul

Blanco/azul

Blanco/azul

Naranja

Naranja

Blanco/marrón

Blanco/marrón

Marrón

Marrón
Cable directo 568 A

28

REDES CISCO: G U ÍA DE E ST U D IO PA RA LA CERTIFICACIÓN CCNA 640-802

O R A -M A

Cable cruzado: el orden de los pines varía en ambos extrem os, se cruzan
el 1-2 con el 3-6 y el 3-6 co n el 1-2. El cable cruzado tam bién es llam ado
crossover. Se utiliza para conectar dispositivos com o, por ejem plo, PC-PC, PCRouter, Router-Router, etc.
E x trem o 1

Extrem o 2

Blanco/naranja

Blanco/verde

Naranja

Verde

Blanco/verde

Blanco/naranja

Azul

Azul

Blanco/azul

Blanco/azul

Verde

Naranja

Blanco/marrón

Blanco/marrón

Marrón

Marrón

Orden de los colores en ambos extremos de un cable cruzado

Cable consola: el o td en de los pines es com pletam ente inverso, 1-2-3-4-56-7-8 con el 8-7-6-5-4-3-2-1, respectivam ente. El cable de consola tam bién es
llam ado rollover.
1

al

8

2

al

7

3

al

6

4

al

5

5

al

4

6

al

3

7

al

2

8

al

1

© R A -M A

CAPÍTULO 1. IN T R O D U C C IÓ N A LAS REDES

29

r~*CcTB5g

Conector RJ-45

Cable blincado STP

Cable UTP

Fibra óptica

*i-'\
%NO TA:

E l enfoque principal de este libro está asociado con los estándares e
implementaciones Ethernet e IEE 802.3.

1.3.4 Medios inalámbricos
Los m edios inalám bricos transportan señales electrom agnéticas m ediante
frecuencias de m icroondas y radiofrecuencias que representan los dígitos binarios
de l#s com unicaciones de datos. C om o m edio en sí m ismo, el sistem a inalám brico
no se lim ita a condiciones físicas, com o en el caso de los m edios de fibra o de
cobre. Sin em bargo, el m edio inalám brico es susceptible a la interferencia y puede
distorsionarse p o r dispositivos com unes como teléfonos inalám bricos domésticos,
algunos tipos de luces fluorescentes, hornos m icroondas y otras com unicaciones
inalám bricas.
Los estándares IEEE sobre las comunicaciones inalám bricas abarcan las
capas física y de enlace de datos. Los cuatro estándares com unes de com unicación
de datos que se aplican a los m edios inalám bricos son:
• IEEE estándar 802.11: com únm ente denom inada W i-Fi, se trata de
una tecnología LAN inalám brica (red de área local inalám brica,

30

REDES CISCO: GUÍA DE E ST U D IO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

W LA N) que utiliza una contención o sistem a no determ inista con un
proceso de acceso a los m edios de A cceso m últiple con detección de
portadora/Prevencióm de colisiones (CSM A/CA ).
• IE E E estándar 802.15: estándar de red de área personal inalám brica
(W PA N ), com únm ente denom inada B luetooth, utiliza un proceso de
■ em parejam iento de dispositivos para com unicarse a través de una
distancia de 1 a 100 m etros.
® IE E E estándar 802.16: com únm ente conocida como W iM A X
(Interoperabilidad m undial para el acceso por m icroondas), utiliza una
topología punto a m ultipunto para proporcionar un acceso de ancho de
banda inalám brico.
• Sistem a global para com unicaciones m óviles (GSM ): incluye las
especificaciones de la capa física que habilitan la im plem entación del
protocolo Servicio general de radio por paquetes (G PR S) de capa 2 para
proporcionar la transferencia de datos a través de redes de telefonía
celular móvil.

1.4 FUNCIONES DE LA CAPA DE ENLACE DE DATOS
La finalidad de esta capa es proporcionar com unicación entre puestos de
trabajo en u n a prim era capa lógica que hay por encim a de los bits del cable. El
direccionam iento físico de los puestos finales se realiza en la capa de enlacé de
datos con el fin de facilitar a lo s dispositivos de red la determ inación de si deben
subir un m ensaje a la p ila de protocolo.
La capa de enlace de datos da soporte a servicios basados en la
conectividad y no basados en ella, y proporciona la secuencia y control de flujo (no
confundir con la capa de transporte). Tiene conocim iento de la topología a la que
está afectada y donde se desem peña la tarjeta de red (NIC).
E stá dividida en dos subeapas, la LLC (Logical Link Control 802.2),
responsable de la identificación lógica de los distintos tipos de protocolos y el
encapsulado posterior de los m ism os para ser transm itidos a través de la red, y la
subeapa M A C (802.3), responsable del acceso al m edio, el direccionam iento físico,
topología de la red, disciplina d e la línea, notificación de errores, distribución
ordenada de tram as y control óptim o de flujo. Las direcciones físicas de origen
destino son representadas como direcciones de capa M AC.

© R A -M A

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS R E D E S 31

1.4.1 Dispositivos de capa de enlace de datos
En la capa de enlace de datos se diferencian perfectam ente los D om inios de
C olisión y los Dom inios de D ifusión (ver más adelante). L os puentes y los sw itches
dividen a la red en segm entos, estos a su vez crean dom inios de colisión. Una
colisión producida en un segm ento conectado a un sw itch no afectará a los dem ás
segm entos conectados al m ism o switch. Sin em bargo, los dispositivos de capa 2 no
crean dom inios de broadcast o difusión.
NOTA:

Un switch de 12 puertos utilizados tendrá 12 dominios de colisión y uno de
difusión.

Los dispositivos de capa dos crean dominios de colisión pero
mantienen un único Dominio de Broadcast.
Una colisión producida en un segmento NO afecta al resto

32

REDES CISCO: GUÍA DE E ST U D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

En un switch, el reenvío de tram as se controla por m edio de hardw are
(ASIC). Esta tecnología perm ite que las funciones de conm utación puedan llevarse
a cabo a una velocidad m ucho m ayor que por software. D ebido a la tecnología
A SIC , los switches proporcionan escalabilidad a velocidades de gigabits con una
latencia baja. Los puentes funcionan a nivel de software por lo que poseen m ayor
latencia com parados con u n switch.
U n dispositivo de capa 2 alm acena en una m em oria de contenido
direccionable (CAM ) las direcciones físicas de los dispositivos asociados a un
segm ento de red conectado directam ente a un puerto determ inado. D e esta m anera
identificará inm ediatam ente por qué puerto enviar la tram a. Si el dispositivo de
destino está en el m ism o segm ento que el origen, el switch bloquea el paso de la
tram a a otro segm ento. E ste proceso se conoce com o filtrado. Si el dispositivo de
destino se encuentra en un segm ento diferente, el sw itch envía la tram a únicam ente
al segmento apropiado, técnica conocida com o conm utación de capa dos. Si la
dirección de destino es desconocida para el switch, o si se tratara de un broadcast,
éste enviará la tram a a todos los segm entos excepto a aquel de donde se h a recibido
la información. Este proceso se denom ina inundación.
L a N IC o tarjeta de red opera en la capa de enlace de datos, no debe
confundirse con la capa física a pesar de estar directam ente conectada al m edio ya
que sus principales funciones radican en la capa 2. La N IC alm acena en su propia
ROM la dirección M A C que consta de 48 bits y viene expresada en 12 dígitos
hexadecim ales. Los prim eros 24 bits, o 6 dígitos hexadecim ales, de la dirección
MAC contienen un có d ig o de identificación del fabricante o vende dor O U I
(Organizationally Unique Identifier). Los últim os 24 bits, o 6 dígitos
hexadecim ales, están adm inistrados por cada fabricante y presentan, por lo general,
el núm ero de serie de la tarjeta. La dirección de la capa de enlace de datos no tiene
jerarquías, es decir, que es u n direccionam iento plano.
Ejem plo de una dirección M AC o dirección física
00-11-85-F2-32-E5
Donde:
® 00-11-85 rep resen ta el código del fabricante.
® F 2-32-E 5 representa el núm ero de serie.

© R A -M A

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS REDES

33

NOTA:

Para verificar el correcto funcionam iento de la tarjeta de red se realiza un
p in g a la dirección IP de la misma.

1.4.2 C aracterísticas de las redes conm utadas
® Cada segm ento genera su propio dominio de colisión.
» Todos los dispositivos conectados al m ismo bridge o switch forman
parte del m ism o dom inio de difusión.
® Todos los segm entos deben utilizar la m ism a im plem entación al nivel
de la capa de enlace de datos como, por ejem plo, Ethernet o Token
Ring.
® Si un puesto final concreto necesita com unicarse co n otro puesto final a
través de un m edio diferente, se hace necesaria la presencia de algún
dispositivo, com o puede ser un router o un bridge de traducción, que
haga posible el diálogo entre los diferentes tipos de m edios.
® En un entorno conm utado, puede haber un dispositivo por segm ento, y
todos los dispositivos pueden enviar tram as al m ism o tiem po,
permitiendo de este m odo que se comparta la ruta prim aria.

1.5 FUNCIONES DE LA CAPA DE RED
L a capa de red define cóm o transportar el tráfico de datos entre
dispositivos que no están conectados localm ente en el m ism o dom inio de difusión,
es decir, que pertenecen a diferentes redes. Para conseguir esta com unicación se
necesita conocer las direcciones lógicas asociadas a cada puesto de origen y de
destino y una ruta bien definida a través de la red para alcanzar el destino deseado.
L a capa de red es independiente de la de enlace de datos y, por tanto, puede ser
utilizada para conectividad de m edios físicos diferentes.
Las direcciones de capa 3, o direcciones lógicas, son direcciones
jerárquicas. Esta jerarquía define prim ero las redes y luego a los dispositivos
(nodos) pertenecientes a esas redes. U n ejemplo para la com prensión de una
dirección jerárquica sería un núm ero telefónico, donde prim ero se define el código
del país, luego el estado y luego el núm ero del usuario. U n esquem a plano se puede

34

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

ejem plificar con un núm ero de carné de identidad donde cada núm ero es único y
personal.
Una dirección lógica cuenta con dos partes b ien definidas, una que
identifica de form a única a la red dentro de un conjunto en la intem etw ork y la otra
parte que representa al host dentro de estas redes. Con la sum a o com binación de
am bas partes se obtiene un identificador único para cada dispositivo. El router
identifica dentro de la dirección lógica la porción perteneciente a la red con el fin
de identificar la red donde enviar los paquetes.

NOTA:

Existen muchos protocolos de red, todos cumplen las mismas funciones de
identificar redes y hosts. TCP/IP es el protocolo común más usado.

1.5.1 Direcciones de capa tres
Una dirección IPv4 se caracteriza por lo siguiente:
* U na dirección de 32 bits, dividida en cuatro octetos. E ste
direccionam iento identifica una porción perteneciente a la red y otra al
host.
• A cada dirección IP le corresponde una m áscara de red de 32 bits
dividida en cuatro octetos. El router determ ina las porciones de red y
host por medio de la m áscara de red.
® Las direcciones IP generalm ente se representan en form a decim al para
hacerlas más com prensibles. Esta form a se conoce com o decim al
punteado o notación decimal de punto.

© RA-MA

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS REDES

35

Dirección IP 172.16.1.3
M áscara 255.255.0.0
172

16

10101100

255

00010000

255

11111111

11111111

Porción de red

1
00000001

0
00000000

3
0 0000011

0
OOOOOOOO

Porción de host

Formato de una dirección IPv4

Las direcciones IPv6 m iden 128 bits y son identifícadores de interfaces
individuales y conjuntos de interfaces. M ás adelante se describe IPv6 con m ás
detalle. Las direcciones IPv6 se asignan a interfaces, no a nodos. Com o cada
interfaz pertenece a un solo nodo, cualquiera de las direcciones unicast asignada a
las interfaces del nodo se pueden usar com o identifícadores del nodo. Las
direcciones IPv6 se escriben en hexadecim al, separadas por dos puntos. Los
cam pos TPv6 tienen u n a longitud de 16 bits.
Ejem plo de u n a dirección IPv6:

2 4 a e : 0 0 0 0 : f 2 f 3 : 0 0 0 0 : 0 0 0 0 : 0 6 8 7 : a 2 f f : 6 184

1.5,2 Comparación entre IPv4 e IPv6
Cuando se adoptó TC P/IP en los años ochenta, la versión 4 del IP (IPv4)
ofrecía una estrategia de direccionam iento que, aunque resu ltó escalable durante
algún tiem po, produjo una asignación poco eficiente de las direcciones.
A m ediados de los años noventa se com enzaron a detectar las siguientes
dificultades sobre IPv4:
® A gotam iento de las restantes direcciones de red IPv4 no asignadas. En
ese entonces, el espacio de Clase B estaba a punto de agotarse.

36

REDES CISCO : G U ÍA DE E ST U D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

• Se produjo un gran y rápido aum ento en el tam año de las tablas de
enrutam iento de Internet a m edida que las redes C lase C. se conectaban
en línea. La inundación resultante de nueva inform ación en la red
am enazaba la capacidad de los routers de Internet para ejercer una
efectiva adm inistración.
D urante las últim as dos décadas, se desarrollaron num erosas extensiones al
IPv4. Estas extensiones se diseñaron específicam ente para m ejorar la eficiencia con
la cual es posible utilizar un espacio de direccionam iento de 32 bits com o V L S M y
C ID R (ver m ás adelante).
M ientras tanto, se ha definido y desarrollado una versión m ás extensible y
escalable del IP, la versión 6 del IP (IPv6). IPv6 utiliza 128 bits en lugar de los 32
bits que en la actualidad utiliza el IPv4. IPv6 utiliza núm eros hexadecim ales para
representar los 128 bits. IPv6 proporciona 640 sextillones de direcciones. Esta
versión del IP proporciona un núm ero de direcciones suficientes para futuras
necesidades de com unicación.

El direccionamiento IPv6 también es conocido como IPng o “IP de nueva
¡ generación”.

1.5.3 Operación AND
Los routers determ inan la ruta de destino a partir de la dirección de RED,
estos com paran las direcciones IP con sus respectivas m áscaras efectuando la
operación booleana A N D . Los routers ignoran el rango de host para encontrar la
red destino a la que éste pertenece.
La operación A N D consiste en com parar bit a bit la dirección IP y la
m áscara utilizando el siguiente razonam iento:
1x1 = 1
1x0=0
0x1=0
0x0=0

© RA-M A

CAPÍTULO 1. IN T R O D U C C IÓ N A LAS R E D E S

37

D irección de host
1 0 1 0 1 1 0 0 .0 0 1 0 0 0 0 0 .0 0 0 0 0 0 0 1 .0 0 0 0 0 0 1 1
M áscara de red________ 1 1 1 1 1 1 1 1 .1 1 1 1 1 1 1 1 .0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0
D irección de red
1 0 1 0 1 1 0 0 .0 0 1 0 0 0 0 0 .0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

En decimales:
Dirección de host
172.
M áscara de red_________255.
D irección de red
172.

16.
255.
16.

1.
3
0._____ 0
0.
0

1.5.4 Dispositivos de la capa de red
Los routers funcionan en la capa de red del m odelo OSI separando los
segm entos en dom inios de colisión y difusión únicos. Estos segm entos están
identificados por una dirección de red que permitirá alcanzar las estaciones finales.
Los routers cum plen dos funciones básicas que son la de enrutar y conm utar los
paquetes. Para ejecutar estas funciones registran en tablas de enrutam iento los
datos necesarios para esta función.
Adem ás de identificar redes y proporcionar conectividad, los routers deben
proporcionar estas otras funciones:
® Los routers no envían difusiones de capa 2 ni tram as de m ultidifusión.
• Los routers intentan determ inar la ruta m ás óptim a a través de una red
enrutada basándose en algoritmos de enrutam iento.
® Los routers separan las tramas de capa 2 y envían paquetes basados en
direcciones de destino capa 3.
8 Los routers asignan una dirección lógica de capa 3 individual a cada
dispositivo de red; por tanto, los routers pueden lim itar o asegurar el
tráfico de la red basándose en atributos identificables con cada paquete.
Estas opciones, controladas por m edio de listas de acceso, pueden ser
aplicadas para incluir o descartar paquetes.
» Los routers pueden ser configurados para realizar funciones tanto de
puenteado com o de enrutamiento.

38

REDES CISCO: GUÍA D E E ST U D IO PA R A LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

• Los routers proporcionan conectividad entre diferentes LA N virtuales
(VLAN) en entornos conm utados.
• Los routers pueden ser usados para desplegar parám etros de calidad de
servicio para tipos específicos de tráfico de red.

Los routers conocen los diferentes destinos m anteniendo tablas de
enrutam iento que contienen la siguiente inform ación:
• Dirección de red. R epresenta redes conocidas por el router. La
dirección de red es específica del protocolo. Si un router soporta varios
protocolos, tendrá una tabla por cada uno de ellos.
• Interfaz. Se refiere a la interfaz usada por el router para llegar a una red
dada. Esta es la interfaz que será usada para enviar los paquetes
destinados a la red que figura en la lista.
• M étrica. Se refiere al coste o distancia para llegar a la red de destino.
Se trata de un v alor que facilita al router la elección de la m ejor ruta
para alcanzar u n a red dada. Esta m étrica cam bia en función de la forma
en que el router elige las rutas. Entre las m étricas más habituales figuran
el núm ero de redes que han de ser cruzadas para llegar al destino
(conocido tam bién com o saltes), el tiem po que se tarda en atravesar
todas las interfaces hasta una red dada (conocido tam bién como
retraso), o u n valor asociado con la velocidad de un enlace (conocido
tam bién com o ancho de banda).

E n la siguiente salida del router se observa una tabla de enrutam iento con
las direcciones IP de destino (172.25.25.6/32), la m étrica ([120/2]) y la
correspondiente interfaz de salida SerialO. 1.
Router2#show ip route rip
R
172.21.0.0/16 [120/1]
via 172.25.2 .1,
R
172.22.0.0/16 [120/1]
via 172.25.2.1,
172.25.0.0/16 is variably subnetted, 6
R
172.25.25.6/32 [120/2] via 172.25.2.1,
R
172.25.25.1/32 [120/1] via 172.25.2.1,
R
172.25.1.0/24 [120/1]
via 172.25.2.1,
R
172.25.0.0/16 [120/1]
via 172.25.2.1,

00:00:01,
00:00:01,
subnets,
00:00:01,
00:00:01,
00:00:01,
00:00:01,

SerialO.1
SerialO.1
3 masks
SerialO.1
SerialO.1
SerialO.1
SerialO.1

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS RED ES

© R A -M A

1.1

39

3.1

Tabla de enrutam iento Router A

Tabla de enrutam iento Router B

Red

Interfaz

M étrica

Red

Interfaz

Métrica

1

EO

0

1

SI

t

2

SO

0

2

SI

0

3

SO

1

3

EO

0

A dem ás de las ventajas que aporta su uso en un cam pus, los routers pueden
utilizarse tam bién para conectar ubicaciones remotas con la oficina principal por
m edio de servicios W A N. Los routers soportan una gran variedad de estándares de
conectividad al nivel de la capa física, lo cual ofrece la posibilidad de construir
W AN. A demás, pueden proporcionar controles de acceso y seguridad, que son
elem entos necesarios cuando se conectan ubicaciones rem otas.

Los routers comunican redes diferentes creando
dominios de difusión y de colisión, los broadcast de un segmento
no inundan a los demás ni las colisiones afectan al resto

40

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

1.6 FUNCIONES DE LA CAPA DE TRANSPORTE
Para conectar dos dispositivos rem otos es necesario establecer una
conexión. La capa de transporte establece las reglas para esta interconexión.
Perm ite que las estaciones finales ensam blen y reensam blen m últiples segm entos
del m ism o flujo de datos. E sto se hace por m edio de identificadores que en TCP/ÍP
reciben el nom bre de núm eros de puerto. La capa cuatro perm ite adem ás que las
aplicaciones soliciten transporte fiable entre los sistem as. A segura que los
segm entos distribuidos serán confirm ados al rem itente. Proporciona la
retransm isión de cualquier segm ento que no sea confirmado. C oloca de nuevo los
segm entos en su orden correcto en el receptor. Proporciona control de flujo
regulando el tráfico de datos.
En la capa de transporte, los datos pueden ser transm itidos de form a fiable
o no fiable. P ara IP, el protocolo TCP (Protocolo de control de transporte) es fiable
u orientado a conexión con un saludo previo de tres vías, m ientras que UDP
(Protocolo de datagram a de usuario) no es fiable, o no orientado a la conexión
donde solo se establece un saludo de dos vías antes de enviar los datos.
1 a! 1023

Puertos bien conocidos

1 al 255

Puertos públicos

256 al 1023

Asignados a empresas

Mayores a! 1023

Definidos por el usuario

Números de puerto utilizados por TCP y UDP para
identificar sesiones de diferentes aplicaciones

U n ejem plo de protocolo orientado a conexión puede com pararse con una
llam ada telefónica, donde el interlocutor establece una conexión (m arcando el
núm ero), verifica que el destinatario sea la persona que se espera (saludando
recíprocam ente) y finalm ente estableciendo la conversación (envío de datos). El
caso de un protocolo no orientado a conexión puede ser un envío postal, donde se
envía la correspondencia sin establecer ningún aviso previo, ni acuse de recibo.
TCP utiliza una técnica llamada ventanas, donde se establece la cantidad
de envío de paquetes antes de transm itir; m ientras que en el w in dow iog o de
ventana deslizante, el flujo de envío de datos es negociado dinám icam ente entre el
em isor y el receptor. En las ventanas deslizantes o w indow ing cada acuse de recibo
(A C K ) confirm a la recepción y el envío siguiente.

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS RED ES 4-1

© R A -M A
O rig en

j

'
T a m a ñ o de la v e n ta n a 1
E n v ía i

D estin o

R e c ib e

“¡mSw

- - .i

E n v ía 2 y,,’,

A ck 2

1

:. .

-ssms/

v.-: ........................R e cib e 2
— — ------ -i A c k 3

T a m a ñ o de la v e n ta n a 3
E n v ía 1 C.V-V.'.
E n v ía 2 i...............................
E n v ía 3 i...............................

... —i Ack 4
E n v ía 4 i

¥

...........

RECUERDE:
TCP, protocolo confiable de capa de transporte orientado a
conexión

UDP, protocolo N O confiable de capa de transporte NO
orientado a conexión
Un protocolo orientado a conexión es el que previamente
establece un saludo antes de enviar los datos, como es el ejemplo
de una llamada telefónica, donde se establece un saludo de tres
vías. Un protocolo No orientado a conexión es el que no establece
saludo previo antes de enviar los datos como es el caso de un
envío postal donde se establece un saludo de dos vías

42

REDES CISCO: GUÍA DE E ST U D IO PA RA LA CERTIFICA C IÓ N CCNA 640-802

M odelo O SI

F u n cion es

P rotocolos

7

APLICACIÓN

Nivel usuario, software,
aplicaciones

HTTP, Telnet,
SNMP,

6

PRESENTACIÓN

Representación y
traducción de datos,
formateo, cifrado

JPG, MP3, DOC

SESIÓN

Reglas, separar datos de
las aplicaciones, establece
sesiones entre
aplicaciones

NFS, Linux

TRANSPORTE

Comunicación confiable,
corrección de errores,
control de flujo,
establece, mantiene y
finaliza comunicaciones

UDP,TCP

RED

Direccionamiento lógico,
determinación de ruta

5

4

3

IP, IPX, RIP,
ARP,
ICMP

2

ENLACE DE
DATOS

Direccionamiento físico,
mapa topològico, acceso
al medio

Ethernet, PPP,
HDLC

1

FÍSICA

Codificación, transmisión

EIE/TIA 568

© R A -V tA

© R A -M A

CAPÍTU LO 1. IN TR O D U CC IÓ N A LAS REDES 43

1.7 ETHERNET
Ethernet es la tecnología de acceso al medio m ás popular, es escalable,
económ ica y fácilm ente integrable a nuevas aplicaciones, se pueden obtener
arquitecturas de LA N a velocidades de Gigabit sobre cobre y la resolución de fallos
suele ser sim ple y rápida. Ethernet opera sobre la capa de enlace de datos y física
del m odelo OSI. Sin em bargo, no es determ inista ni ofrece jerarquías.
Ethernet es una tecnología conflictiva de m áxim o esfuerzo, todos los
equipos de trabajo que se conectan al mismo m edio físico reciben las señales
enviadas por otros dispositivos. Si dos estaciones transm iten a la vez, se genera una
colisión. Si no existieran m ecanism os que detectasen y corrigiesen los errores de
estas colisiones, Ethernet no podría funcionar.
E thernet fue creada en colaboración por Intel, D igital y Xerox,
originalm ente se im plem ento com o Ethernet 802.3, half-duplex, lim itada al
transporte de datos por solo u n par de cobre a la vez (recibe por un par y transmite
por otro pero no al m ism o tiem po). Posteriorm ente la tecnología Ethernet fullduplex perm itió recibir y enviar datos al mismo tiem po libre de colisiones. El uso
m ás adecuado del ancho de banda perm ite casi duplicarse al poder transm itir y
recibir al 100% de capacidad. Sin embargo, esta tecnología n o es tan económ ica y
es solo aplicable a dispositivos que lo permitan.
En el diseño de una red
llam ados dom inios de colisión y
excesiva cantidad de colisiones
inaceptable el funcionam iento de

Ethernet se debe tener especial cuidado con los
dom inios de difusión (broadcast) debido a que la
o de broadcast (torm entas de broadcast) harían
Ethernet.

1.7.1 Dominio de colisión
*■ Grupo de dispositivos conectados al m ism o m edio físico, de tal manera que
si dos dispositivos acceden al m edio al m ism o tiem po, el resultado será una
colisión entre las dos señales. Como resultado de estas colisiones se produce un
consum o inadecuado de recursos y de ancho de banda. Cuanto m enor sea la
cantidad de dispositivos afectados a un dom inio de colisión m ejor desem peño de la
red.

1.7.2 Dominio de difusión
Grupo de dispositivos de la red que envían y reciben m ensajes de difusión
entre ellos. U na cantidad excesiva de estos m ensajes de difusión (broadcast)
provocará un bajo rendim iento en la red, una cantidad exagerada (torm enta de

44

REDES CISCO: G U ÍA DE E ST U D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

O R A -M A

broadcast) dará com o resultado el mal funcionam iento de la red hasta tal punto de
poder dejarla com pletam ente congestionada.
Los hubs o concentradores tienen un único dom inio de colisión, eso quiere
decir que si dos equipos provocan una colisión en un segm ento asociado a un
puerto del hub, todos los dem ás dispositivos aun estando en diferentes puertos se
verán afectados. D e igual m anera se verían afectados si una estación envía un
broadcast, debido a que un hub tam bién tiene un solo dom inio de difusión.

Los dispositivos conectados a través de un hub comparten el mismo dominio de colisión
y de broadcast. Las colisiones en el medio afectarán por igual
a todos los hosts del segmento

© RA-M A

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS RED ES

Dominios de A
broadcast )

f
\

45

Dominios de
colisión

Comparativa entre dominios de colisión y dominios de difusión
en dispositi vos de tres capas diferentes

N OTA :

Asdcie a los routers como los dispositivos que crean dominios de difusión y a
los switches como los que crean dominios de colisión.

1.7.3 CSMA/CB
La tecnología E thernet utiliza para controlar las colisiones dentro de un
determ inado segm ento el protocolo CSM A /CD (acceso m últiple con detección de
portadora y detección de colisiones). En la práctica, esto significa que varios
puestos pueden tener acceso al m edio y que, para que un puesto pueda acceder a
dicho m edio, deberá detectar la portadora para asegurarse de que ningún otro
puesto esté utilizándolo. Si el m edio se encuentra en uso, el puesto procederá a
m antener en suspenso el envío de d ato s F.n ra sn Hp nup Vim/a Hnc

46

REDES CISCO: GUÍA D E ESTU D IO PARA LA C ERTIFICA C IÓ N C C N A 640-802

© R A -M A

detectan ningún otro tráfico, am bos tratarán de transm itir al m ism o tiem po, dando
com o resultado una colisión.
A partir de esta colisión las estaciones em iten una señal de congestión para
asegurarse de que existe una colisión y se genera un algoritm o de espera con el que
las estaciones retransm itirán aleatoriam ente.

\N O T A :

más claro de CSMA/CD es el de “escucho y luego transm ito”.
E l eejemplo
n

Transmite

L

JE L

jS L

S

L

,J 5 L

JB L

jc t
Transmite

Secuencia de una colisión en un entorno Ethernet

© R A -M A

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS REDES

47

1.7.4 Formato básico de una trama Ethernet
El formato de la tram a del estándar IEEE 802.3 y el de Ethernet creado por
X erox son m uy sim ilares y com patibles, solo difieren en algunas pequeñas
cuestiones de concepto. IEEE 802.3 se basa en las especificaciones recogidas por
los estándares del Instituto de Ingenieros Eléctricos y Electrónicos, a partir de
Ethernet m ientras que Ethernet II es una versión actualizada de Ethernet.

8 Bytes

6 B yte s

6 Byte s

2 Byte s

4 6 -150 0 B y te s

4 Bytes

Longitud máxima: 1518 Bytes
Longitud mínima: 64 Bytes

• Preám bulo. Secuencia de valores alternados 1 y 0. usados para la
sincronización y para detectar la presencia de señal, indica el inicio de
la tram a.
• Dirección de destino. Este campo identifica la dirección M AC del
dispositivo que debe recibir la trama. L a dirección d e destino puede
especificar una dirección individual o una dirección m ulticast destinada
a un grupo de estaciones. Una dirección destino con todos los bits en 1
se refiere a todos los dispositivos de la red denom inada dirección de
broadcast o difusión.
• Dirección de origen. Este campo identifica la dirección M AC del
dispositivo que debe enviar la trama.
• Tipo. Indica el tipo de protocolo de capa superior.
9

D atos. Este cam po contiene los datos transferidos desde el origen hasta
el destino. El tam año m áxim o de este cam po es de 1500 bytes. Si el
tam año de este cam po es m enor de 46 bytes, entonces es necesario el
uso del cam po siguiente (Pad) para añadir bytes h asta que el tam año de
la tram a alcance el valor mínimo.

48

REDES CISCO: G U ÍA D E E ST U D IO PARA LA CERTIFICACIÓN CC N A 640-802

© R A -M A

• F SC . C am po de com probación de la tram a, este cam po contiene un
valor de chequeo de redundancia de 4 bytes (C R C ) para verificación de
errores. L a estación origen efectúa un cálculo y lo transm ite com o parte
de la tram a. C uando la tram a es recibida por el destino, este realiza un
chequeo idéntico. Si el valor calculado no coincide con el valor en el
campo, el destino asum e que ha sido un error durante la transm isión y
entonces descarta la tram a completa.
Los estándares originales Ethernet definen el tam año m ínim o de tram a
com o 64 bytes y el m áxim o com o 1518 bytes. Estas cantidades incluyen todos los
bytes de la tram a m enos los com prendidos en el preám bulo. En 1998 se prom ovió
una iniciativa con el fin de increm entar el tam año m áxim o del cam po de datos de
1500 a 9000 bytes. Las tram as más largas (tram as gigantes) proveen un uso más
eficiente del ancho de banda en la red a la vez que reducen la cantidad de tram as a
procesar.

1.7=5 Proceso de encapsulación de los datos
El proceso desde que los datos son incorporados al ordenador hasta que se
transm iten al m edio se llam a encapsulación. Estos datos son form ateados,
segm entados, identificados con el direccionam iento lógico y físico para finalmente
ser enviados al m edio. A cada capa del m odelo OSI le conesponde una PDU
(U nidad de Datos) siguiendo p o r lo tanto el siguiente orden de encapsulam iento:
1.

Datos

2.

Segm entos

3.

Paquetes

4.

Tram as

5.

Bits

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS RED ES

© RA-M A

49

APLICACIÓN
PRESENTACIÓN

DATOS

SESIÓN
TRANSPORTE

SEGMENTOS

RED

PAQUETES

ENLACE DE DATOS

TRAMAS

FÍSICA

BITS

Relación entre capas del modelo OSI
y su correspondiente PDU

Debido a que posiblem ente la cantidad de los datos sea dem asiada, la capa
de transporte desde el origen se encarga de segmentarlos para así ser em paquetados
debidam ente, esta m ism a capa en el destino se encargará de reensam blar los datos
y colocarlos en form a secuencial, y a que no siempre llegan a su destino en el orden
en que han sido segm entados, así m ism o acorde al protocolo que se esté utilizando
habrá o no corrección de errores. Estos segmentos son em paquetados (paquetes o
datagram as) e identificados en la capa de red con la dirección lógica o IP
correspondiente al origen y destino, O curre J o m ism o con la dirección MAC en la
capa de enlace de datos form ándose las tramas o fram es p ara ser transm itidos a
través de alguna interfaz. Finalm ente las tramas son enviadas al m edio desde la
capa física.

_

^

=

=

=

=

=

_

_

_

-

_

_

_

_

-------------------

E l proceso inverso se realiza en el desino y se llama desencapsulación de
datos.

50

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

Secuencia de la encapsulación de datos:
Se crean los datos a través de una aplicación
Datos

Los datos son segm entados
Segm entos

Se coloca el encabezado IP
Paquetes

D irección
IT de
origen

Dirección
IP de
destino

Protocolo

Se agrega el encabezado M AC
Tramas
D irección
M AC
origen

Dirección
M AC
destino

Se envía al m edio
Bits
10010111010011110010101000111101010000

© R A -M A

CAPÍTULO 1. INTRODUCCIÓN A LAS RE D E S

© RA-M A

51

1.8 MODELO JERÁRQUICO DE TRES CAPAS
Con el fin de sim plificar el diseño, im plementación y adm inistración de las
redes, Cisco utiliza un m odelo jerárquico para describir la red. A unque la práctica
de este m étodo suele estar asociada con el proceso de diseño de una red, es
im portante com prender el m odelo para poder determ inar el equipo y características
que van a necesitar en la red. U n m odelo jerárquico acelera la convergencia,
m antiene posibles problem as aislados por capas y reduce la sobrecarga en los
dispositivos.
El m odelo se com pone de tres capas:
• Capa de acceso.
• Capa de distribución.
• Capa de núcleo.

Núcleo

Modelo jerárquico de tres capas

52

REDES CISCO: GUÍA DE ESTU D IO PA RA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

1.8.1 Capa de acceso
L a capa de acceso de la red es el punto en el que cada usuario se conecta a
la red. Esta es la razón por la cual la capa de acceso se denom ina a veces capa de
puesto de trabajo, capa de escritorio o de usuario. Los usuarios así com o los
recursos a los que estos necesitan acceder con más frecuencia están disponibles a
nivel local. El tráfico hacia y desde recursos locales está confinado entre los
recursos, sw itches y usuarios finales.
E n la capa de acceso podem os encontrar m últiples grupos de usuarios con
sus correspondientes recursos. En m uchas redes no es posible proporcionar a los
usuarios un acceso local a todos los servicios, com o archivos de bases de datos,
alm acenam iento centralizado o acceso telefónico a la W eb. En estos casos, el
tráfico de usuarios que dem andan estos servicios se desvía a la siguiente capa del
m odelo: la capa de distribución.
A lgunas de las funciones de la capa de acceso son:
• Interconexión de los diferentes grupos de trabajo hacia la capa de
distribución.
• Segm entación en m últiples dom inios de colisión.
® B rinda soporte a tecnologías com o Ethernet y W ireless.
• Im plem entación de redes virtuales (VLAN).

1.8.2 Capa de distribución
La capa de distribución m arca el punto m edio entre la capa de acceso y los
servicios principales de la red. La función prim ordial de esta capa es realizar
funciones tales com o enrutam iento, filtrado y acceso a W AN.
E n un entorno de cam pus, la capa de distribución abarca una gran
diversidad de funciones, entre las que figuran las siguientes:
a Servir com o punto de concentración para acceder a los dispositivos de
capa de acceso.
• Enrutar el tráfico para proporcionar acceso a los departam entos o
grupos de trabajo y entre las diferentes V LA N .
• Segm entar la red en m últiples dom inios de difusión/m ultidifusión.

CAPÍTULO 1. IN T R O D U C C IÓ N A LAS REDES

© R A -M A

53

• Traducir los diálogos entre diferentes tipos de m edios, como Token
Ring y Ethernet.
» Proporcionar servicios de seguridad y filtrado.
L a capa de distribución puede resum irse com o la capa que proporciona una
conectividad basada en una determ inada política, dado q u e determ ina cuándo y
cóm o los paquetes pueden acceder a los servicios principales de la red. La capa de
distribución determ ina la form a m ás rápida para que la petición de un usuario
(com o un acceso al servidor de archivos) pueda ser rem itida al servidor. U na vez
que la capa de distribución h a elegido la ruta, envía la petición a la capa de núcleo.
La capa de núcleo podrá entonces transportar la petición al servicio apropiado.

1.8.3 Capa de núcleo
La capa del núcleo, principal o core se encarga de desviar el tráfico lo m ás
rápidam ente posible hacia los servicios apropiados. N orm alm ente, el tráfico
transportado se dirige o proviene de servicios comunes a todos los usuarios. E stos
servicios se conocen com o servicios globales o corporativos. A lgunos de ellos
pueden ser e-mail, el acceso a Internet o videoconferencia.
Cuando un usuario necesita acceder a un servicio corporativo, la petición
se procesa al nivel de la capa de distribución. El dispositivo de la capa de
distribución envía la petición del usuario al núcleo. Este se lim ita a proporcionar un
transporte rápido hasta el servicio corporativo solicitado. Él dispositivo de la capa
de distribución se encarga de proporcionar un acceso controlado a la capa de
núcleo.
Para la capa de núcleo se deben tom ar en cuenta los siguientes conceptos:
*•

® Esta capa debe ser diseñada para una alta velocidad de transferencia y
m ínim a latencia.
® N o se debe dar soporte a grupos de trabajo ni enrutam iento entre
VLAN.
© El tráfico debe haber sido filtrado en la capa anterior.
® Los protocolos de enrutam ientos utilizados deben ser de rápida
convergencia y redundantes.

54

R E D E S C ISC O : GUÍA DE E ST U D IO PARA LA CERTIFICACIÓN CC N A 640-802

© R A -M A

'^ R E C U E R D E :

Funciones

Dispositivos

Núcleo

Conmuta el tráfico hacia
el servicio solicitado,
comunicación rápida y
segura

Routers, switch
multicapa

Distribución

Enrutamiento, filtrado,
acceso WAN, seguridad
basada en políticas,
servicios empresariales,
enrutamiento entre
VLANS, definición de
dominios de broadcast y
multicast

Router

Acceso

Define Dominios de
colisión, estaciones
finales, ubicación de
usuarios, servicios de
grupos de trabajos,
VLANS

Hub, switch

Capa

1.9 MODELO TCP/IP
El D epartam ento d e D efensa de EE.UU. (D oD ) creó el modelo de
referencia T C P /IP porque necesitaba una red que pudiera sobrevivir ante cualquier
circunstancia. P ara tener u n a m ejor idea, im agine un m undo, cruzado por
num erosos tendidos de cables, alam bres, m icroondas, fibras ópticas y enlaces
satelitales. E ntonces, im agine la necesidad de transm itir datos independientem ente
del estado de un nodo o red en particular. El DoD requería una transm isión de
datos confiable hacia cualquier destino de la red, en cualquier circunstancia. La
creación del m odelo TC P/IP ayudó a solucionar este difícil problem a de diseño.
D esde entonces, TC P/IP se h a convertido en el estándar en el que se basa Internet.
Al leer sobre las capas del m odelo TC P/IP, tenga en cuenta el diseño original de
Internet. R ecordar su propósito ayudará a reducir las confusiones.
El m odelo TC P/IP tiene cuatro capas: la capa de aplicación, la capa de
transporte, la capa de Internet y la capa de acceso de red. Es im portante observar
que algunas de las capas del m odelo TCP/IP poseen el m ism o nom bre que las
capas del m odelo OSI. R esulta fundam ental no confundir las funciones de las capas

CA PÍTU LO 1. IN TR O D U C C IÓ N A LAS REDES

© RA-MA

55

de los dos m odelos ya que estas se desem peñan de diferente m anera en cada
modelo.
OSI

TCP/IP

Telnet, FTP, LPD,

APLICACIÓN
PRESENTACIÓN

Protocolos

APLICACIÓN

SESIÓN

SNMP,TFTP, SMTP,
NFS, HTTP, X Windows

TRANSPORTE

TRANSPORTE

RED

INTERNET

TCP, UDP
ICMP, BOOTP, ARP,
RARP, IP

ENLACE DE
DATOS
FÍSICA

Ethernet,
RED

Fast-Ethemet,
Token Ring, FDDI

Comparativa entre el modelo OSI y el modelo TCP/IP

1.9.1 Protocolos de la capa de aplicación
Los protocolos describen el conjunto de norm as y convenciones que rigen
la forma en que ios dispositivos de una red intercam bian inform ación. A lgunos de
los protocolos de la capa de A plicación del m odelo TCP/IP son:
• Telnet. Protocolo de em ulación de term inal estándar que se usa para la
conexión de term inales remotas, perm itiendo que los usuarios se
registren en dichos sistemas y utilicen los recursos com o si estuvieran
conectados localm ente.
• F T P . Protocolo utilizado para transferir archivos entre host de re d de
m anera confiable ya que utiliza un m ecanism o orientado a conexión.
© T F T P . V ersión sim plificada de FTP que perm ite la transferencia de
archivos de un host a otro a través de una red de m anera m enos
confiable.
® DNS. El sistem a de denom inación de dom inio es utilizado en Internet
para convertir los nom bres de los nodos de red en direcciones.

56

REDES CISCO: GUÍA DE ESTU D IO PA R A LA CERTIFICACIÓN CC N A 640-802

© R A -M A

® S M T P . P rotocolo sim ple de transferencia de correo basado en texto
utilizado para el intercam bio de m ensajes de correo electrónico entre
distintos dispositivos. Se basa en el m odelo cliente-servidor, donde un
cliente envía un m ensaje a uno o varios receptores.
® SN M P. Protocolo de adm inistración de redes utilizado casi con
exclusividad en redes TCP/IP. El SN M P brinda una form a de
m onitorizar y controlar los dispositivos de red y de adm inistrar
configuraciones, recolección de estadísticas, desem peño y seguridad.
® D H C P . Protocolo de configuración dinám ica del host. Protocolo que
proporciona un m ecanism o para asignar direcciones IP de form a
dinám ica, de m odo que las direcciones se pueden reutilizar
autom áticam ente cuando los hosts ya no las necesitan.

1.9.2 Protocolos de la capa de tran sp o rte
L os protocolos de la capa de transporte se encargan de dar soporte a la capa
superior brindando apoyo enviando los datos sin im portar el contenido de los
m ismos. L os dos protocolos extensam ente conocidos para tal proceso son:
® T C P . Protocolo de control de transm isión, es básicam ente el m ás
utilizado, tiene control de flujo, reensam blado de paquetes y acuses de
recibo. Es un protocolo orientado a conexión muy seguro que utiliza un
saludo de tres vías antes del envío de los datos. En párrafos anteriores se
hace una descripción más en detalle del funcionam iento de TCP.
• UDP. El protocolo de datagram a del usuario es en general m enos
seguro que TC P, no tiene corrección de errores y es del tipo no
orientado a conexión, los datos se envían sin verificar previam ente el
destino. A pesar de ello es m uy utilizado por el bajo consumo de
recursos de red.

© RA-MA

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS RED ES

57

1.9.3 Números de puertos
Los núm eros de puerto son utilizados por TCP y UDP para identificar
sesiones de diferentes aplicaciones, a continuación se detallan los m ás comunes:

N ú m e ro
de p u e rto

P rotocolo

7

Echo

9

Discard

13

Daytim e

19

Character G enerator

20

FTP Data C onnections

21

File Transfer Protocol

23

Telnel

25

Simple Mail Transport
Protocol

37

Tim e

S3

Domain N am e Service

43

N icknam e

49

TAC Access C ontrol System

69

Trivial File Transfer Protocol

70

Gopher

79

Finger

80

W orld W ide W eb

58

REDES C ISC O : GUÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

101

NIC hostnam e server

109

Post Office Protocol v2

110

Post Office Protocol v3

111

Sun Rem ote Procedure Call

113

Ident Protocol

119

N etw ork N ew s T ransport
Protocol

179

Border G atew ay Protocol

© R A -M A

1.9.4 Protocolos de la capa de Internet
E stos son algunos de los protocolos m ás usados que operan en la capa de
Internet del m odelo TCP/IP:

• IP. Protocolo de Internet, proporciona un enrutam iento de paquetes no
orientado a conexión de m áxim o esfuerzo. IP no se ve afectado por el
contenido de los paquetes, sino que busca u n a rula hacia el'destino.
• A R P . Protocolo de resolución de direcciones, determ ina la dirección de
la capa de enlace de datos, la dirección M A C , para las direcciones IP
conocidas.
® R A R P . Protocolo de resolución inversa de direcciones, determ ina las
direcciones IP cuando se conoce la dirección M AC.
® IC M P . Protocolo de m ensajes de control en Internet, sum inistra
capacidades de control y envío de m ensajes. H erram ientas tales como
P IN G y tracert utilizan ICM P para poder funcionar, enviando un
paquete a la dirección destino específica y esperando una determ inada
respuesta.

)RA-M A_____________________________________________CAPITULO 1. IN TR O D U CC IO N A LAS REDES

59

Á NOTA:
La capa de Internet también es llamada capa de Interred o capa de red.

"9~R E C U E R D E :
1 al 1023

Puertos bien conocidos

1 al 255

Puertos públicos

256 al 1023

Asignados a empresas

Mayores al 1023

Definidos por el usuario

1.10 CASO PRACTICO

1,10.1 Prueba de conectividad TCP/IP
Im agine que desea com probar la conectividad de un host, usted enviará un
ping a la dirección IP del host en cuestión esperando algún tipo de respuesta o
mensaje de error (protocolo ICM P).
El host em isor debe conocer las direcciones físicas y lógicas del destino.
Antes de enviar el ping buscará en su tabla ARP la dirección M A C del destinatario.
Si este no supiera cuál es la dirección física de aquel, enviará una petición ARP con
la dirección IP del receptor y la MAC en forma de broadcast. El receptor
responderá con su M AC haciendo posible que el em isor agregue a su tabla esa
dirección y envíe por fin el PING. Si el host destino está dentro de otra red, quien
responde en este caso es el router entregando su propia M A C para recibir el
paquete y conm utarlo a la red correspondiente, es lo que se llam a A R P Proxy.
Desde su PC abra una ventana de línea de com andos, ejecute ipconfig para
verificar su configuración. Ejecute a rp - a para ver el contenido de la tabla ARP.

60

© R A -M A

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

. ~r:\W ^D 0W S\sy< tem 32\cnid.f><e -crpd
M i c r o s o f t W indow s XP ( U e r s i ó n 5.71.26W 01
,CC> C o p y r i g h t 1 9 8 5 -2 0 0 1 M i c r o s o f t C o rp .
C :^ > ip c o n fiy
C o n fig u ra c ió n

IP d e W indow s

A d a p ta d o r E t h e r n e t C o n e x ió n d e á r e a

lo c a l

:

S u f i j o d e c o n e x i ó n e s p e c í f i c a DNS :
D ire c c ió n IP .
.............................................. : 1 0 . 9 9 . 5 9 . 1 3 2
M á sc a ra d e s u b re d . . . . . . . .
: 2 5 5 .2 5 5 .2 5 5 .8
P u e r ta do e n l a c e p re d e te r n in a d .»
: 1 0 .9 9 .5 9 .1
C :s > * r p

-a

T n t e r f a n : I W .9 9 .5 9 .- 1 3 2 - — 0x 2
D ir e c c ió n IP
-D ir e c c ió n f í s i c a
1 0 Í 9 9 „ S 9 11
0 0 - 0 0 - 0 C - 0 ? —á c ~ 0 3
■¿ 1 0.-99 « 5 9 .5
.
0 0 ~ B 7 -8 5 --9 4 - 59 02
tM .9 9 .5 9 .lS
0 0 - 2 4 - f 9 - - l b “ 74 i b

tNS

-

T ip o .
d in á n ic o
d in á n ic o
d in á m ic o

^

bl

Lance un p in g al host de destino y vuelva a ejecutar a rp - a . V erifique las
diferencias entre la tabla anterior y la actual.
cÁ*C :\ W lN O O W S \ s y s te fn 3 2 \ c m d e x e - c m d ________________

3

C :\> p in y 1 0 .9 9 .5 9 .1 5 6
H a c ien d o p in g a 1 0 .9 9 .5 9 .1 5 6 con 32 b y te s
R e s p u e s ta , d e s d o
R e s p u e s ta - d e s d e
R e s p u e s ta d é s d e
R e s p u e s ta d e s d e

1 0 .9 9 . 5 9 . 156 :
1 0 . 9 9 .5 9 .1 5 6 :
1 0 .9 9 .5 9 .1 5 6 :
1 0 .9 9 - 5 9 .1 5 6 :

b y te s ^ 3 2
b y t e s '32
hyCes^32
b y t e s -32

tie m p o < ln
tie rjp o < lr>
tie n p o C l n
t ie n p o < l n

TTL-128
TTl. '128
I.Tfc-128
TTL-128

Ü

E s ta c tfs t i c a s d e p in y p a r a 1 0 .9 9 .5 9 .1 5 6 :
P a q u e te s :• env i ad o s - 4 , r e c i b i d o s
4. p e rd id o s - = 0
<0x .p e n d id o s > ,
iTienpos a p ro x in a d o s de id a y v u e l t a en n i l in e y u n d o s :
. M inino
0 n s . ttá x in o - H ns. M edia
0ns

C :\> a r p - a
lln te n fa a : l « .9 V .b V .Í 3 ¿
Ux¿
I-. D i l e c c ió n IP
D ir e c c ió n f í s i c a
1 0 .9 9 .5 9 .1
0 0 ~ 0 0 -0 c -ü 7 -a c W 3
1 0 .9 9 .5 9 . 5
:üVvBÜ:-lliS9.-,02
1 0 . 9 9 .5 9 . 1S
„ ^ O - f l i r ^ ^ -lb
1 8 .9 9 .5 9 .1 5 6
"
' W. T Í i c 7 i67®>Sr

■0é~

C :-,>

T ip o

d in á n ic o

.iU
n4niw3- ^
d m a n ic o , |
d in añ T cb

■"

^

________________________

mm
LrJ

1.11 MATEMÁTICAS DE REDES
1.11.1 Números binarios
Los dispositivos em iten y reciben pulsos eléctricos o lum inosos. Estos
pulsos poseen dos estados, SÍ y N O . Este sistem a de dos signos se le llam a binario.
M atem áticam ente hablando un sistem a binario está com puesto por dos estados de
unos y ceros siendo, por tanto, u n a potencia en base 2. E n inform ática se llam a bits
a la unidad que tiene tam bién dos estados; un byte es un grupo de ocho bits.
U n octeto o u n byte se expresa de la siguiente m anera:
00000000

© RA-M A

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS REDES

61

C ada uno de estos bits que com ponen el octeto posee dos estados, 1 y 0,
obteniendo, por tanto, 256 estados con todas las com binaciones posibles.
00000000
00000001
00000010
00000011

00000100
01111111
11111111
Para que estos bits sean m ás entendibles conviene trasladarlos al modo
decimal al que se está m ás acostum brado cotidianam ente, por tanto, si son
potencias de 2, su valor será:
27 26 25 24 23 22 21 2o
2°=1
2 1= 2

22—4
23= 8
24 —16
2S= 32
26= 64
27= 128
Los bits que resulten iguales a 1 tendrán el valor correspondiente a esa
potencia, m ientras que los que perm anezcan en 0 tendrán u n v alo r igual a cero,
finalm ente se suma el conjunto de los decimales resultantes y se obtiene el
equivalente en decimal.
*-

1.11.2 Conversión de binario a decimal
Para pasar de binario a decim al es posible utilizar la siguiente técnica:

0 0 0 0 0 0 1 (en b i n a r i o ) = 0 0 0 0 0 0 2 ° (en d e c im a ! ) =1
En el o c t e t o : 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1
0 1 0 0 1 0 0 1 (en b i n a r io ) = 0 2 50 0 2 300 2 °(en d e c i m a l ) = 73
En el o c t e t o : 0 + 6 4 + 0 + 0 + 8 + 0 + 0 + 1

62

REDES CISCO: GUÍA D E ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

Dígito
binario

octavo

séptimo

sexto

quinto

cuarto

tercero

segundo

primero

Potencia
de dos

27

26

25

24

23

22

21

Valor
decimal

128

64

32

16

8

4

2

1

1.11.3 Conversión de decimal a binario
Para pasar de decim al a binario es posible utilizar la siguiente técnica:

Convertir a binario el número decimal 195:
Valor
binario

Acción

Resta

128

¿Entra en 195?

195-128

Sí = 67

64

¿Entra en 67?

67-64

Sí = 3

32

¿Entra en 3?

3-32

No, siguiente

16

¿Entra en 3?

3-16

No, siguiente

8

¿Entra en 3?

3-8

No, siguiente

4

¿Entra en 3?

3-4

No, siguiente

2

¿Entra en 3?

3-2

Sí = 1

1

¿Entra en 1?

1-1

Sí = 0

Resultado

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS REDES

o r a -m a

63

D onde los SÍ equivalen al valor binario UNO y los NO al valor binario
CERO.

Por lo tanto, 195 es equivalente en binario a 11000011

1.11.4 Números hexadécimales
Los núm eros hexadécim ales se basan en potencias de 16, utilizando
sím bolos alfanum éricos, la siguiente tabla le ayudará a convertir núm eros
hexadécim ales en binarios o en decimales:

Número
decimal

Número
hexadécimal

Número
binario

0

0

0000

1

1

0001

2

2.

0010

3

3

0011

4

4

0100

5

5

0101

6

6

0110

7

7

0111

8

8

1000

9

9

1001

10

A

1010

11

B

1011

12

C

1100

13

D

1101

14

E

1110

ir

1111

64

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

1.11.5 Conversión de números hexadecimales
Siguiendo el ejem plo anterior, el núm ero 195 es igual al núm ero binario:
11000011

D ivida este octeto en dos grupos de cuatro: 1 1 0 0

0011

B usque el valor correspondiente en la tabla de estos dos grupos de bits.
A l núm ero binario 1 1 0 0 le corresponde el núm ero hexadecim al C.
A l núm ero binario 0 0 1 1 le corresponde el núm ero hexadecim al 3.
Por lo tanto, 195 es igual a 1 1 0 0 0 0 1 1 en binario y al C 3 en hexadecimal.
P ara que no existan confusiones los núm eros hexadecim ales se identifican con un
Ox delante, en este caso 0xC3.
El proceso inverso será, por ejem plo, el núm ero hexadecim al OxAE donde:
A es igual a 1 0 1 0
E es igual a 1 1 1 0
Por lo tanto, OxAE es igual el núm ero binario 1 0 1 0 1 1 1 0 si se convierte
este núm ero a decim al:
.............
2 7+ 0 + 2 5+ 0 + 2 3+ 2 2+ 2 '+ 0 = 174

NOTA:

Existen varias técnicas para hacer conversiones de un sistema numérico a
otro; un matemático, un físico o un informático podrían utilizar diferentes
métodos de conversión con iguales resultados. El estudiante podrá utilizar el
método que crea más conveniente según su propio criterio.

© R A -M A

CAPÍTULO 1. INTR O D U CC IÓ N A LAS RE D E S

65

1.12 DIRECCIONAMIENTO IPv4
Para que dos dispositivos se com uniquen entre sí, es necesario poder
identificarlos claram ente. U na dirección IPv4 es una secuencia de unos y ceros de
32 bits. Para hacer m ás com prensible el direccionam iento, u n a dirección IP aparece
escrita en form a de cuatro núm eros decimales separados p o r puntos. La notación
decimal punteada es un m étodo m ás sencillo de com prender que el m étodo binario
de unos y ceros.
E sta notación decim al punteada tam bién evita que se produzca una gran
cantidad de errores por transposición, que sí se produciría si solo se utilizaran
números binarios. El uso de decim ales separados p o r puntos perm ite una m ejor
com prensión de los patrones num éricos.
U na dirección IPv4 consta de dos partes definidas p o r la llam ada m áscara
de red. La m áscara puede describirse a través de una notación decim al punteada o
con el prefijo /X, donde X es igual a la cantidad de bitd en 1 que contine dicha
máscara. U na parte identifica la red donde se conecta el sistem a y la segunda
identifica el sistem a en particular de esa red. Este tipo de dirección recibe el
nombre de dirección jerárquica porque contiene diferentes niveles. U na dirección
IPv4 com bina estos dos identificadores en un solo núm ero. E ste núm ero debe ser
exclusivo, porque las direcciones repetidas harían im posible el enrutam iento. La
prim era parte identifica la dirección de la red del sistem a. L a segunda parte, la del
host, identifica qué m áquina en particular de la red.

Dirección IP 172.16.1.3
Máscara 255.255.0.0 o / l ó
172

16

10101100

255

00010000

255

11111111

11111111

Porción de red

1
00000001

0
00000000

3
00000011

0
00000000

Porción de host

Ejemplo de una dirección IPv4

66

REDES CISCO: GUÍA DE E ST U D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

1.12.1 Tipos de direcciones IPv4
D en tro del ran g o d e d ireccio n es de cada red IPv4, e x isten tres tip o s de

direcciones:

Dirección de red: la dirección en la que se hace referencia a la red.
D entro del rango de dirección IPv4 de una red, la dirección más
baja se reserva para la dirección de red. Esta dirección tiene un 0
para cada bit de host en la porción de host de la dirección

Dirección de broadeast: una dirección especial que se utiliza para
enviar datos a todos los hosts de la red.

Direcciones host: las direcciones asignadas a los dispositivos
finales de la red.

1.12.2 Tipos de comunicación IPv4
En una red IPv4, los hosts pueden com unicarse de tres m aneras diferentes:

Unicast: el proceso por el cual se envía un paquete de un host a un
host individual.

®

Broadeast: el proceso por el cual se envía un paquete de u n host a
todos ios hosts, de la red.

«

Multicast: el proceso p o r el cual se envía un paquete de un host a
un grupo seleccionado de hosts.

Estos tres tipos de com unicación se usan con diferentes objetivos en las
redes de datos. En los tres casos, se coloca la dirección IPv4 del host de origen en
el encabezado del paquete com o la dirección de origen.

1.12.3 Tráfico unicast
L a com unicación unicast se usa para una com unicación norm al de host a
host, tanto en una red de cliente/servidor com o en una red punto a punto. Los
paquetes unicast utilizan la dirección host del dispositivo de destino com o la
dirección de destino y pu ed en enrutarse a través de una intem etw ork. Sin em bargo,
los paquetes broadeast y m ulticast usan direcciones especiales com o la dirección de
destino. Al utilizar estas direcciones especiales, los broadeasts están generalm ente
restringidos a la red local.

© RA-MA

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS REDES

67

1.12.4 Tráfico de broadcast
Existe un direccionam iento particular cuando los bits están todos en UNOS
llam ada dirección de broadcast, o de difusión. Este direccionam iento identifica al
host origen, m ientras que com o destino tiene a todos los dispositivos que integran
el m ismo dom inio. U na cantidad excesiva de estas difusiones provocará una
torm enta de broadcast que hará ineficiente el uso de la red, consum iendo gran
cantidad de ancho de banda y haciendo que los host utilicen dem asiados recursos al
estar “obligados” a leer esos paquetes y a que están dirigidos a todos los host que
integran ese dom inio de broadcast.

NOTA:

Para esta certificación, todas las comunicaciones entre dispositivos son
comunicaciones unicast a menos que se indique lo contrario

1.12.5 Clases de direcciones IPv4
La RFC 1700 agrupa rangos de direcciones unicast en tam años específicos
llamados direcciones de clase. Las direcciones IPv4 se dividen en clases para
definir las redes de tam año pequeño, m ediano y grande. Las direcciones Clase A se
asignan a las redes de m ayor tamaño. Las direcciones Clase B se utilizan para las
redes de tam año m edio y las de Clase C para redes pequeñas. D entro de cada rango
existen direcciones llam adas privadas para uso interno que n o verem os en Internet.
Las direcciones de clase D son de uso m ulticast y las de clase E, experim entales.
D ireccionam iento C lase A:

*•

R ango de direcciones IP: 1.0.0.0 a 127.0.0.0
M áscara de red: 255.0.0.0 o /8
D irecciones privadas: 10.0.0.0 a 10.255.255.255

D ireccionam iento C lase B:
R ango de direcciones IP: 128.0.0.0 a 191.255.0.0
M áscara de red: 255.255.0.0 o /16
D irecciones privadas: 172.16.0.0 a 172.31.255.255

68

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802____________© R A -M A

D ireccionam iento Clase C:
Rango de direcciones IP: 192.0.U.0 a 223.255.255.0
M áscara de red: 255.255.255.0 o /24
D irecciones privadas: 192.168.0.0 a 192.168.255.255

D ireccionam iento Clase D:
Rango de direcciones IP: 224.0.0.0 a 239.255.255.255
Uso m ulticast o m ultidifusión

D ireccionam iento Clase E:
Rango de direcciones IP: 240.0.0.0 a 254.255.255.255
Uso experim ental o científico

E n núm eros binarios:
Las
Las
Las
Las
Las

clases
clases
clases
clases
clases

A com ienzan con
B com ienzan con
C com ienzan con
D com ienzan con
E com ienzan con

OOxxxxxx
1Oxxxxxx
1 lx x x x x x
11 lx x x x x
111 lx x x x

1.12.6 Direcciones IPv4 especiales
H ay determ inadas direcciones que n o pueden asignarse a los hosts por
varios m otivos. Tam bién hay direcciones especiales que pueden asignarse a los
hosts pero con restricciones en la interacción de dichos hosts dentro de la red.

®

Direcciones de re d y de broadeast: no es posible asignar la prim era ni la
últim a dirección a los hosts dentro de cada red. Estas son, respectivam ente,
la dirección de red y la dirección de broadeast del rango de host.

©

CAPÍTULO 1. IN TRODUCCIÓN A LAS REDES

r a -m a

69

Ruta predeterminada: la ruta predeterm inada IPv4 se representa com o
0.0.0.0. La ruta predeterm inada se usa com o ruta por defecto cuando no se
dispone de una ruta m ás específica. El uso de esta dirección tam bién
reserva todas las direcciones en el bloque de direcciones 0.0.0.0 al
0.255.255.255 (0 .0 .0 .0 /8 ).

Loopback: es una de las direcciones reservadas IPv4. L a dirección de
loopback 127.0.0.1 es u n a dirección especial que los hosts utilizan para
dirigir el tráfico hacia ellos mismos. L a dirección de loopback crea un
m étodo de acceso directo para las aplicaciones y servicios TC P/IP que se
ejecutan en el m ism o dispositivo para com unicarse entre sí. Al utilizar la
dirección de loopback en lugar de la dirección host IPv4 asignada, dos
servicios en el m ism o host pueden desviar las capas inferiores de la pila
TGP/IP. T am bién es posible hacer ping a la dirección de loopback para
probar la configuración de TCP/IP en el host local.

Direcciones link-local: las direcciones IPv4 del bloque de direcciones
desde 169.254.0.0 h asta 169.254.255.255 (169.254.0.0 /16) se encuentran
designadas com o direcciones link-local. El sistem a operativo puede asignar
autom áticam ente estas direcciones al host local en entornos donde no se
dispone de una configuración IP. Se puede usar en una red de punto a
punto o para un host que no pudo obtener autom áticam ente una dirección
de un servidor de protocolo de configuración dinám ica de host (DHCP).

1.12.7 Subredes
Las redes IPv4 se pueden dividir en redes m ás pequeñas, para el m ayor
aprovechamiento de las m ism as, que llamadas subredes, adem ás de contar con esta
flexibilidad, la división en subredes perm ite que el adm inistrador de la red brinde
contención de broadcast y seguridad de bajo nivel en la LA N . L a división en
subredes, además, ofrece seguridad ya que el acceso a las otras subredes está
disponible solam ente a través de los servicios de un router. Las clases de
direcciones IP disponen de 256 a 16,8 millones de hosts según su clase.
El proceso de creación de subredes com ienza pidiendo “prestado” al rango
de host la cantidad de bits necesaria para la cantidad de subredes requeridas. Se
debe tener especial cuidado en esta acción de pedir ya que deben quedar com o
mínimo dos bits del rango de host.

70

REDES CISCO: G U ÍA DE E ST U D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

La m áxim a cantidad de bits disponibles para este propósito depende del
tipo de clase:

Clase A, cantidad disponible 22 bits.

Clase B, cantidad disponible 14 bits. .

Clase C, cantidad disponible 6 bits.

C ada bit que se
tom a del
rango de host posee dos estados 0 y 1,
tanto, si se tom an tres bit existirán 8 estados diferentes:

Bits
prestados

Bits de
host

Valor
decimal

000

00000

0

001

00000

32

010

00000

64

011

00000

96

100

OOOftO

128

101

00000

160

110

00000

192

111

00000

224

El núm ero de subredes que se puede usar es igual a: 2 elevado a la potencia
del núm ero de bits asignados a subred.

2n= Número de subredes
Donde N es la cantidad de bits tom ados al rango de host.

©

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS RED ES

r a -m a

71

Por lo tanto, si se quieren crear 5 subredes, es decir, cum pliendo la fórm ula
2n, tendrá que tom ar del rango de host 3 bits:

23 = 8
O bserve que no siem pre el resultado es exacto, en este caso se pedían 5
subredes pero se obtendrán 8.

1.12.8 Procedimiento para la creación de subredes
Paso 1 - Piense en binarios.
Paso 2 - Encuentre la m áscara adecuada para la cantidad de subredes que
le solicitan, independientem ente de la dirección IP, lo que nos im porta es la
cantidad de bits libres.
Razone, red clase C, el prim er octeto, el segundo y el tercero corresponden
a la dirección de red, por lo tanto, trabaje con el cuarto octeto correspondiente a los
host. De izquierda a derecha tom e la cantidad de bits necesarios de la m áscara para
la cantidad de subredes que le solicitan:
Crear 10 subredes a partir de una red Clase C
Según la formula 2N debem os tom ar 4. bits del rango de host, por lo tanto:

24= 16
Recuerde que no siem pre los valores son exactos

Máscara de red 255.255.255.0

Rango de red

Rango de host

1111 11 11 . 1 1 1 1 1 1 1 1 . 1 1 11 11 11 .0 00 00 00 0

C uarto octeto 0 0 0 0 0 0 0 0

11110000

72

RE D E S CISCO: GUÍA DE E ST U D IO PA R A LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

Coloque en 1 (uno) los bits que resultaron de la operación anterior y
súm elos, recuerde el valor de cada bit dentro del octeto: 128, 64, 32, 16, 8, 4, 2, 1
Se obtiene:
11110000
1 2 8 + 6 4 + 3 2 + 1 6 = 240
La máscara de subred de clase C para obtener 10 subredes válidas es:
255.255.255.240
Paso 3 - Identifique las correspondientes direcciones IP de las subredes
restando a 256, que es la cantidad m áxim a de com binaciones que tiene u n octeto
(0 a 255), el valor de la m áscara obtenida. Este núm ero será la dirección de la
prim era subred utilizable q u e a su vez es el increm ento o la constante para
determ inar las siguientes subredes.
2 5 6 - 2 4 0 = 16
El resultado indica la prim era dirección válida de subred, en este caso 16.

Número
de subred

Valcr del octeto

Valor
decimal

1

00000000

0

2

00010000

16

3

00100000

32

4

00110000

48

5

01000000

64

6

01010000

80

7

01100000

96

8

01110000

112

© R A -M A

CAPÍTULO 1. IN T R O D U C C IÓ N A LAS REDES

9

10000000

128

10

10010000

144

11

10100000

160

12

10110000

176

13

11000000

192

14

11010000

208

15

11100000

224

16

11110000

240

73

El incremento constante en este caso será de 16

Paso 4 - O btenga las direcciones IP de las subredes (observe el cuadro anterior).

Dirección
Dirección
Dirección
Dirección

IP
IP
IP
IP

de
de
de
de

la
la
la
la

Ia subred:
2a subred:
3a subred:
4a subred:

Dirección IP de la 13a subred:
Dirección IP de la 14a subred:

192.168.1 .0

255.255.255.0

192.168.1 .0
192.168.1 .16
192.168.1 .32
192.168.1 .48

255.255.255.240
255.255.255.240
255.255.255.240
255.255.255.240

192.168.1.224 255.255.255.240
192.168.1.240 255.255.255.240

L a m áscara 255.255.255.255 se denom ina máscara de nodo que identifica
un host en particular.
O tra form a de identificar las m áscaras es sum ar los bits en uno y
colocarlos detrás de la dirección IP separados por una barra:
Dirección IP de la red original: 192.168.1.0/24
Dirección IP de la Ia subred:
Dirección IP de la 2a subred:

192.168.1.0/28
192.168.1 16/7.R

74

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN CC N A 640-802

D irección IP de la 3a subred:
D irección IP de la 4a subred:

192.168.1.32/28
192.168.1.48/28

D irección IP de la 13a subred:
D irección IP de la 14a subred:

192.168.1.224/28
192.168.1.240/28

© R A -M A

Paso 5 - Identifique el rango de host que integran las subredes.
H asta ahora se ha trabajado con los bits del rango de red, es decir de
izquierda a derecha en el octeto correspondiente, ahora lo harem os con los bits
restantes del rango de host, es decir de derecha a izquierda.
Tom em os com o ejem plo la subred 196.168.1.16/28 y apliquem os la
fórm ula 2N-2, nos han quedado 4 bits libres, por lo tanto:

2 4- 2 = 1 6 - 2 = 1 4
Estas subredes tendrán 14 host válidos utilizables en cada una.

Número
de host

Valor del octeto

Valor
decimal.

00010000

Subred

1

00010001

17

2

00010010

18

3

00010011

19

4

00010100

20

5

00010101

21

6

00010110

22

7

00010111

23

8

00011000

24

©

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS REDES 75

r a -m a

9

0001 1 0 0 1

25

10

00011010

26

11

0001 1 0 1 1

27

12

00011100

28

13

0001 1 1 0 1

29

14

00011110

30

15

00011 1 1 1

Broadcast

El rango de host válido para la subred 192.168.1.16/28 será:

192.168.1.17 al 192.168.1.30
El mismo procedim iento se lleva a cabo con el resto de las subredes:

N° de subred

Rango de host
válidos

Broadcast

192.168.1.0

1 al 14

15

192.168.1.16

17 al 30

31

192.168.1.32

31 al 62

63

192.168.1.64

65 al 78

79

192.168.1.80

81 al 94

95

192.168.1.96

97 al 110

111

192.168.1.224

225 al 238

239

192.168.1.240

241 al 254

255

76

REDES CISCO: GUÍA D E ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

\

© R A -M A

NOTA:

La dirección de broadcast de una subred será la inmediatamente inferior a la
subred siguiente.

RECUERDE:
Paso 1

Piense en binarios.
Paso 2

Encuentre la máscara contando de izquierda a derecha los bits que tomará
prestados del rango de host. Cada uno tendrá dos estados, un bit dos subredes, dos
bits cuatro subredes, tres bits ocho subredes, etc.
Paso 3

Reste a 256 la suma de los bits que ha tomado en el paso anterior para
obtener la primera subred válida que a su vez será el incremento.
Paso 4

Obtenga las direcciones IP de las subredes siguientes sumando a la
primera subred el incremento para obtener la segunda, luego a la segunda más el
incremento para obtener la tercera y así hasta la última.
Paso 5

Identifique el rango de host y la correspondiente dirección de broadcast de
cada subred.

© RA-V1A

CAPÍTULO 1. INTR O D U CC IÓ N A LAS REDES

77

RECUERDE:
Clase A:

Clase B:

Clase C:

RECUERDE:

Las diferentes clases de redes se pueden identificar fácilmente en
números binarios observando el comienzo del prim er octeto, puesto que:
Las clases A com ienzan con OOxxxxxx
Las clases B comienzan con lOxxxxxx
Las clases C com ienzan con llx x x x x x
Las clases D com ienzan con l l lx x x x x
Las clases E comienzan con l l l l x x x x

78

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICACIÓN CC N A 640-802

© R A -M A

1.13 MÁSCARAS DE SUBRED DE LONGITUD
VARIABLE
El crecim iento exponencial de las redes ha hecho que el direccionam iento
IPv4 no perm ita u n desarrollo y una escalabilidad acorde a lo deseado por los
adm inistradores de red. IP v4 pronto será reem plazado por IP versión 6 (IPvó)
com o protocolo dom inante de Internet. IPv6 posee u n espacio de direccionam iento
prácticam ente ilim itado y algunos adm inistradores ya han em pezado a
im plem entarlo en sus redes. P ara dar soporte al direccionam iento IPv4 se h a creado
VLSM (m áscara de subred de longitud variable) que perm ite incluir m ás de una
m áscara de subred dentro de una m ism a dirección de red. V LSM es soportado
únicam ente p o r protocolos sin clase tales como OSPF, RIPv2 y EIGRP.
El uso de las m áscaras de subred de longitud variable perm ite el uso m ás
eficaz del direccionam iento IP. Al perm itir niveles de jerarquía se pueden resum ir
diferentes direcciones en u n a sola, evitando gran cantidad de actualizaciones de
ruta.
H asta ahora las direcciones de host que pertenecían a la subred “ cero” se
perdían ai no poder utilizarlos. Si se configura el com ando ip subnet-zero todas las
direcciones de host pertenecientes a esta subred se podrán adm itir com o válidas.

Observe el ejemplo:
La red 192.168.1.0/24 se divide en subredes utilizando una m áscara de
subred de 28 bits.
H asta ahora la prim er subred utilizable era la 192.168.1.16/28;
configurando el router con el com ando ip subnet-zero la dirección IP
192.168.1.0/28 será una dirección válida pudiendo sum ar 14 host válidos m ás al
direccionam iento total.
Siguiendo el esquem a de direccionam iento anterior una de las subredes que
surgen de la división se utilizará para un enlace serial entre dos routers. En este
caso la m áscara de 28 bits perm ite el uso válido de 14 host desperdiciándose 12
direcciones de host para este enlace. El uso de V LSM perm ite volver a dividir m ás
subredes en otra subred, en este caso la m áscara ideal sería una /30.

1.13.1 Proceso de creación de VLSM
Siguiendo el ejem plo anterior, la red 192.168.1.0/24 será dividida en 16
subredes válidas:

CAPÍTULO 1. IN TR O D U C C IÓ N A LAS REDES

© R A -M A

79

Se obtienen las siguientes subredes
192.168.1.0/28
192.168.1.16/28
192.168.1.32/28
192.168.1.48/28
192.168.1.64/28
192.168.1.80/28
192.168.1.96/28
192.168.1.112/28
192.168.1.128/28
192.168.1.144/28
192.168.1.160/28
192.168.1.176/28
192.168.1.192/28
192.168.1.208/28
192.168.1.224/28
192.168.1.240/28
Observe que se tomará en cuenta la ¡92.168.1.0
al configurar el comando ip subnet-zero

Para el enlace serial entre los routers se utilizará una m áscara /30 que nos
permita el uso de dos host. Elija una de las subredes creadas en el paso anterior,
esta subred elegida N O podrá utilizarse con la m áscara /28 puesto que se seguirá
dividiendo en subredes m ás pequeñas.
Paso 1 - Piense en binario.
Paso 2 - La red 192.168.1.0/24 se divide en subredes con una m áscara /28,
escriba en binario el últim o octeto.
/24
0000
0001
0010

/28
0 0 0 0 =0
0 0 0 0 =16
0 0 0 0 =32

1 0 0 0 0 0 0 0 =128

P aso 3 - Elija una de las subredes para dividirla con u n a m áscara /30, en
este caso la 128. T race una linea que separe los bits con la m áscara /28 y otra que
separe los bits con m áscara /30. Las subredes se obtienen haciendo las

80

© R A -M A

REDES CISCO : G U ÍA D E ESTUDIO PA RA LA CERTIFICACIÓN CCNA 640-802

com binaciones correspondientes entre el b it 128 y los contenidos entre las dos
paralelas.

124

/2 8 /30

1000
1000
1000
1000

0 0 00
0 1 00
1 0 00
1 1 00

= 128
=132
= 136
= 140

Paso 4 - Las direcciones de host se obtienen haciendo la com binación con
los dos bits libres en cada una de las subredes obtenidas.
Ejemplo con una red Clase B:
• 172.16.0.0/16 se divide en subredes con una m áscara /21, para seguir el
proceso elija la:
• 172.16.8.0/21 se divide en subredes con una m áscara /24, para seguir el
proceso elija la:
® 172.16.10.0/24 se divide en subredes con una m áscara /26, para seguir
el proceso elija la:
® 172.16.10.128/26 se divide en subredes con una m áscara /30
• 172.16.10.132/30

En binarios:
/16

/21

/24 /26

/30

172.16.0.0/16

1 01 0 1 100

0001 0000

00000 00 0

172.16.8.0/21

1 010 1 100

0001 0000

0 0 0 0 1 00 0

0 0¡¡§ j

172.16.10.0/24

l 010 1 100

00010000

00001 010

11 0 0 0 0 P l

172.16.10.128/26

1 0 1 0 1 100

00010000

00001 010

10

172.16.10.132/30

1010 1100

00010000

00001 010

10 J o ¡ § ¡ n

m
0c

© RA-M A

CAPÍTULO 1. INTR O D U CC IÓ N A LAS REDES

81

1.14 RESUMEN DE RUTA CON VLSM
El resum en de ruta C ID R (agregación de ruta o supem etting) reduce la
cantidad de rutas que un router debe m antener en sus tablas anunciando y
m anteniendo una sola dirección que contenga a las demás.

172.16.32.64/26
172.16.32.128/26

Red
C o r p o r a t iv a

172.16.64.128/20

El router de resumen tiene múltiples entradas de redes consecutivas,
siendo éste el principal factor en el resumen de ruta,
pero solo anunciará al router remoto la
red que contiene a todas las demás .

1.14.1 Explicación de funcionamiento de CIDR
Im agine que un router posee un rango de redes directam ente conectadas, de
la 172.16.168.0/24 a la 172.16.175.0/24. El router buscará el bit com ún más alto
para determ inar cuál será el resum en de ru ta con la m áscara m ás pequeña posible.

172.16.168.
172.16.169.
172.16.170.
172.16.171.
172.16.172.
172.16.173.
172.16.174.
172.16.175.

0/24
0/24
0/24
0/24
0/24
0/24
0/24
0/24

172.16.168.0/21

82

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-M A

En binarios:
Dirección de
subred

Prim er
octeto

Segundo
octeto

Tercer
octeto

C uarto
octeto

172.16.168.0/24

10101100

00010000

10101 000

00000000

172.16.169.0/24

10101100

00010000

10101 001

00000000

172.16.170.0/24

10101100

00010000

10101 010

00000000

172.16.171.0/24

10101100

00010000

10101 011

00000000

172.16.172.0/24

10101100

00010000

10101 i 00

00000000

172.16.173.0/24

10101100

00010000

10101 101

00000000

172.16.174.0/24

10101100

00010000

10101 110

00000000

172.16.175.0/24

10101100

00010000

10101 111

00000000

Bits com unes = 21
Resum en 172.16.168.0/21

Bits no
com unes o de
host

P or lo tanto, para el ran g o especificado el router utilizará la dirección
172.16.168.0/21 para ei resum en de ruta solicitado.

1.15 DIRECCIONAMIENTO IPv6
IPvó ha estado en desarrollo desde m ediados de los noventa y durante
varios años. Se había anunciado al principio com o el protocolo que podría expandir
el direccionam iento IP, llevar IP mobile a la m adurez y finalm ente ser capaz de
incorporar seguridad a nivel de capa 3. Esas afirm aciones son correctas pero hay
que tener en cuenta que a nivel de capa 3 esas capacidades de IPv6 han sido
aportadas a IPv4 en los pasados años. A ctualm ente las direcciones IPv4 son
escasas y la m ayor razón en Internet para evolucionar a IPvó es la necesidad de un
m ayor direccionam iento.
U na de las razones de que el direccionam iento IPv4 sea dem asiado escaso
es que no ha sido asignado eficientem ente. Las direcciones de clase A son
excesivam ente grandes para la m ayoría de las organizaciones ya que soportan unas
16.777.214 direcciones de host, m ientras que las direcciones de clase C soportan

© RA-MA

CAPÍTU LO 1. IN TR O D U CC IÓ N A LAS RE D E S

83

solo 254 direcciones de host. C om o resultado de esto m uchas organizaciones hacen
peticiones de clase B que soportan 65.534 direcciones de host, pero hacen solo un
uso parcial de dicho rango.
Inicialm ente un dispositivo IP requería una dirección pública. P ara prevenir
el agotam iento de las direcciones IPv4 la IE T F {Internet Engineering Task Forcé )
adoptó el uso de C ID R ( Classless Interdomain Routing), V L S M ( Variable-Length
Subnet M ask ) y N A T (Network Address Translation). C ID R y V LSM trabajan
juntas a la hora de m ejorar el direccionam iento, m ientras que N A T oculta clientes y
m inim iza la necesidad de direcciones públicas. O tra de las razones de escasez de
direcciones públicas es que no han sido asignadas equitativam ente a lo largo del
mundo. U na gran cantidad de direccionam iento es ocupada por EE.U U . m ientras
que Europa es el siguiente en la lista con una larga porción de direcciones. Asia, en
cambio tiene u n núm ero insuficiente de direcciones en com paración con su
población, aunque la percepción desde E E U U , es que todavía existe espacio libre
en el direccionam iento IPv4 en Asia, se reconoce la necesidad de im plem entar
IPv6 y así obtener más direccionam iento.
Otra razón para considerar la necesidad de un m ayor direccionam iento es
el crecim iento exponencial de la población m undial con el persistente crecim iento
de consum ibles electrónicos que requieren el uso de direcciones IP.
Esta necesidad de direccionam iento IP podría ser atenuada intentando
utilizar NAT y asignaciones tem porales a través de DHCP, pero teniendo sistem as
intermedios m anipulando ios paquetes com plican el diseño y la resolución de
problemas. El concepto del diseño de Internet con innum erables sistem as
intermedios no hace que N A T trabaje adecuadam ente, sin em bargo es un mal
necesario.
La longitud de una dirección IPv6 es lo prim ero que sale a relucir, son 128
bits lo*que hace 2 128 direcciones IPv6 disponibles. V arias de estas direcciones dan
fondones especiales y están reservadas pero aun así quedarían disponibles
aproxim adam ente 5 x l 0 28 direcciones IP por cada habitante del planeta. Lo que
permitiría que el direccionam iento pueda crecer sin preocupaciones en
contraposición al direccionam iento IPv4 cuya cantidad está lim itada a 232.
En IPv6 se utiliza una cabecera más sim plificada que IPv4, haciendo que el
procesam iento sea más eficiente, perm itiendo un m ecanism o más flexible y a su
vez extensible a otras características. U na de esas características es la m ovilidad,
movile IP es un estándar de la IE T F que perm ite a los usuarios con dispositivos
wireless estar conectados de m anera transparente y m overse a cualquier sitio sin
restricciones.

84

REDES CISCO : G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CC N A 640-802

O R A -M A

La cabecera IPv6 es optim izada para procesadores de 32 a 64 bits y las
extensiones de cabecera perm iten la expansión sin tener que forzar a que los
cam pos que no se usan se estén transm itiendo constantem ente.
Las principales diferencias entre las cabeceras de las dos versiones es la
longitud de los cam pos de origen y destino. Tam bién hay otros cam pos que son
aparentes com o checksum , fragm entación y la etiqueta de flujo.
0 bits

8 bits

Versión

16 bits

Clase
de
tráfico

24 bits

32 bits
64 bits

Etiqueta de flujo

128 bits

Tamaño de la carga

Próximo encabezado

Límite de saltos

192 bits
Dirección de origen

256 bits
Dirección de destino

320 bits
Extensión de la cabecera

1.15.1 Formato del direccionamiento IPv6
La prim era diferencia respecto a IPv4 es que las direcciones IPvh son de
128 bits y están representadas en un form ato hexadecim al en lugar de la notación
decim al tradicional y separada cada parte por dos puntos en lugar de uno. Teniendo
de esta form a 8 partes de 16 bits cada una. Com o cada dígito hexadecim al se asocia
con 4 bits, cada cam po de 16 bits será de 4 dígitos hexadecim ales.
U n ejem plo de dirección IPv6 puede ser el siguiente:
2001:0000:0001:0002:0000:0000:0000:ABCD
Este form ato se puede reducir hasta de optim izar la lectura para su
com prensión. H ay dos formas para conseguir sim plificar tanta cantidad de
núm eros:
® T odos los 0 a la izquierda de cada uno de los cam pos pueden ser
om itidos.
2001:0:1:2:0:0:0:ABCD
• Se pueden om itir los cam pos consecutivos de 0 con
independientem ente de la cantidad de cam pos que se abrevie. Este

© R A -M A

CAPÍTULO 1. IN TR O D U CC IÓ N A LAS REDES

85

m ecanism o solo puede hacerse una vez debido a que luego no se
podrían reestructurar la cantidad de cam pos exactam ente com o eran.
2001:0:1:2::A B C D

1.15.2 Tipos de comunicación IPv6
De la m ism a m anera que su antecesor, en IPvó se soportan estas tres clases
de direcciones:
® U nicast: para enviar tráfico a una sola interfaz.
® M u lticast: para enviar a todas las interfaces del m ism o grupo. U n a
dirección IPv6 del m ism o grupo m ulticast identifica un conjunto de
interfaces en diferentes dispositivos.
® A nycast: para enviar tráfico a la interfaz m ás cercana dentro de u n
grupo. U na dirección IPv6 de anycast tam bién identifica u n conjunto de
interfaces en diferentes dispositivos, pero la diferencia de un paquete
enviado a una dirección anycast es que dicho paquete está destinado al
dispositivo m ás cercano. Esto será determ inado p o r el protocolo de
enrutam iento que se esté utilizando. Todos los nodos con la m ism a
dirección de anycast deberán proporcionar el m ism o servicio.
Una interfaz puede tener varias direcciones y de diferentes tipos. L o s
routers tienen que reconocer estas direcciones incluyendo las de anycast y
multicast.

1.16 FUNDAMENTOS PARA EL EXAMEN
• Tenga una idea clara sobre las siete capas del m odelo OSI, las funciones
en la red para que se usan y los protocolos asociados a cada una.
® Analice las diferencias entre los dispositivos de cad a capa del m odelo
OSI, cuáles son sus funciones y para qué se aplican en cada caso.
® Recuerde las posibles causas que pueden generar congestión en u n a
LAN. Cómo, de ser posible, evitarlo.
9 Tenga en cuenta las diferencias entre dominio de colisión y dom inio de
broadcast y los dispositivos asociados a cada uno.

86

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

• R ecuerde la diferencia entre orientado a conexión y no orientado a
conexión y los protocolos a que hacen referencia.
• Sepa diferenciar entre los tipos de cableado E thernet y sus estándares,
adem ás de saber distinguir en cada caso cuál utilizar según los
dispositivos a conectar.
• Tenga en cuenta las características, cam pos y tam año de la tram a
Ethernet.
® R ecuerde las funciones de cada capa del m odelo jerárquico de Cisco,
para qué se aplican y los dispositivos asociados.
® R ecuerde las cuatro capas del m odelo TC P/IP, sus funciones y los
protocolos asociados a cada una.
• Sepa cuáles son las diferencias entre el m odelo TC P/IP y el m odelo
OSI. A nalice y com pare sus capas.
• Tenga en cuenta las diferencias fundam entales entre TCP y U D P,
control de flujo, ACK, ventanas y ventanas deslizantes.
• M em orice los rangos de cada una de las clases
direccionam iento reservado para uso privado.

de redes, el

• Ejercite el cálculo de subredes, VLM S y resúm enes de ruta.

Capítulo 2

ENRUTAMIENTO IP
2.1 DETERMINACIÓN DE RUTAS IP
Para que un dispositivo de capa tres pueda determ inar la ruta hacia un
destino debe tener conocim iento de las diferentes rutas hacia él y cóm o hacerlo. El
aprendizaje y la determ inación de estas rutas se llevan a cabo m ediante un proceso
de enrutam iento dinám ico a través de cálculos y algoritmos que se ejecutan en la
red o enrutam iento estático ejecutado m anualm ente por el adm inistrador o incluso
ambos m étodos.
La inform ación de enrutam iento que el router aprende desde sus fuentes se
coloca en su propia tabla de enrutam iento. El router se vale de esta tabla para
determ inar los puertos de salida que debe utilizar para retransm itir un paquete hasta
su destino.
La tabla de enrutam iento es la fuente principal de inform ación del router
acerca de las redes. Si la red de destino está conectada directam ente, el router ya
sabrá el puerto que debe usar para reenviar paquetes. Si las redes de destino no
están conectadas directam ente, el router debe aprender y calcular la ruta m ás
óptima a usar para reenviar paquetes a dichas redes. La tabla de enrutam iento se
construye m ediante uno de estos dos m étodos o ambos:

® Rutas estáticas. A prendidas por el router a través del adm inistrador,
que establece dicha ruta m anualm ente, quien tam bién debe actualizar
cuando tenga lugar un cambio en la topología.

88

© R A -M A

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

• Rutas dinámicas. R utas aprendidas autom áticam ente por el router a
través de la inform ación enviada por otros routers, una vez que el
adm inistrador ha configurado un protocolo de enrutam iento que perm ite
el aprendizaje dinám ico de rutas.
P ara poder enrutar paquetes de inform ación un router debe conocer lo
siguiente:

• Dirección de destino: dirección a donde han de ser enviados los
paquetes.

• Fuentes de información: fuente (otros routers) de donde el router
aprende las rutas h asta los destinos especificados.

® Descubrir las posibles rutas hacia el destino: rutas iniciales posibles
hasta los destinos deseados.

• Seleccionar las mejores rutas: determ inar cuál es la m ejor ruta hasta el
destino especificado.

• Mantener las tablas

de enrutamiento actualizadas:

m antener

conocim iento actualizado de las rutas al destino.

1.1

3.1

Tabla de enrutamiento Router A

Tabla de enrutamiento Router B

Red

Interfaz

Métrica

Red

Interfaz

1

EO

0

1

SI

1

2

SO

0

2

SI

0

3

so

1

3

EO

0

Métrica

CAPÍTULO 2. ENRUTAM IENTO IP

© RA-MA

89

2.2 RUTAS ESTÁTICAS
Las rutas estáticas s e definen adm inistrativam ente y establecen rutas
específicas que han de seguir los paquetes para pasar de un puerto de origen hasta
un puerto de destino. Se establece un control preciso del enrutam iento según los
parám etros del adm inistrador.
Las rutas estáticas p or defecto (default) especifican una puerta de enlace
(gatew ay) de últim o recurso, a la que el router debe enviar u n paquete destinado a
una red que no aparece en su tab la de enrutam iento, es decir, que desconoce.
Las rutas estáticas se utilizan habitualm ente en enrutam ientos desde u n a
red hasta una red de conexión única, ya que no existe más que una ruta de entrada y
salida en una red de conexión única, evitando de este m odo la sobrecarga de tráfico
que genera un protocolo de enrutam iento.
La ruta estática se configura para conseguir conectividad con un enlace d e
datos que no esté directam ente conectado al router. Para conectividad de extrem o a
extremo, es necesario configurar la ruta en ambas direcciones. Las rutas estáticas
permiten la construcción m anual de la tabla de enrutam iento.
El com ando ip route configura una ruta estática, los parám etros siguientes
al comando definen la ruta estática.
Las entradas creadas en la tabla usando este procedim iento perm anecerán
en dicha tabla m ientras la ruta siga activa. Con la opción perm anení, la ru ta
seguirá en la tabla aunque la ruta en cuestión haya dejado de estar activa.
La sintaxis de configuración de una ruta estática es la siguiente:
Router(config)#ip route[red] [máscara] [dirección ip/interfaz]
[distancia] [permanent]

Donde:
® red : es la red o subred de destino.
o m á sc a ra : es la m áscara de subred.

« dirección: es la dirección IP del router del próxim o salto.
® in terfa z: es el nom bre de la interfaz que debe usarse para llegar a la re d
de destino.

90

© RA-M A

REDES CISCO: G U ÍA DE E ST U D IO PARA LA CERTIFICACIÓN C C N A 640-802

® distancia:

es
adm inistrativa.

un

parám etro

opcional,

que

define

la

distancia

® p e rm a n e e t: un parám etro opcional que especifica que la ruta no debe
ser elim inada, aunque la interfaz deje de estar activa.

Es necesario configurar una ruta estática en sentido inverso para conseguir
una comunicación en ambas direcciones.

2.2.1 Rutas estáticas por defecto
Una ruta estática p o r defecto (default), predeterm inada o de últim o recurso
es un tipo especial de ruta estática que se utiliza cuando no se conoce u n a ruta hasta
un destino determ inado, o cuando no es posible alm acenar en la tabla de
enrutam iento la inform ación relativa a todas las rutas posibles.
La sintaxis de configuración de una ruta estática por defecto es la siguiente:
Router(config)#ip route 0.0.0.0 0.0.0.0
[distancia]

[dirección ip/interfaz]
... ....... ... --

Router_B(config)# ip route 0.0.0.0 0.0.0.0 Serial 0

El gráfico ilustra u n ejem plo de utilización de una ruta estática por default,
el router B tiene configurada la ruta por defecto hacia el exterior com o única

©

CA PÍTU LO 2. ENRUTAM IENTO IP

r a -m a

91

salida/entrada del sistem a autónom o 100, los dem ás routers aprenderán ese cam ino
gracias a la redistribución que el protocolo hará dentro del sistem a autónomo.

2.3 SISTEMA AUTÓNOMO
Un sistem a autónom o (A S) es un conjunto de redes bajo un dom inio
adm inistrativo común. El uso de núm eros de sistem a autónom os asignados p o r
entidades (IA N A , ARIN , R IP E ...) solo es necesario si el sistem a utiliza algún
BGP, o una red pública com o Internet.

Los sistemas autónomos intercambian información a través
de protocolos de gateway exterior como BGP

2.4 DISTANCIA ADMINSTRATIVA
Los routers son m ultiprotocolos, lo que quiere decir que pueden utilizar al
mismo tiem po diferentes protocolos incluidas rutas estáticas. Si varios protocolos
proporcionan la m ism a inform ación de enrutam iento se les debe otorgar un valor
adm inistrativo. L a distancia adm inistrativa perm ite que un protocolo tenga m ayor
prioridad sobre otro si su distancia adm inistrativa es menor. E ste valor viene por
defecto, sin em bargo el adm inistrador puede configurar un v alor diferente si así lo
determina.
El rango de las distancias adm inistrativas varía de 1 a 255 y se especifica
en la siguiente tabla:

92

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CC N A 640-802

Interfaz

0

Ruta estática

1

Ruta sum arizada
EIGRP

5

BGP externo

20

EIGRP interno

90

IGRP

100

OSPF

110

IS-IS

115

RIP

120

EIGRP externo

170

Inalcanzable

255

© R A -M A

Valor predeterminado de distancia administrativa

2.5 PROTOCOLOS DE ENRUTAMIENTO
Los cambios que una red puede experim entar hacen poco factible la
utilización de rutas estáticas, el adm inistrador se vería forzado a reconfígurar los
routers ante cada cam bio. El enrutam iento dinám ico perm ite que los routers
actualicen conocim ientos ante posibles cam bios sin tener que recurrir a nuevas
configuraciones. U n protocolo de enrutam iento perm ite determ inar dinám icam ente
las rutas y m antener actualizadas sus tablas.
Es im portante diferenciar los protocolos enrulados y los de enrutamiento.
U n protocolo enrutado llev a una com pleta inform ación de capa tres, como TCP/IP,
IPX, APPLE TALK, N e t BEUI. Un protocolo de enrutam iento es el utilizado por
los routers para m antener tablas de enrutam iento y así poder elegir la m ejor ruta
hacia un destino.

© RA-MA

CA PÍTU LO 2. ENRUTAM IENTO IP 93

Existen dos grandes núcleos de protocolos de enrutam iento:
• Protocolos de gatew ay interior (IGP). Se usan para intercam biar
inform ación de enrutam iento dentro de un sistem a autónom o. (RIP,
IGRP).
• Protocolos de gatew ay exterior (EGP). Se u san para intercam biar
inform ación de enrutam iento entre sistemas autónom os. (BGP).

2.5.1 Clases de protocolos de enrutamiento
Todos los protocolos de enrutam iento cum plen las m ism as funciones,
aprendiendo y determ inando cuál es la m ejor ruta hacia un destino.
Existen dos clases de protocolos de enrutam iento:
• V ector distancia: este tipo de protocolo determ ina la dirección y la
distancia a cualquier red.
• E stado de enlace: estos protocolos poseen u n a idea exacta de la
topología de la red y no efectúan actualizaciones a m enos que ocurra un
cam bio en la topología.
Un tercer caso de protocolo de enrutamiento sería un m étodo híbrido com o
es el caso de E IG R P , propietario de Cisco, que com bina aspectos de los dos casos
anteriores.
U n protocolo de enrutam iento tam bién puede clasificarse com o classfull
(con clase) o classless (sin clase), es decir, que pueden no reconocer las m áscaras
de subred com o en el caso de los classfull o sí pueden hacerlo en el caso de los
classléss.
Los routers que no pasan la inform ación de las subredes son con clase,
porque el router solo codifica la clase de red IP para la inform ación de
enrutamiento. En cuanto el direccionam iento IP fue adaptándose a las necesidades
de crecim iento los protocolos se hicieron m ás sofisticados, pudiendo m anipular
máscaras de subred, estos protocolos son los llam ados sin clase.
U n adm inistrador puede habilitar el com ando ip classless para el caso que
se reciba un paquete h ac ia una subred desconocida, el router enviará ese paquete a
la ruta predeterm inada para enviar la tram a al siguiente salto.

94

REDES CISCO: GUÍA DE E ST U D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

2.6 ENRUTAMIENTO POR VECTOR DISTANCIA
Los algoritm os de enrutam iento basados en vectores pasan copias
periódicas de una tab la de enrutam iento de un router a otro y acum ulan vectores de
distancia. (D istancia es una medida de longitud, m ientras que vector significa una
dirección). Las actualizaciones regulares entre routers com unican los cam bios en la
topología. C ada protocolo de enrutam iento basado en vectores de distancia utiliza
un algoritm o distinto para determ inar la ruta óptima. El algoritm o genera un
núm ero, denom inado m étrica de ruta, para cada ruta existente a través de la red.
N orm alm ente cuanto m enor es este valor, m ejor es la ruta.
Los dos ejem plos típicos de protocolos p o r vector distancia son:
• R IP (P rotocolo de inform ación de enrutam iento). Protocolo
sum inistrado con los sistem as U N IX . Es el protocolo de gateway
interior (IG P) m ás com únm ente utilizado. RIP u tiliza el núm ero de
saltos com o m étrica de enrutam iento. Existen dos versiones, RIP v i
com o protocolo tipo Classfull y RIP v2, m ás com pleto que su antecesor,
com o protocolo classless RIP se tratará con m ayor detenim iento en los
siguientes capítulos.

• IGRP (Protocolo de enrutam iento de gatew ay interior). Protocolo
desarrollado por Cisco para tratar los problem as asociados con el
enrutam iento en redes de gran envergadura. IG R P es un protocolo tipo
classfull.

2.6.1 Métricas
Las m étricas utilizadas habitualm ente por los protocolos de enrutam iento
pueden calcularse basándose en una sola o en m últiples características de la ruta.

• Número de saltos: núm ero de routers por los que p asará un paquete.
• Tic tac (N ovell): retraso en un enlace de datos usando pulsos de reloj de
PC IB M (m sg).
® C oste: valor arbitrario, basado generalm ente en el ancho de banda, el
coste económ ico u otra m edida, que puede ser asignado por un
adm inistrador de red.

• Ancho de banda: capacidad de datos de un enlace. Por ejem plo, un
enlace E thernet de 10Mb será preferible norm alm ente a una línea
dedicada de 64Kb.

CAPÍTU LO 2. E N RU TA M IEN TO IP

© RA-MA

95

• Retraso: tiem po en m over un paquete de un origen a un destino.
• Carga: cantidad de actividad existente en un recurso de red, como u n
router o un enlace.

e Fiabilidad: norm alm ente, se refiere al valor de errores de bits de cada
enlace de red.
• M T U (U nidad M áxim a de Transmisión): longitud m áxim a de tram a en
octetos que puede ser aceptada por todos los enlaces de la ruta.

2.7 BUCLES DE ENRUTAMIENTO
El proceso de m antener la inform ación de enrutam iento puede generar
errores si no existe una convergencia rápida y precisa entre los routers. En los
diseños de redes com plejas pueden producirse bucles o loops d e enrutam iento. L os
routers transm iten a sus vecinos actualizaciones constantes, si u n router A recibe de
B una actualización de una red que ha caído, este transm itirá dicha inform ación a
todos sus vecinos incluido el router B, quien prim eram ente le informó de la
novedad, a su vez el router B volverá a comunicar que la red se h a caído al router
A formándose un bucle interm inable.
Red Z


La red Z ha caído
*

La red Z ha caído


La red Z ha caído

La red Z ha caído
«-------------- — ►
La red Z ha caído
-------------- »
La red Z ha caído
*-------- -------

96

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-MA

2.7.1 Solución a los bucles de enrutamiento
Los protocolos vector distancia poseen diferentes m étodos para evitar los
bucles de enrutam iento, generalm ente estas herram ientas funcionan por sí m ismas
(por defecto); sin em bargo en algunos casos pueden desactivarse con el
consiguiente riesgo que pudiera generar un bucle de red.

2.7.2 Métrica máxima
Un protocolo de enrutam iento perm ite la repetición del bucle de
enrutam iento hasta que la m étrica exceda del valor m áxim o permitido. Los routers
agregan a la inform ación de enrutam iento la cantidad de saltos transcurridos desde
el origen a m edida que los paquetes son enrutados. En el caso de RIP el bucle solo
estará perm itido hasta que la m étrica llegue a l ó saltos.

Cuando el paquete sume 16 saltos será descartado por RIP

2.7.3 Horizonte dividido
Resulta sin sentido volver a enviar inform ación acerca de una ruta a la
dirección de donde h a venido la actualización original. A m enos que el router
conozca otra ruta viable al destino, horizonte dividido o split horizon no
devolverá inform ación p o r la interfaz donde la recibió.
Red Z

©

C A PÍTU LO 2. ENRUTAM IENTO IP 97

r a -m a

2.7.4 Envenenamiento de rutas
El router crea una entrada en la tabla donde guarda el estado coherente de
la red en tanto que otros routers convergen gradualm ente y de form a correcta
después de un cam bio en la topología. L a actualización inversa es u n a operación
com plem en taria del horizonte dividido. El objetivo es asegurarse de que todos los
routers del segm ento hayan recibido información acerca de la ruta envenenada. El
router agrega a la inform ación de enrutam iento la cantidad m áxim a de saltos.
Red Z

2.7.5 Temporizadores de espera
Los tem porizadores hacen que los routers no apliquen ningún cambio que
pudiera afectar a las rutas durante un periodo de tiem po determ inado. Si llega una
actualización con u n a m étrica m ejor a la red inaccesible, el router se actualiza y
elimina el tem porizador. Si no recibe cambios óptimos dará por caída la red al
transcurrir el tiem po de espera.

2.8 ENRUTAMIENTO POR ESTADO DE ENLACE
Los protocolos de estado de enlace construyen tablas de enrutam iento
basándose en una base de datos de la topología. Esta base de datos se elabora a
parti? de paquetes de estado de enlace que se pasan entre todos los routers para
describir el estado de una red.
El algoritmo S P F (prim ero la ruta libre más corta) u sa una base de datos
para construir la tabla de enrutam iento. El enrutam iento por estado de enlace utiliza
la información resultante del árbol SFP, a partir de los paquetes de estado de enlace
(LSP) creando una tabla de enrutam iento con las rutas y puertos de toda la red.
Los protocolos de enrutam iento por estado de enlace recopilan la
información necesaria de todos los routers de la red, cada uno de los routers calcula
de forma independiente su m ejor ruta hacia un destino. De esta m anera se producen
muy pocos errores al tener u na visión independiente de la red por cada router.

98

REDES CISCO : G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN C C N A 640-802

© R A -M A

Estos protocolos prácticam ente no tienen lim itaciones de saltos. Cuando se
produce un fallo en la red el router que detecta el error utiliza una dirección
m ulticast para enviar una tabla LSA, cada router recibe y la reenvía a sus vecinos.
La m étrica utilizada se b a sa en el coste, que surge a partir del algoritm o de Dijkstra
y se basa en la velocidad del enlace.
Los protocolos de estado de enlace son protocolos de enrutam iento de
gatew ay interior, se utilizan dentro de un m ism o A S (sistem a autónom o) el que
puede dividirse en sectores más pequeños com o divisiones lógicas llam adas áreas.
El área 0 es el área principal del AS. E sta área tam bién es conocida com o área de
backbone.

(

Internet

Jerarquía de estado de enlace dentro de un sistema autónomo

Los dos ejem plos típicos de protocolos de estado de enlace son:
® IS -IS (S istem a Intermedio a Sistem a Interm edio). Protocolo de
enrutam iento jerárquico de estado de enlace casi en desuso hoy en día.
o O S P F (prim ero la ruta libre m ás corta). Protocolo de enrutam iento por
estado de enlace jerárquico, que se ha propuesto com o sucesor de RIP
en la com unidad de Internet. Entre las características de OSPF se
incluyen el enrutam iento de m enor coste, el enrutam iento de múltiples
rutas y el balanceo de carga.

© R A -M A

C A PÍTU LO 2. EN RU TA M IEN T0 1P 99

Los protocolos de estado de enlace son m ás rápidos y m ás escalables que
los de vector distancia, algunas razones podrían ser:
• Los protocolos de estado de enlace solo envían actualizaciones cuando
hay cam bios en la topología.
• Las actualizaciones periódicas son m enos frecuentes que en los
protocolos p o r vector de distancia.
• Las redes que ejecutan protocolos de enrutam iento por estado de enlace
pueden ser segm entadas en distintas áreas jerárquicam ente organizadas,
limitando así el alcance de los cambios de rutas.
* Las redes que ejecutan protocolos de enrutam iento por estado de enlace
soportan direccionam iento sin clase.
« Las redes con protocolos de enrutam iento por estado de enlace soportan
resúmenes de ruta.

RECUERDE:

L E L jSIL .E l

* ¡p .

... p

< f^

,

L..... r p .

E n r u t a b le

Los protocolos enrutables son utilizados por los PC para poder “hablar ” entre ellos

Enrutamiento

Los protocolos de enrutamiento son utilizados por los routers para poder “hablar ” entre ellos

100

REDES CISCO: G U ÍA D E ESTU D IO PARA LA CERTIFICA C IÓ N CC N A 640-802

© R A -M A

"^R E C U E R D E :

P rotocolo

RIP

RIPv2

IGRP

EIGRP

Vector distancia

X

X

X

X

Estado de enlace

IS-IS

OSPF

X

X

Resumen
automático de ruta

X

X

X

X

X

Resumen manual
de ruta

X

X

X

X

X

X

X

X

X

Soporte VLSM

X

Propietario de
Cisco

X

X

Convergencia

Lento

Lento

Lento

Muy
rápido

Muy
rápido

Muy
rápido

Distancia
administrativa

120

120

100

90

115

110

Tiempo de
actualización

30

30

90

Métrica

Saltos

Saltos

Com­
puesta

Com­
puesta

Coste

Coste

E l término convergencia hace referencia a la capacidad de los routers de
poseer la m ism a inform ación de enrutam iento actualizada. Las siglas VLSM
son las de máscara de subred de longitud 'variable.

RECUERDE:

M ientras los campos IP se m antienen intactos a lo largo de la ruta, las
tramas cambian en cada salto con la M A C correspondiente al salto siguiente.

© RA-M A

CA PÍTU LO 2. ENRUTAM IENTO IP

101

2.9 FUNDAMENTOS PARA EL EXAMEN
• Tom e en cuenta las diferencias entre rutas estáticas y dinám icas,
aprendizaje de direcciones y cuál es la m anera m ás adecuada para
aplicarlas.
• A nalice las condiciones básicas necesarias para la aplicación de rutas
estáticas y rutas estáticas por defecto.
• R ecuerde cuáles son los parám etros de configuración de las rutas
estáticas y rutas estáticas por defecto.
• R ecuerde qué es y para qué sirve un sistem a autónom o.
• R ecuerde qué es la distancia adm inistrativa, su aplicación a los
protocolos de enrutam iento y sus diferentes valores.
• A nalice y asim ile el funcionam iento de los protocolos de enrutam iento.
• Estudie cóm o funciona un protocolo vector distancia, cuáles son y sus
respectivas m étricas.
• A nalice la problem ática de los bucles de enrutam ientos y sus posibles
soluciones razonando el funcionam iento de cada u n a de ellas.
• Estudie cóm o funciona un protocolo de estado de enlace, cuáles son, sus
jerarquías y com párelos con los de vector distancia.
• R ecuerde la diferencia entre protocolos enrutables y de enrutamiento.

C a p í t u lo 3

CONFIGURACIÓN INICIAL
DEL ROUTER
3.1 PANORÁMICA DEL FUNCIONAMIENTO DEL
ROUTER
Un router es un ordenador construido para desem peñar funciones
específicas de capa tres, proporciona el hardw are y softw are necesarios para
encaminar paquetes entre redes. Se trata de dispositivos im portantes de
interconexión que perm iten conectar subredes L A N y establecer conexiones de
área amplia entre las subredes.
Las dos tareas principales son las de conm utar los paquetes desde u n a
interfaz perteneciente a una red hacia otra interfaz de una red diferente y la de
enrutjir, es decir, encontrar el m ejor camino hacia la red destino. Adem ás de estas
funciones los routers pueden llevar a cabo diferentes desem peños, tales com o
filtrados, dom inios de colisión y broadcast, direccionam iento y traslación de
direcciones IP, enlaces troncales, etc.
Además de los com ponentes de hardware los routers tam bién necesitan u n
sistema operativo, los routers C isco funcionan con un sistem a operativo llam ado
IOS (Sistema operativo de intem etw orking). Un router puede ser exclusivam ente
un dispositivo LA N , o puede ser exclusivam ente un dispositivo W AN, pero
también puede estar en la frontera entre una LAN y una W A N y ser un dispositivo
LAN y W AN al m ism o tiem po.

104

REDES CISCO: G U ÍA DE E ST U D IO PA RA L A CERTIFICACIÓN CCN'A 640-802

© R A -M A

3.1.1 Componentes principales de un router
Los com ponentes
com prenden:

básicos de

la arquitectura interna

de un router

• C PU . L a unidad central de procesam iento (C PU ) ejecuta las
instrucciones del sistem a operativo. Estas funciones incluyen la
inicialización del sistem a, las funciones de enrutam iento y el control de
la interfaz de red. La CPU es un m icroprocesador. Los grandes routers
pueden tener varias CPU.
• R A M . L a m em oria de acceso aleatorio (RAM ) se usa para la
inform ación de las tablas de enrutam iento, el caché de conm utación
rápida, la configuración actual y las colas de paquetes. En la m ayoría de
los routers, la R A M proporciona espacio de tiem po de ejecución para el
softw are IOS de Cisco y sus subsistemas. El contenido de la RAM se
pierde cuando se apaga la unidad. En general, la R A M es una m em oria
de acceso aleatorio dinám ica (DRAM ) y puede am pliarse agregando
m ás m ódulos de m em oria en línea doble (DIM M ).
• M e m o ria flash. L a m em oria flash se utiliza para alm acenar una imagen
com pleta del softw are IOS de Cisco. N orm alm ente el router adquiere el
IOS p o r defecto de la m em oria flash. Estas im ágenes pueden
actualizarse cargando una nueva im agen en la m em oria flash. El IOS
puede estar com prim ido o no. En la m ayoría de los routers, una copia
ejecutable del IOS se transfiere a la R A M durante el proceso de
arranque. En otros routers, el IOS puede ejecutarse directam ente desde
la m em oria flash. A gregando o reem plazando los m ódulos de m em oria
en línea sim ples flash (SIM M ) o las tarjetas PCM C IA se puede am pliar
la cantidad de m em oria flash.
® N V R A M . L a m em oria de acceso aleatorio no volátil (NV RA M ) se
utiliza para guardar la configuración de inicio. En algunos dispositivos,
la N V R A M se im plem enta utilizando distintas m em orias de solo lectura
program ables, que se pueden borrar electrónicam ente (EEPROM ). En
otros dispositivos, se im plem enta en el m ism o dispositivo de m em oria
flash desde donde se cargó el código de arranque. E n cualquiera de los
casos, estos dispositivos retienen sus contenidos cuando se apaga la
unidad.
® Buses. L a m ayoría de los routers contienen un bus de sistem a y un bus
de CPU. El bus de sistem a se usa para la com unicación entre la CPU y
las interfaces y/o ranuras de expansión. E ste bus transfiere los paquetes

C A PÍTU LO 3. CONFIGURACIÓN IN IC IA L DEL ROUTER

g) RA-MA

105

hacia y desde las interfaces. L a CPU usa el bus p a ra tener acceso a los
com ponentes desde el alm acenam iento del router. E ste bus transfiere las
instrucciones y los datos hacia o desde las direcciones de m em oria
especificadas.
• ROM . L a m em oria de solo lectura (ROM ) se u tiliza para almacenar de
forma perm anente el código de diagnóstico de inicio (M onitor de
ROM ). Las tareas principales de la ROM son el diagnóstico del
hardware durante el arranque del router y la carga del softw are IOS de
Cisco desde la m em oria flash a la RAM. A lgunos routers tam bién
tienen u na versión m ás básica del IOS que puede usarse com o fuente
alternativa de arranque. Las m em orias ROM no se pueden borrar. Solo
pueden actualizarse reem plazando los chips de R O M en los routers.
• Fuente de alim entación. La fuente de alim entación brinda
necesaria para operar los com ponentes internos. L o s routers
tam año pueden contar con varias fuentes de alim entación
m odulares. En algunos de los routers de m enor tam año, la
alim entación puede ser extem a al router.

la energía
de m ayor
o fuentes
fuente de

3.1.2 Interfaces
Las interfaces son las conexiones de los routers con el exterior. Los tres
tipos de interfaces características son:
• Interfaz de red de área local (LAN).
• Interfaz de red de área am plia (W AN).


• Interfaz de consola/AUX.
Estas interfaces tienen chips controladores que proporcionan la lógica
necesaria para conectar el sistem a a los medios. Las interfaces LAN pueden ser
configuraciones fijas o m odulares y pueden ser Ethernet o Token Ring. Las
interfaces W AN incluyen la U nidad de servicio de canal (C SU ) integrada, la RDSI
y la serial. Al igual que las interfaces LA N , las interfaces W A N tam bién cuentan
con chips controladores para las interfaces. Las interfaces W A N pueden ser de
configuraciones fijas o m odulares. Los puertos de consola/A U X son puertos
seriales que se utilizan principalm ente para la configuración inicial del router.
Estos puertos no son puertos de netw orking. Se usan p a ra realizar sesiones
terminales desde los puertos de com unicación del ordenador o a través de u n
módem.

106

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

3.1.3 WAN y routers
L a capa física W A N describe la interfaz entre el equipo term inal de datos
(DTE) y el equipo de transm isión de datos (DCE). N orm alm ente el D C E es el
proveedor del servicio, m ientras que el DTE es el dispositivo conectado. En este
m odelo, los servicios ofrecidos al D TE están disponibles a través de un m ódem o
CSU/DSU.
DTE

Interfaz de la capa

R o u te r

DCE

M odem
CSU /D SU
TA/NT1

Cuando un router u sa los protocolos y los estándares de la capa de enlace
de datos y física asociados co n las W A N, opera com o dispositivo WAN.
Los protocolos y estándares de la capa física W A N son:










EIA /TIA -232
E IA /T IA -449
V.24
V.35
X.21
G.703
EIA -530
RDSI
T I, T3, E l y E3
xDSL
SO N ET (O C-3, OC-12, OC-48, OC-192)

Los protocolos y estándares de la capa de enlace de datos WAN:
C ontrol de enlace de datos de alto nivel (H D LC )
9 Fram e-R elay
• Protocolo punto a punto (PPP)
• Control de enlace de datos síncrono (SD LC )
• Protocolo Internet de enlace serial (SLIP)
9

© R A -M A

CAPÍTU LO 3. CONFIGURACIÓN FNICIAL DEL ROUTER





107

X.25
ATM
LAPB
LAPD
LAPF

3.2 CONECTÁNDOSE POR PRIMERA VEZ AL ROUTER
Para la configuración inicial del router se utiliza el puerto de consola
conectado a un cable transpuesto o de consola y un adaptador RJ-45 a DB-9 para
conectarse al puerto C O M I del ordenador. Este debe tener instalado un software
de em ulación de term inal, como el HyperTerm inal.
Los parám etros de configuración son los siguientes:





E l puerto C O M adecuado
9600 baudios
8 bits de datos
Sin paridad
1 bit de parada
Sin control de flujo

La imagen corresponde a una captura de pantalla de HyperTerminal

108

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-M A

3.2.1 Secuencia de arranque
C uando un router o un switch C atalyst C isco se ponen en m archa, hay tres
operaciones fundam entales que han de llevarse a cabo en el dispositivo de red:
®

Paso 1 - El dispositivo localiza el hardw are y lleva a cabo una serie de rutinas
de detección del m ism o. U n térm ino que se suele utilizar para describir este
conjunto inicial de rutinas el POST (Power-on SelfTest), o pruebas de inicio.

Paso 2 - U na vez que el hardware se m uestra en una disposición correcta de
funcionam iento, el dispositivo lleva a cabo rutinas de inicio del sistem a. El
sw itch o el router inicia localizando y cargando el softw are del sistem a
operativo IO S secuencialm ente desde la Flash, servidor TFTP o la ROM ,
según corresponda.

Paso 3 - Tras cargar el sistem a operativo, el dispositivo trata de localizar y
aplicar las opciones de configuración que definen los detalles necesarios para
operar en la red. G eneralm ente, hay una secuencia de rutinas de arranque que
proporcionan alternativas al inicio del softw are cuando es necesario.

3.3 CONFIGURACIÓN INICIAL
U n router o un sw itch pueden ser configurados desde distintas ubicaciones:
• En la instalación inicial, el adm inistrador de la red configura
generalm ente los dispositivos de la red desde un term inal de consola,
conectado p o r m edio del puerto de consola.
• Si el adm inistrador debe dar soporte a dispositivos rem otos, una
conexión local por m ódem con el puerto auxiliar del dispositivo perm ite
a aquél configurar los dispositivos de red.
• D ispositivos con direcciones IP establecidas
conexiones Telnet para la tarea de configuración.

pueden

permitir

• D escargar un archivo de configuración de un servidor Trivial File
Transfer Protocol (TFTP).
• C onfigurar el dispositivo por m edio
Transfer Protocol (HTTP).

de un navegador Hypertext

CAPÍTU LO 3. CONFIGURACIÓN IN IC IA L DEL ROUTER

© R A -M A

109

Las rutinas de inicio del softw are Cisco IOS tienen p o r objetivo inicializar
las operaciones del router. Com o se explicó anteriorm ente, las rutinas de puesta en
m archa deben hacer lo siguiente:
• Asegurarse que el ro u ter cuenta con hardw are verificado (POST).
• Localizar y cargar el softw are Cisco IOS que u sa el router para su
sistem a operativo.
® Localizar y aplicar las instrucciones de configuración relativas a los
atributos específicos del router, funciones del protocolo y direcciones de
interfaz.
El router se asegura de que el hardware haya sido verificado. Cuando u n
router Cisco se enciende, realiza unas pruebas al inicio (PO ST). Durante este
autotest, el router ejecuta una serie de diagnósticos para verificar la operatividad
básica de la CPU, la m em oria y la circuitería de la interfaz. T ras verificar que el
hardware ha sido probado, el router procede con la inicialización del software.
A l iniciar por p rim era vez u n router Cisco, no existe configuración inicial
alguna. El software del router le p edirá u n conjunto m ínim o de detalles a través d e
un diálogo opcional llamado Setup.
El modo Setup es el m odo en el que inicia un ro u ter no configurado al
arrancar, puede m ostrarse en su form a básica o extendida.
Se puede salir de este m odo respondiendo que N O a la pregunta inicial.
Would you like to enter the initial configuration dialo g ? [ y e s ] : No
Would you like to terminate autoinstall? [yes] : I N T R O

Desde la línea de com andos el router se inicia en el m odo EX EC usuario,
las tareas que se pueden ejecutar en este m odo son solo de verificación ya que N O
se permiten cambios de configuración. En el modo EXEC privilegiado se realizan
las tareas típicas de configuración.
M odo EXEC usuario:
Router>

M odo EXEC privilegiado:
Router#

11O REDES CISCO : G U ÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

Para pasar del m odo usuario al privilegiado ejecute el com ando enable,
para regresar disable. Esto es posible porque no se ha configurado contraseña, de
lo contrario sería requerida cada vez que se pasara al m odo privilegiado.
Router>
Router>enable
Router#disable
Router>

M odo global y de interfaz:
Router>enable
Routerttconfigure terminal
Router(config)#interface [tipo de interfaz][número]
Router (conf ig) #in.terface ethernet 0
Router(config-if)#exit
Router(config)#exit
Router#

Para pasar del m odo privilegiado al global debe introducir el comando
configure term inal, para pasar del m odo global al de interfaz ejecute interface
ethernet 0, en este caso se ha elegido la ethernet 0. Para regresar un m odo más atrás
utilice el exit o Control+Z que lo llevará directam ente al modo privilegiado.

NOTA

La información que aparece entre corchetes después de una pregunta es la que
el router sugiere como válida ...dialog? [yes]: bastará con aceptar con un
Intro.

3.3.1 Com andos ayuda
El router da la posibilidad de ayudas pues resulta difícil m em orizar todos
los com andos disponibles, el signo de interrogación (?) y el tabulador del teclado
nos brindan la ayuda necesaria a ese efecto. El tabulador com pleta los comandos
que no recordam os com pletos o que no querem os escribir en su totalidad.
El signo ? colocado inm ediatam ente después de un com ando m uestra todos
los que com ienzan con esas letras, colocado después de u n espacio (barra
espaciadora+?) lista todos los comandos que se pueden ejecutar en esa posición.

C A PÍTU LO 3. CONFIGURACIÓN IN IC IA L DEL ROU TER 111

© RA-MA

La ayuda se puede ejecutar desde cualquier modo:
Router#?
jUjcqc c o i n m a n d s access-enable
a c c e s s -t e m p l a t e

bis
clear
--More—

Create a temporary Access-List entry
Create a temporary Access-List entry
For manual emergency modes setting
Reset functions

R o u t e r (config)#?

commands:
aaa
alias
appletalk
arp
banner
boot

Configure

Authentication, Authorization and Accounting.
Create command alias
Appletalk global configuration commands
Set a static ARP entry
Define a login banner
Modify system boot parameters

--More-

Inm ediatam ente o después de un espacio según la ayuda solicitada:
Router#sh?
Show
Router#show ?
access-expression
access-lists
accounting
aliases
—More—

List access expression
List access lists
Accounting data for active sessions
Display alias commands

Router(config)#inte?
interface
Router(config)#interface ?
CTunne1
CTunnel interface
FastEthernet
FastEthernet IEEE 8 02.3
GigabitEthernet
GigabitEthernet IEEE 802.3z
Loopback
Loopback interface
Null
Null interface
Port-channel
Ethernet Channel of interfaces
Tunnel
Tunnel interface
V if
PGM Multicast Host interface
Vlan
Catalyst Vlans
fcpa
Fiber Channel
range
interface range command

112

REDES CISCO: GUÍA DE E ST U D IO PARA LA C E R TIFICA C IÓ N CCNA 640-802

© RA-MA

L a indicación — M o re — significa que existe más inform ación disponible.
La barra espaciadora p asa rá de página en página, m ientras que el Intro lo hará línea
por línea.
El acento circunflejo ( A) indicará un fallo de escritura en un comando:
Router#configure terminal
A

% Invalid input detected at |A' marker.
Router#configure terminal
Enter configuration commands,
Router(config)#

one per line.

End wi t h CNTL/Z.

El uso de C o » íro l+ P (tam bién flecha hacia arriba) perm ite ver los últim os
com andos ejecutados, el C om trol-N (tam bién flecha hacia abajo) la inversa del
anterior. Estos com andos quedan registrados en un búfer llam ado historial y
pueden verse con el com ando show history, por defecto la cantidad de com andos
que se guardan en m em oria es de 10, pero puede ser m odificado por el
adm inistrador utilizando el h isto ry size:
Router#terminal history size ?
<0-256>
Size of history buffer

3.3.2 Asignación de nom bre y contraseñas
Se debe asignar u n nom bre exclusivo al router, com o la prim era tarea de
configuración. Esto se realiza en el m odo de configuración global, m ediante los
siguientes comandos:
R o u t e r (config)tthostname MADRID
MADRID(config)#

Los comandos e n a b le p assw o rd y en a b le se c re t se utilizan para restringir
el acceso al m odo EXEC privilegiado. El com ando enable passw ord se utiliza solo
si no se h a configurado previam ente enable secret.
Se recom ienda habilitar siem pre en ab le secret, ya que a diferencia de
enable password, la contraseña estará siem pre cifrada.
Router>enable
Router#configure terminal
Enter configuration commands, one per line.
Router(config)#hostname MADRID
MADRID(config)#enable password cisco
MADRID(config)#enable secret cisco

End wit h CNTL/Z.

CA PÍTU LO 3. CONFIGURACIÓN IN IC IA L DEL ROUTER

© RA-MA

113

O bserve en el ejemplo que se copia parte de un show ru n aig-con fig que se
ha configurado com o hostnam e del router M ADRID y com o contraseña cisco en la
enable secret y la enable password, abajo se ve cóm o la contraseña secret aparece
encriptada por defecto m ientras que la otra se lee perfectam ente.
hostname M A D R I D

¡
enable secret 5 $l$EBMD$0rT0iN4QQab7s8AFzsSof/
enable password cisco

3.3.3 Contraseñas de consola, auxiliar y telnet
Para configurar la contraseña para consola se debe acceder a la interfaz de
consola con el com ando line consolé 0:
Eouter#configure terminal
R o u t e r (config)#line

consolé 0

R o u t e r (confi g - l i n e ) # l o g i n
R o u t e r (config-line)#password contraseña

El com ando exec-timeout perm ite configurar un tiem po de desconexión
determinado en la interfaz de consola.
El com ando logging synchronous im pedirá m ensajes dirigidos a la
consola de configuración que pueden resultar m olestos.
Para configurar la contraseña para telnet se debe acceder a la interfaz de
telnet con el com ando line v ty 0 4, donde line vty indica dicha interfaz, 0 el
número de la interfaz y 4 la cantidad m áxim a de conexiones m últiples a partir de 0,
en este caso se perm iten 5 conexiones múltiples:
Router(config)#line vty 0 4
Router(config-line)#login
Router(config-line)#password contraseña

El com ando show sessions m uestra las conexiones de telnet efectuadas
desde el router, el com ando show users m uestra las conexiones de usuarios
remotos.
Router#show users
Line
User
* 1 vty 0
2 vty 1

Interface

User

Host(s)
idle
idle

Mode

Idle
00:00:00
00:00:02

Idle

Location
192.168.59.132
192.168.59.156

Peer Address

114

REDES CISCO : G U ÍA DE ESTUDIO PARA LA CERTIFICACIÓN CC N A 640-802

O R A -M A

A lgunos routers perm iten establecer niveles de seguridad en la conexión
por telnet y adem ás de la configuración ssh.
Router(config)#line vty 0 15
Router(config-line)#privilege level 15
Router(config-line)#login local
Router(config-line)#transport input telnet
Router(config-line)#transport input telnet ssh

Para configurar la contraseña para auxiliar se debe acceder a la interfaz de
auxiliar con el com ando Une aux 0:

Router (config)# line aux 0
Router(config-line)#login
Router(config-line)#password contraseña

En todos los casos el com ando login suele estar configurado por defecto,
perm ite que el router pregunte la contraseña al intentar conectarse, con el comando
login local el router preguntará qué usuario intenta entrar y su respectiva
contraseña. Para que esto funcione se deben crear nom bres de usuarios y
contraseña con el siguiente comando:
Router(config)#username usuariol password contraseñal
Router(config)#username usuario2 password contraseña^

3.4 CASO PRÁCTICO

3.4.1 Configuración de usuario y contraseña
En el siguiente ejem plo se han creado dos usuarios C O R E _ S U R con una
contraseña A n s u r y C Q R E _ N O R con una contraseña A n o rt. Se configura a
continuación la línea de consola:
Router(config)#username CORE_SUR password Ansur
Router(config)#username CORE_NOR password Anort
Router#configure terminal
Router(config)#line consolé 0
Router(config-line)#login local

o RA-M A

CAPÍTU LO 3. CON FIGURACIÓN INICIAL DEL ROUTER

115

Cuando el usuario C O R E _ N O R intente ingresar al router le será solicitado
su usuario y contraseña, y luego la enable secret:

press RETURN to get started.
Usted intenta ingresar en un sistema protegido
User Access Verification
Username: CORE NOR
P a s s w o r d : *****

(contraseña de usuario, A nort)

Router>enable
Password:

***** (enable secret, cisco)

Router#

Las contraseñas sin encriptación aparecen en el show running debiendo tener
especial cuidado ante la presencia de intrusos.

El comando Service p assw o rd -en c ry p tio n encriptará con un cifrado leve
ias contraseñas que no están cifradas por defecto com o las de telnet, consola,
auxiliar, etc. Una vez cifradas las contraseñas no se podrán volver a leer en texto
plano.

3.4.2 Configuración por navegador
Los routers pueden ser configurados por HTTP si el com ando ip h ttp
Server está habilitado en el dispositivo. Por defecto la configuración por w eb viene
deshabilitada por defecto (no ip http Server). Por razones de seguridad se
recomienda dejarlo desactivado.
Router(config)#ip http Server

116

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

3.5 INTERFAZ SDM
SD M ( Cisco Router and Security Device Manager) es una herram ienta de
adm inistración avanzada m uy potente que perm ite la configuración de los
dispositivos en pocos m inutos. Se basa en la configuración W eb de los dispositivos
siem pre que estos tengan disponibles este servicio. SDM puede utilizarse en gran
cantidad de m odelos de routers y tam bién se entrega preinstalado en todos los
routers de servicios integrados nuevos de las series 850, 870, 1800, 2800 y 3800.
Para un com pleto control adm inistrativo de los dispositivos, SDM puede instalarse
en un term inal de adm inistración con la finalidad de gestionarlos desde allí.
U na vez instalado en el term inal de adm inistración se puede acceder a los
dispositivos introduciendo la dirección IP de los m ism os. Otra form a es por m edio
de un navegador por H TTP o HTTPS.
SDM perm ite la revisión de las configuraciones, m onitorizar y un espectro
m uy am plio de posibilidades de configuración rápida del dispositivo. Es posible
efectuar configuraciones de todo tipo com o por ejem plo N A T, VPN, ACL,
contraseñas, protocolos, interfaces, etc.
iACiKvAMfcr4*iVt»rtT<>*wr»W«i»ng,
r
Ifiw StM f
l
r
t
f
^0

!

I9381:17'/IC f*i Hrr ci ViQt

Captura de una pantalla inicial del SDM

CAPÍTULO 3. CON FIGURACIÓN INICIAL DEL ROU TER

© R A -M A

117

3.5.1 Configuración de SDM
Para la configuración de SDM es necesaria la instalación del software
correspondiente sum inistrado por proveedor. Es posible la instalación tanto en los
dispositivos com o así tam bién en el term inal de adm inistración dependiendo de la
utilidad y capacidad de m em oria disponible.
Es necesario activar el servicio HTTP o HTTPS en el router, crear el
usuario y su contraseña con un nivel de privilegio 15. T enga en cuenta que si es la
configuración inicial y pretende continuar desde la term inal de adm inistración debe
existir por lo m enos u n a interfaz activa en el router conectada a la red. Para ello
verifique con un ping si es posible el acceso al dispositivo desde la term inal.
R o u t e r (config) # i p

http

Router(config)#ip

http

secure-server

Router(config)#ip

http

authentication

server

local

R o u t e r (config) # u s e r n a m e nombre usuario privilege 15 password 0

contraseña

SDM ofrece un abanico m uy am plio de posibilidades de configuración, por
ejemplo com o m uestran las siguientes im ágenes, contraseñas o DHCP.
Change Default U t t t Name and Password
-x

&'

Tfte router i s u sin g a

raaof? default u se rn a m e 3ft3 password. You m u s t change

aotn QTtriero to secure it© tcuier SOM does nol stow you to configure tna router
uni a 55 >cu c om p lete this -step first.

Note: You win be prompted fsrusarnam e ana password aiMf mt« conngurauon
is delivered. Enter the new username 3nd password ta reeonnecltoihe router

Username;
Password
R e e n te r P a ssv /ord

Ok

Cancel

Captura de una pantalla del SDM para
la configuración de contraseñas

118

REDES CISCO: GUÍA D E ESTU D IO PARA LA C ERTIFICA C IÓ N CCNA 640-802

AMdhtppmi

' "••c S

O hCP P 001 Mame

¡Tona s _ l* n

OHCP Paal HfltftOtlC

[>?2 1818 0

© R A -M A

m

3»H#9tf»rMÍC

J/5Î 255 355 i!

gga j_3ogj£}

StoifingP:

¡ 1 72.11¡.1 0.2

EwttnglP:

j !72.16. iO .iú

.

r Novar £toiPS3
Days
HHMM

r* UseiDofinod

i

7 ~ : fc~

■OHCP Oí»t¡ «ns
D M S S a rv e rto

WIN3SómuIC):

OMS Ser*»Bf20

VHN3 SewerSJT):

Domain Mam «O

DafauM Routerf):

|

I P im portali O HCP Opto A3tntoih» DHCP sjw fdiuínsn
O optional fis iis.

Sane*!
l

..................................

H*ip

î

.....

Captura de una pantalla del SDMpara
la configuración de DHCP

3.6 CONFIGURACIÓN DE INTERFACES
Las interfaces d e un router form an parte de las redes que están
directam ente conectadas al dispositivo. Estas interfaces activas deben llevar una
dirección IP y su correspondiente m áscara, com o u n host perteneciente a esa red.
El adm inistrador debe habilitar adm inistrativam ente la interfaz con el com ando no
shutdown y si fuera necesario la interfaz podrá deshabilitarse con el com ando
shutdown. Las interfaces de LAN pueden ser:
»

Ethernet a 10 M bpm.

®

F astethem et a 100 Mbpm.

»

G igaethem et a 1000 M bpm.

Las secuencias de com andos para la configuración básica de una interfaz
de LA N son los siguientes:
R o u t e r (config)iinterface [tipo de interfaz] [número]
Router (config-if)#ip address [dirección IP máscara]
Ro u t e r (config-if)#speed [10|l00|l000|auto]
Ro u t e r (config-if)#duplex [auto|full|half]
Ro u t e r (config-if)#no shutdown

© R A -M A

CA PÍTU LO 3. CONFIGURACIÓN IN IC IA L DEL ROUTER 119

La m ayoría de dispositivos llevan ranuras o slots donde se instalan las
interfaces o para am pliar la cantidad de estas. Los slots están num erados y se
configuran por delante del núm ero de interfaz separado por u n a barra.
R o u t e r (config)tinterface

[tipo de interfaz][slot/int]

Es posible configurar en la interfaz un texto a m odo de com entario que
solo tendrá carácter inform ativo y que no afecta al funcionam iento del router.
Puede tener cierta im portancia para los adm inistradores a la hora de solucionar
problemas.
R o u t e r (config-if)#description

comentario

El com ando show in terfa ces etlhernet 0 m uestra en la prim era línea cómo
la interfaz está U P a d m in istra tiv a m e n te y UP físicam ente. Recuerde que si la
interfaz no estuviera conectada o si existiesen problem as de conectividad, el
segundo U P aparecería com o dow n o en un serial dow n dow n.
La tercera línea m uestra la descripción configurada a m odo de comentario.
A continuación aparece la dirección IP, la encapsulación, paquetes enviados,
recibidos, etc.
EthernetO is up, line protocol is up
Hardware is Lance, address is 0000.Ocfb.Scl9 (bia. 0000 .Oc f b .6cl9)
Description: INTERFAZ_DE_LAN
Internet address is 192.168.1.1/24
MTU 1500 bytes, BW 1 0 0 0 0 Kbit, DLY 1 0 0 0 usee, rely 183/255, load
1/255
Encapsulation ARPA, loopback not set, keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output 00:00:03, output hang n e ver
Last clearing of "show interface" counters never
Queueing strategy: fifo
Oujtput queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
0 input packets with dribble condition detected
188 packets output, 30385 bytes, 0 underruns
188 output errors, 0 collisions, 2 interface resets
0 babbles, 0 late collision, 0 deferred
188 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out

120

REDES CISCO: G U ÍA D E ESTU D IO PARA LA CERTIFICACIÓN CC N A 640-802

© R A -M A

Si el adm inistrador deshabilita la interfaz se verá:
EthernetO is administratively down, line protocol is down
Hardware is Lance, address is 0000.O c f b .6cl9 (bia 0000.O c f b .6cl9)
Description: INTERFAZ_DE_LAN
Internet address is 192.168.1.1/24

Si una interfaz está administrativamente down no significa que exista un
problema, pues el administrador ha decidido dejarla shutdown. Por el
contrario si el Une protocol is down existe un problema, seguramente de capa
física.

Las interfaces seriales se configuran siguiendo el m ism o proceso que las
Ethernet, se debe tener especial cuidado para determ inar quién es el D C E (equipo
de com unicaciones) y quién el D TE (equipo term inal del abonado) debido a que el
D C E lleva el sincronism o de la com unicación, este se configurará solo en la
interfaz serial del D C E, el com ando clock rate activará el sincronism o en ese
enlace.
C lock rate y ancho de banda no es lo m ism o: recuerde que existe un
com ando bandw idth p a ra la configuración del ancho de banda, el router solo lo
utilizará para el cálculo de costes y m étricas para los protocolos de enrutamiento,
m ientras que el clock rate brinda la verdadera velocidad del enlace.
Las interfaces loopback son interfaces virtuales que sirven, por ejemplo,
para el cálculo de m étrica en los protocolos de enrutam iento.

3.7 COM ANDOS SHOW
Saber utilizar e interpretar los com andos show perm ite el rápido
diagnóstico de fallos, en m odo usuario se perm ite la ejecución de los comandos
show de form a restringida, desde el modo privilegiado la cantidad es ampliamente
m ayor.

©R A -M A

CAPÍTULO 3. CO N FIGURACIÓN INICIAL DEL ROUTER

121

3.7.1 Comandos show más usados
• show interfaces. M uestra las estadísticas com pletas de todas las
interfaces del router. Para ver las de una interfaz específica, ejecute el
com ando seguido de la interfaz y el núm ero de puerto.
Router#show interfaces serial 0/1

• show controllers. M uestra inform ación específica de la interfaz de
hardware..
Router#show controllers serial 0/1

® show clock. M uestra la hora fijada en el router.
® show hosts. M uestra la lista en caché de los nom bres de host y sus
direcciones.

• show users. M uestra todos los usuarios conectados al router.
• show sessions. M uestra las conexiones de teln et efectuadas desde el
router.
® show history.M uestra un historial de los com andos introducidos.

• show flash.

M uestra inform ación acerca de la m em oria flash
(EEPROM ) y qué archivos IOS se encuentran alm acenados allí.

® show versión. Despliega la inform ación acerca del router y d e la
imagen de IOS que esté com etido en la R A M . E ste com ando tam bién
m uestra el valor del registro de configuración del router.
® show arp. M uestra la tabla ARP del router.
® show protocols. M uestra el estado global y p o r interfaz de cualquier
protocolo de capa 3 que haya sido configurado.
o show startu p -co n fig . M uestra el archivo de configuración alm acenado
en la N V RA M .

® show

running-config. M uestra el contenido del archivo
configuración activo o la configuración para u n a interfaz específica.

de

122

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICACIÓN C C N A 640-802

© RA-MA

3.8 CASO PJRÀCTÏC0

3.8.1 Configuración de una interfaz E th ern et
El ejemplo m uestra la configuración de una interfaz Fastethem et:

Router>enable
Password:*******
Routerffconfigure terminal
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)#interface Fastethernet 0
Router(config-if)#ip address 192.168.1.1 255.255.255.0
Router(config-if) #speed 100
Router(config-if)#duplex full
Router(config-if)#no shutdown
Router(config-if)#description INTERFAZ_DE_LAN

3.8.2 Configuración de una interfaz Serie
El ejemplo m uestra la configuración de u n enlace serial como D C E :

MADRID(cônfig)»interface serial 0
MADRID(config-if)#ip address 170.16.2.1 255.255.0.0
MADRID(config-if)#clock rate 56000
MADRID(config-if)fbandwidth 100000
MADRID(config-if)ttdescription RED_SERVIDORES
MADRID(config-if )#no shutdown

3.9 MENSAJES O BANNERS
Con el fin de brindar m ensajes ante posibles averías o intrusos existen
varios tipos de banners:
R o u t e r (config)ibanner ?
LINE
c banner-text c, where rc' is a delimiting character
exec
Set EXEC process creation banner
incoming Set incoming terminal line banner
login
Set login banner
motd
Set Message of the Day banner

CAPÍTULO 3. CO N FIGURACIÓN IN IC IA L DEL RO U TE R 123

© RA-MA

El b a n n e r m otd ofrece la posibilidad de un m ensaje diario, el b a n a e r
lo«in será visto al establecer una sesión de telnet, el b a n n e r exec al pasar la
p a s s w o r d al m odo privilegiado.
Un m ensaje de inicio de sesión debe advertir que solo los usuarios
autorizados deben intentar el acceso. Evite .un m ensaje del estilo ¡bienvenido! por
el contrario deje bien claro que cualquier intrusión sin autorización estará
penalizada por la ley vigente, de esta m anera advertirá que ir m ás allá está
prohibido y es ilegal.
Configuración de un banner diario, el texto debe ir entre caracteres
similares al com enzar y al terminar:

Router(config)#banner motd * TJsted intenta ingresar en un sistema
protegido*

3.10 RESOLUCIÓN DE NOMBRES DE HOST
Seguram ente resultará más fam iliar identificar un dispositivo, u n host o un
servidor con un nom bre que lo asocie a sus funciones o a otros criterios de
desempeño. Esto se hace creando una tabla de host, que asociará un nom bre a una
o varias direcciones IP.
R o u t e r (config)#ip host nombre

[l°dirección IP][2°dirección I P ] ...

3.11 CASO PRÁCTICO

3.11.1 Corañgoración de una tabla de host
A continuación se ha creado una tabla de host con el com ando ip host.

Router(config)#ip host SERVIDOR 204.200.1.2
Router(config)#ip host ROUTER 220.220.10.32
Router(config)#ip host HOST 210.210.2.22
Router(config)#exit

126

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

O RA-MA

3.12.1 B orrado del contenido de las m em orias
Los datos de configuración alm acenados en la m em oria no volátil no son
afectados por la falta de alim entación, el contenido perm anecerá en la NVRAM
hasta tanto se ejecute el com ando apropiado para su elim inación:
Router#erase s tartup-c o n f i g ’

Por el contrario no existe com ando para borrar el contenido de la RAM . Si
el adm inistrador pretende dejar sin ningún dato de configuración debe rebotar o
apagar el router. La RAM se borra únicam ente ante la falta de alim entación
eléctrica:
Router#reload
System configuration has been modified.
Proceed with reload? [confirm]

Save?

[yes/no]: no

Para borrar com pletam ente la configuración responda N O a la pregunta si
quiere salvar.

N O TA :

Tenga especial cuidado al borrar las memorias, asegúrese de eliminar lo que
desea antes de confirmar el borrado.
........... .

3.12.2 Copia de seguridad del IOS
Cuando sea necesario restaurar el IOS del router o actualizarlo se debe
hacer desde un servidor TFTP. Es im portante que se guarden copias de seguridad
de todas las IOS en un servidor central.
El com ando para esta tarea es el copy flash tftp, m ediante el com ando
show flash se verificará el nom bre del archivo a guardar:
Router#copy flash tftp
System flash directory:
File
Length
Name/status
1
3709210
c4500-js-l_121-5.bin
[3709276 bytes used, 4679332 available, 8388608 total]
Address or ñame of remóte host [255.255.255.255]? 200.200.10.1
Source file ñame? c4500-js-l_121-5.bin

CA PÍTU LO 3. CONFIGURACIÓN INICIAL DEL ROUTER

© RA-MA

DeStin.ati°n file name

127

[c4500-js-l_121-5.bin]?

i i j !! !!I ! ! !!!! !!!!!!!!!!!!!!!!! !
Router#show flash
S y s t e m flash directory:

File Length
!
3709210
[3709276 bytes
8192K bytes of

Name/status
c4500-js-l_121-5.bin
used, 4679332 available, 8388508 total]
processor board System flash (Read/Write)

En el proceso inverso al anterior o para actualizar el IOS se debe verificar
el espacio en la m em oria flash con el com ando show fla sh y luego ejecutar el
comando copy tftp flash:

Router#show flash
System flash directory:
File Length
Name/status
1 3709210 c4500-js-l_121-5.bin
[3709276 bytes used, 4679332 available, 8388608 total]
8192K bytes of processor board System flash (Read/Write)
Router#copy tftp flash
Address or name of remote host?200.200.10.1
Source filename? c45 00-js-l_121-5.bin
Destination filename [c4500-js-l__121-5.bin]?
Acceeoing tftp://200 .200.10.1/ c4500-js-l_121-5-»bin- -•<— -»
Erase flash: before copying? [confirm]
Erasing the flash file system will remove all files
Continue?[confirm]
Erasing device eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeee erased
Loading c4500-js-l_121-5.bin from 200.200.10.1 (via Ethernet 0/2)

! ! ! ! ! ! ! 1 ! ! ! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1! ! ! ! ! ! ! ! ! ! ! ! 1! ! ! ! t ! !
!! ! 1I ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 ! ! ! ! ! ! ! ! ! 1 ! ! ! ! ! ! ! ! ! ! ! ! 1! 1! ! ! !

!!!!!
Verifying Check s u m ........................ OK
[OK-9024523 bytes]
9024523 bytes copied in 310.12 secs

128

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-MA

3.13 COMANDOS DE EDICIÓN
Casi la totalidad de las IOS ofrecen com binaciones de teclas que permiten
una configuración del dispositivo m ás rápida y simple. La siguiente tabla muestra
algunos de los com andos de edición m ás utilizados.

Tecla

Efecto

Delete

Elimina un carácter a la derecha del cursor.

Retroceso

Elimina un carácter a la izquierda del cursor.

TAB

Completa un comando parcial.

Ctrl+A

Mueve el cursor al comienzo de la línea.

Ctrl+R

Vuelve a mostrar una línea escrita
anteriormente.

Ctrl+U

Borra una línea.

Ctrl+W

Borra una palabra.

Ctrl+Z

Finaliza el modo de configuración y vuelve
al modo-EXEC.

Esc-B

Desplaza el cursor hacia atrás una palabra.

Flecha
arriba

Repite hacia adelante los comandos
anteriores.

Flecha
abajo

Repite hacia atrás los comandos anteriores.

Ctrl+P

Repite hacia adelante los comandos
anteriores

Ctrl+N

Repite hacia atrás los comandos anteriores.

0 RA'MA

C A PÍTU LO 3. CONFIGURACIÓN INICIAL DEL ROU TER 129

3.14 NOMBRES DEL CISCO IOS
Cisco desarrolla num erosas versiones del IO S (Internetwork Operating
System) y lanza nuevas versiones de form a continua.
El IOS ofrece diversas
plataformas de hardware.

funciones y tam bién

corre

sobre

diversas

Cisco ha establecido una convención para identificar por nom bres a la s
distintas versiones, de los archivos del IOS. La convención de nom bres del IOS
utiliza varios campos. Entre ellos podem os m encionar el de identificación de la
plataforma del hardw are, el de identificación de la funcionalidad y el
correspondiente a la secuencia num érica.

C4 500-js-l_121-5.bin

J

A A A

Plataforma de hardw are
Conjunto de funciones especiales

~

Form ato de archivo
N úm ero de versión

3.15 REGISTRO DE CONFIGURACION
Cuando un router arranca, se com prueba el registro de configuración
virtual para determ inar (entre otras cosas) el m odo en que debe entrar tras el
arranque, dónde conseguir la im agen del software y cóm o gestionar el archivo d e
configuración de la N V R A M .
*■

Este registro de 16 bits controla funciones com o la velocidad en baudios
del puerto de la consola, la operación de carga del softw are, la habilitación o
deshabilitación de la tecla de interrupción durante las operaciones norm ales, la
dirección de m ultidifüsión predeterm inada, así com o establecer una fuente p ara
arrancar el router.

3.15.1 Comando show version
El comando show v ersio n m uestra la inform ación de hardw are y de IOS d e
un router o switch, sobre las últim as líneas se observa el registro de configuración.

130

REDES CISCO: GUÍA D E ESTU D IO PARA LA CERTIFICACIÓN CC N A 640-802

© RA-MA

E1 valor del registro para una secuencia de arranque norm al debe ser 0x2102 (el 0x
indica un valor hexadecim al).
Router#show version
Cisco Internetwork Operating System Software
IOS (tm) 4000 Software (C4000-J-M), Version 11.2(21), RELEASE
SOFTWARE (fcl)
Copyright (c) 1986-1999 by cisco Systems, Inc.
Compiled W e d 1 5 -Dec-2004 23:15 by ccai
Image text-base: 0x00012000, data-base: 0x00775308
ROM: System Bootstrap, Version 5.2(lla), RELEASE SOFTWARE
ROM: 4000 Bootstrap Software (XX-RXBOOT), Version 10.2(lla), RELEASE
SOFTWARE (fcl)
Router uptime is 43 minutes
System restarted b y power-on
System image file is "c4500-js-l_121-5.bin", booted via flash
cisco 4000 (68030) processor (revision OxCO) with 32768K/16384K
bytes of memory.
Processor board ID 5050181
G.703/El software. Version 1.0.
Bridging software.
SuperLAT software copyright 1990 by Meridian Technology C o r p ) .
X.25 software, Version 2.0, N E T 2 , BFE and GOSIP compliant.
TN327 0 Emulation software.
2 Ethernet/IEEE 802.3 interface(s)
4 Serial network interface(s)
1 FDDI network interface(s)
128K bytes of non-volatile configuration memory.
8192K bytes of processor board System flash (Read/Write)
,
Configuration register is 0x2102

P ara cam biar el cam po de arranque del registro de configuración, se hace
desde el m odo de configuración global, una vez ejecutado el com ando se deberá
reiniciar el router para que el cambio tenga efecto:
Router#configure terminal
R o u t e r (config)#config-register 0x2142

El valor del registro de configuración se ha cam biado a 0x2142, observe el
siguiente show , el registro solo funcionará al reiniciar el router. Tenga en cuenta
que el router preguntará si se desea guardar los cam bios a lo que se deberá
responder Yes con el fin de que quede alm acenada dicha m odificación.

@r a -M A

CAPÍTULO 3. CONFIGURACIÓN IN IC IA L DEL ROU TER

Router#show version
Cisco Internetwork Operating System Software
IOS (tm) 4000 Software (C4000-J-M) , Version 11.2(21),
SOFTWARE (fcl)
Copyright (c) 1986-1999 by cisco Systems, Inc.
Compiled Wed 15-Dec-99 23:15 b y ccai
image text-base: 0x00012000, data-base: 0x00775308

131

RELEASE

ROM: System Bootstrap, Version 5.2 (11a), RELEASE SOFTWARE
ROM: 4000 Bootstrap Software (XX-RXBOOT) , Version 10.2 (11a), RELEASE
SOFTWARE (fcl)
Router uptime is 1 hour, 1 minute
S y s t e m restarted by power-on
S y s t e m image file is "flash:y", booted via flash
cisco 4000 (68030) processor
bytes of memory.

(revision OxCO) with 32768K/16384K

Processor board ID 5050181
G. 703/El software, Version 1.0.
Bridging software.
SuperLAT software copyright 1990 by Meridian Technology C o r p ) .
X.25 software, Version 2.0, N E T 2 , BFE and GOSIP compliant.
TN3270 Emulation software.
2 Ethernet/IEEE 802.3 interface (s)
4 Serial network interface(s)
1 FDDI network interface(s)
128K bytes of non-volatile configuration memory.
8192K bytes of processor board System flash (Read/Write)
Configuration register is 0x2102

(will be 0x2142 at next reload)

'

Router#reload

System configuration has been modified.
Building configuration...

Save?

[yes/no] : yes

[O K ]

Proceded with reload?

[confirm]

Existen gran cantidad de opciones de valores de registros de configuración,
los más importantes a tener en cuenta son los siguientes:
© Para entrar al m odo de m onitor de la R O M , configure com o el valor del
registro de configuración GxnnnO. A rranque el sistem a operativo
m anualm ente. Para ello ejecute el com ando b al estar en pantalla el
indicador del m odo m onitor de la ROM.

132

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICACIÓN CC N A 640-802

O R A -M A

» P ara arrancar usando la prim era im agen en m em oria Flash, o para
arrancar usando el IOS en m em oria ROM (dependiendo de la
plataform a), fije el registro de configuración en Oxnnnl.
• P ara configurar el sistem a de m odo que arranque autom áticam ente
desde la N V R A M , fije el registro de configuración en cualquier valor
entre 0xnmn2 y OxnmnF. El uso de los com andos boot system
alm acenados en la N V R A M es el esquem a p or defecto.

3.16 RECUPERACIÓN DE CONTRASEÑAS
La recuperación de contraseñas le perm ite alcanzar el control
adm inistrativo de su dispositivo si ha perdido u olvidado su contraseña. Para lograr
esto necesita conseguir acceso físico a su router, ingresar sin la contraseña,
restaurar la configuración y restablecer la contraseña con un valor conocido.

3.16.1 Proceso para la recuperación de contraseña
Para routers Cisco:


®
®

serie
serie
serie
serie
serie

2000
2500
3000
4000 con una CPU M otorola 680x0
7000 ejecutando Cisco IOS versión 10.0 o posterior

Siga estos pasos:

Paso 1 - C onecte un term inal o PC con softw are de em ulación de terminal
al puerto de consola del router. A cceda físicam ente al router, apague y
encienda el router.
P aso 2 - Pulse la tecla de interrupción del term inal durante los prim eros 60
del encendido del router. En el caso de H yperterm inal la com binación del
c o sitro l+ p au sa dará la señal de interrupción en el router.
A parecerá el sím bolo > sin nom bre del router. Si no aparece el símbolo, el
term inal no está enviando la señal de interrupción correcta.

Paso 3 - Introduzca el com ando o/r 0x2142 (orden de registro) para
arrancar desde la m em oria Flash e ignorar la N V R A M .

CAPÍTULO 3. CONFIGURACIÓN INICIAL DEL ROUTER.

© RA-MA

133

Paso 4 - En el sím bolo > , introduzca el com ando i (initialize) para reiniciar
el router. Esto hace que el router se re m id e pero ignore la configuración
grabada en la N V RA M .
Paso 5 - Siga los pasos de arranque norm ales. A parecerá el sím bolo
router>.
Paso 6 - La m em oria R A M estará vacía, copie el contenido de la N V R A N
a la RAM. D e esta m anera recuperará la configuración y tam bién la
contraseña no deseada. E l nom bre de router volverá a ser el original.
Router#copy startup-config running-config
MADRID#

Paso 7 - Cam bie la contraseña no deseada por la conocida:
MADRID#configure terminal
MADRID (config)#enable secret Anort

Paso 8 - Guarde su nueva contraseña en la N V R A M , y si fuera necesario
levante adm inistrativam ente las interfaces con el com ando no shutdown:
MADRID#copy running-config startup-config

Paso 9 - Ejecute desde el m odo global el com ando config-register 0x2102.
Paso 10 - Introduzca el com ando reload en el sím bolo del nivel EXEC
privilegiado. R esponda Yes a la pregunta para guardar el registro de
configuración y confirm e el reinicio:
MADRID#reload
System configuration has been modified.
Building c onfiguration...
[OK]
Proceed with reload? [confirm]

Save?

[yes/no]: yes

El router arrancará con la configuración y la contraseña conocida.

134

REDES CISCO: GUÍA D E ESTU D IO P A R A LA CERTIFICACIÓN CC N A 640-802

© R A -M A

Para routers C isco:




serie
serie
serie
serie
serie

1700
2600
4500
7200
7500

Siga estos pasos:
P aso 1 - C onecte un term inal o PC con softw are de em ulación de term inal
al puerto de consola del router. A cceda físicam ente al router, apague y
encienda el router.

Paso 2 - Pulse la tecla de interrupción del term inal durante los prim eros
sesenta segundos del encendido del router. En el caso de Hyperterm inal la
com binación del control+pausa dará la señal de interrupción en el router.
A parecerá el sím bolo rommon>. Si no aparece, el term inal no está
enviando la señal de interrupción correcta. En este caso, com pruebe la
configuración del term inal o del em ulador de term inal.
Paso 3 - Introduzca el com ando confreg 0x2142 en el sím bolo rom m on>
para arrancar desde la m em oria flash e ignorar la N V RA M .

Paso 4 - En el sím bolo rommon> introduzca el com ando reset para
reiniciar el router. Esto hace que el router se reinicie pero ignore la
configuración grabada en la N V RA M .
Paso 5 - Siga los pasos de arranque norm ales. A parecerá el sím bolo
router>.
Paso 6 - La m em oria RA M estará vacía, copie el contenido de la N V R A N
a la RAM . D e esta m anera recuperará la configuración y tam bién la
contraseña no deseada. El nom bre de router volverá a ser el original.
Routerttcopy startup-config running-config
MADRID#

Paso 7 - C am bie la contraseña no deseada p or la conocida:
MADRID#configure terminal

CAPÍTU LO 3. CONFIGURACIÓN IN IC IA L DEL ROU TER

0RA-M A
MADRID

135

(config)ienable secret Anort

P aso 8 - G uarde su nueva contraseña en la N V R A M , y si fuera necesario
levante adm inistrativam ente las interfaces con el com ando no sh u td o w n :
MADRID#copy running-config startup-config

Paso 9 - Introduzca desde el m odo global el com ando config-register
0x2102.
P aso 10 - Introduzca el com ando re lo a d en el sím bolo del nivel EXEC
privilegiado. R esponda Y es a la pregunta para guardar el registro de
configuración y confirme el reinicio:
MADRID#reload
System configuration has been modified.
Building configuration...

Save?

[yes/no]: yes

[OK]
Proceed with reload?

[confirm]

3.17 COMANDOS BOOT SYSTEM
Los com andos boot system especifican el nom bre y la ubicación de la
imagen IOS que se debe cargar.
Router (conf igl #boot ,system flash nomiire_archivo

Indica al router que debe arrancar utilizando la IOS que está ubicada en la
memoria flash.
Router(config)#boot system rom

In d ica al router que debe buscar la IOS en la m em oria R O M .
Router(config)#boot system tftp nombre_archivo

[dirección_servidor]

Indica al router que al arrancar ha de cargar la im agen IO S de un servidor
TFTP.

Si no existen comandos boot system en la configuración, el router carga por
omisión el prim er archivo encontrado en la memoria flash y la ejecuta.

136

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

3.18 PROTOCOLO CDP
El protocolo C D P (Cisco D iscovery Protocol) se utiliza para obtener
inform ación de router y sw itches que están conectados localm ente. El CDP es un
protocolo propietario de Cisco, destinado al descubrim iento de vecinos y es
independiente de los m edios y del protocolo de enrutam iento. Aunque el CDP
solam ente m ostrará inform ación sobre los vecinos conectados de forma directa,
constituye una herram ienta de gran utilidad.
El Protocolo de descubrim iento de Cisco (CDP) es un protocolo de capa 2
que conecta los m edios físicos inferiores con los protocolos de red de las capas
superiores. CDP viene habilitado por defecto en los dispositivos Cisco, los
dispositivos de otras m arcas serán transparentes para el protocolo. CDP envía
actualizaciones por defecto cada 60 segundos y un tiem po de espera antes de dar
p o r caído al vecino (holdtim e) de 180 segundos.
Como se explicó anteriorm ente CDP viene habilitado por defecto, sin
em bargo si fuera necesario configurarlo se ejecuta desde el m odo global:
Router(config)#cdp run

H ay dos form as de deshabilitar CDP, una es en una interfaz específica para
que no funcione particularm ente con las conexiones locales y la otra de forma
general para que no funcione com pletam ente en ninguna interfaz. Las sintaxis
m uestran los respectivos com andos desde nna interfaz y de m odo total.
Router#configure terminal
Router(config)# [número de interfaz]
Router(config-if)#no cdp enable
Router(config)#no cdp run

El ajuste de los tem porizadores se realiza con los siguientes comandos.
Router(config)#cdp timer [segundos]
Router(config)#cdp holdtime [segundos]

La lectura del com ando show cdp neighbors detail es idéntica al show
cdp entry * e incluye la siguiente inform ación b ien detallada:
o
®

®

D irección IP del router vecino.
Inform ación del protocolo.
Plataform a.
Capacidad.

© RA-MA

CAPÍTULO 3. CONFIGURACIÓN IN IC IA L DEL ROUTER


»

137

ID del puerto.
T iem po de espera.
L a ID del dispositivo vecino.
L a interfaz local.

Los siguientes datos se agregan en el CDPv2:
• A dm inistración de nom bres de dominio VTP.
• V LA N nativas.
• Full o half-duplex.

3.18.1 Verificación CDP
• Show cdp neighbors. Para obtener los nom bres y tipos de plataform a
de routers vecinos, nom bres y versión de IOS.
• Show cdp neighbors detail. Para obtener datos d e routers vecinos c o n
m ás detalle.

• Router#show cdp traffic. Para saber el tráfico de C D P en el router.
• Show cdp interface. M uestra el estado de todos las interfaces que
*

tienen activado CDP.

• Router#clear cdp counters. Restaura los contadores a cero.
• Router#clear cdp table. Borra la inform ación contenida en la tabla de
vecinos.
^ Los siguientes com andos pueden utilizarse para m ostrar la versión, la
información de actualización, las tablas y el tráfico:

• show cdp traffic
• show debugging
® debug cdp adjacency
o debug cdp events
• debug cdp ip
« debug cdp packets
• cdp timer
• cdp holdtime
• show cdp

138

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

Ejem plo de un show cdp neighbors:
Router#show cdp neighbors
Capability Codes: R-Router, T-Trans Bridge, B-Sourse
Route Bridge, S-Switch, H-Host, I-IGMP, r-Repeater
DeviceID
Router3
Router4
SWITCH

Local Interfce
Ser0/1
Ser0/0
FASTETO/O

Holdtme
150
142
120

Capablyt Plataform Port ID
R
2600
Ser0/1
R
4500
Serl/0
S
2950
FASTO/5

3.19 DHCP
DHCP (Dynamic Host Control Protocol) desciende del antiguo protocolo
BootP, perm ite a un servidor asignar autom áticam ente a un host direcciones IPv4 y
otros parám etros cuando está iniciándose. D H C P ofrece dos principales ventajas:
• D H C P perm ite que la adm inistración de la red sea m ás fácil y versátil,
evitando asignar m anualm ente el direccionam iento a todos los host,
tarea bastante tediosa y que generalm ente conlleva errores.
• D H C P asigna direcciones IP de m anera tem poral creando un mayor
aprovecham iento del espacio en el direccionam iento.
El proceso D H C P sigue los siguientes pasos:
1. El cliente envía un broadcast preguntando por configuración IP a los
servidores, DHCP discover.
2. C ada servidor en la red responderá con un Offer.
3. El cliente considera todas las ofertas y elije una. A partir de este
m om ento el cliente envía un m ensaje llam ado Request.

4. El servidor responde con un ACK inform ando a su vez que toma
conocim iento que el cliente se queda con esa dirección IP.

5. F inalm ente el cliente envía un ARP request para esa nueva dirección
IP. Si alguien responde, el cliente sabrá que esa dirección está en uso y
que ha sido asignada a otro cliente lo que iniciará el proceso DHCP
nuevam ente. Este paso se llam a Gratuitous ARP.
C uando se detecta un host con una dirección IP 169.254.X.X significa que
no ha podido contactar con el servidor DHCP.

©

CAPÍTULO 3. CONFIGURACIÓN IN IC IA L DEL ROUTER

r A-MA

139

3.20 CONFIGURACIÓN DHCP
3.20.1 Configuración del servidor
Los siguientes pasos describen la configuración de un router ejecutando
IOS como servidor DHCP:
1.

C rear un alm acén (pool) de direcciones asignables a los clientes.

Router(config)# ip dhcp pool nombre del pool

2.

D eterm inar el direccionam iento de red y m áscara para dicho pool.

Router(config-dhcp)# network

3.

C onfigurar el período que el cliente podrá disponer de esta dirección.

Router(config-dhcp)# lease

4.

[dirección IP-máscara]

[tiempo estipulado]

Identificar el servidor DNS.

Router(config-dhcp)# dns-server [dirección. IP]

5.

Identificar la puerta de enlace o gateway.

Router(config-dhcp)# default-router

6.

[dirección IP]

Excluir si es necesario las direcciones que por seguridad o para evitar
conflictos no se necesita que el DHCP otorgue.

Router(config)#ip dhcp excluded-address

[IP inicio-IP fin]

Las direcciones IP son siem pre asignadas en la misma, interfaz que tiene
una IP dentro de ese pool. L a siguiente sintaxis m uestra un ejem plo de
configuración dentro de ese contexto:
Router(config)# interface fastethernet 0/0
Router(config-if)# ip address 192.168.1.1 255.255.255.0
Router(config)# ip dhcp pool 1
Router(config-dhcp)# network 192.168.1.0 /24
Router(config-dhcp)# default-router 192.168.1.1
Router(config-dhcp)# lease 3
Router(config-dhcp)# dns-server 192.168.77.100

140

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

A lgunos dispositivos IOS reciben direccionam iento IP en algunas
interfaces y asignan direcciones IP en otras. P ara estos casos DHCP puede im portar
las opciones y parám etros de una interfaz a otra. El siguiente com ando para
ejecutar esta acción es:
R o u t e r (config-dhcp)# import all

Este com ando es m uy útil cuando se debe configurar DHCP en oficinas
remotas. El router una v ez localizado en su sitio puede determ inar el DNS y las
opciones locales.

3.20.2 Configuración de un DHCP Relay
Un router configurado para dejar pasar los DHCP request es llamado
DHCP Relay. C uando es configurado, el router perm itirá el reenvío de broadcast
que haya sido enviado a un puerto U D P determ inado hacia una localización
remota. El D H C P Relay reenvía los requests y configura la puerta de enlace en el
router local.
R o u t e r (config-if)# ip helper-address

[dirección IP]

3.20.3 Configuración de un cliente DHCP
C onfigurar IOS p ara la opción del D H C P com o cliente es sim ple.
R ou t e r (config)# interface fastethernet0/0
R o u t e r (config-if)# ip address dhcp

Un router puede ser cliente, servidor o am bos a la vez en diferentes
interfaces.

3.21 HERRAMIENTAS DE DIAGNÓSTICO
La correcta utilización de todos los com andos show descritos a lo largo de
todo este libro perm iten diagnosticar fallos de cualquier tipo en la Red. Su buena
lectura y com prensión darán sus frutos a la hora de determ inar y diagnosticar
errores.
El protocolo IC M P (Protocolo de m ensajes de control en Internet),
sum inistra capacidades de control y envío de m ensajes. H erram ientas tales como
ping y trace utilizan IC M P para poder funcionar, enviando un paquete a la
dirección destino específica y esperando una determ inada respuesta.

© RA-MA

CA PÍTU LO 3. CON FIGURACIÓN IN IC IA L D EL ROUTER

141

El com ando ping prueba conectividad de sitio a sitio, en sus dos form as,
básica y extendida, enviando y recibiendo paquetes echo según m uestran las
siguientes sintaxis.
Route r>ping 10.99.60.1
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.99.60.1,

timeout is 2 seconds:

ii i!!
Success

rate is 100 percent

(5/5), round-trip min/avg/max = 1/5/16

ms
router#ping
Protocol [ip] : ip
Target IP address: 10.9 9.60.1
Repeat count [5] : 50
Datagram size [100]: 100
Timeout in seconds [2]: 2
Extended c o m m a n d s [n]: n

Sweep range of sizes

[n]: n

Type escape sequence

to abort.

Sending 50, 100-byte

ICMP Echos to 10.99.60.1,

timeout is 2 seconds:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Success rate is 100 percent
ms

(50/50), round-trip min/avg/max = 1/2/4

La versión extendida del com ando pin g perm ite efectuar variantes tales
como cantidad y tam año de paquetes, tiem po entre cada envío, etc. Es una eficaz
herramienta de pruebas cuando se desea no solo pruebas d e conectividad sino
también de carga.
La siguiente tabla m uestra algunos de los caracteres con los que ping
muestra efectividad o fallos.

Carácter

Descripción

;

Cada signo de exclam ación indica la
recepción de una respuesta.

Cada punto indica agotado el tiem po
esperando por una respuesta.

U

Una PDU hacia el destino resulta
inalcanzable.

142

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CC N A 640-802

Q

Destino m uy congestionado.

?

Tipo de paquete desconocido.

&

Curso de vida de los paquetes se ha
superado.

© RA-M A

El com ando traceroute utiliza el principio de funcionam iento del ping pero
m ostrando e identificando cada salto a lo largo de la ruta. Cuando un paquete echo
reply (ping) no llega a su destino traceroute m ostrará el salto donde dicho paquete
no consigue llegar. En rutas extrem adam ente grandes la traza puede abortarse con
las teclas Ctrl+Shift+6.
routeitraceroute 10.99.60.1
Type escape sequence to abort.
Tracing the route to 10.99.60.1
1 10.93.170.11 0 msec 0 msec 4 msec
2 81.46.16.48 4 msec 0 msec 4 msec
3 10.99.60.1 4 msec 0 msec 0 msec

Desde un router o sw itch es posible acceder a varias sesiones de Telnet a la
yefc, para poder realizar tareas de m onitorización y diagnóstico. Por defecto, los
dispositivos Cisco apuntan al puerto 23, las siguientes sintaxis m uestran esta
similitud.
Router#telnet 10.55.60.1

O lo que es lo m ism o.
R outer#10.55.60.1

Las diferentes sesiones de Telnet abiertas en un router pueden conmutarse
con la secuencia de teclas C trl+ S h ift+ 6 y luego x regresar con 2 veces intro.
El com ando sh o w sessions perm ite ver las sesiones abiertas hacia
dispositivos rem otos, m ientras que el com ando show u se rs m uestra las sesiones
abiertas en el dispositivo local.

CA PÍTU LO 3. CO N FIG U R A CIÓ N INICIAL D EL ROUTER

O RA -M A
Router#

show sessions
Address
192.168.7.21
172.25.12.19

Conn Host

*

143

1 Administ
2 Jefatura

Byte

0
0

Idle
0
0

Conn Name
Administ
Jefatura

Router#show users

*

Line
1 vty 0
2 vty 1

Interface

User

User

Host(s)
idle
idle

Mode

Idle
0 0 :00:00
0 0 : 00:02

Idle

Location
192.168.59.132
192.168.59.156

Peer Address

El com ando clear line desactivará una sesión de T elnet indeseada. D esde
una conexión de consola, puede ejecutarse el com ando disconnet para cancelar una
conexión de un router rem oto.
Una vez realizadas las pruebas ejecute un show ip route para verificar el
contenido en su tabla de enrutam iento de todas las redes afectadas.

3.22 FUNDAMENTOS PARA EL EXAMEN
® R ecuerde los com ponentes principales del router, sus funciones e
im portancia derítro de su arquitectura.
• Estudie y relacione los estándares de W AN con el router.
• M em orice los parám etros de configuración del em ulador de consola
para ingresar por prim era vez al router.
* ® A nalice los pasos de ananque del router, estudie la secuencia y para qué
sirve cada uno de los pasos.
a Fam iliarícese con todos los com andos básicos del router, tenga en
cuenta que le servirán para el resto de las configuraciones m ás adelante.
a R ecuerde los com andos show m ás usados, habitúese a su utilización
para detectar y visualizar incidencias o configuraciones.
® Estudie y analice las propiedades de las distintas interfaces que puede
contener el router, recuerde los pasos a seguir en el proceso de
configuración de cada una de ellas.

144

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

• R ecuerde los com andos necesarios para efectuar copias de seguridad,
los requisitos m ínim os y los pasos para cargar desde diferentes fuentes.
Tenga en cuenta las diferencias entre startup-config y running-config.
® M em orice los térm inos que com ponen el nom bre del Cisco IOS.
® Tenga en cuenta la im portancia del com ando show versión y los
diferentes valores que puede tom ar el registro de configuración.
® R ecuerde los pasos en el proceso de recuperación de contraseñas y para
qué sirve cada uno de ellos. T enga una idea clara de cuáles son los
registros de configuración antes y después de la recuperación.
• R ecuerde la función y com andos del CDP, qué m uestran y para qué se
utilizan.
« C onfigure una topología con D H C P, observe los resultados y analícelos.
® Ejercite todas
sim uladores.

las

configuraciones

en

dispositivos

reales

o

en

® Ejecute pruebas de conectividad con los com andos p in g y trac ero u te,
saque conclusiones.

C ap ítu lo 4

FNRITAMÍFMO BÁSICO
4.1 CONFIGURACIÓN DE ENRUTAMIENTO IP
Para que un dispositivo de capa tres pueda determ inar la ruta hacia un
destino debe tener conocim iento de las diferentes rutas hacia él y cóm o hacerlo. El
aprendizaje y la determ inación de estas rutas se llevan a cabo m ediante u n proceso
de enrutamiento dinám ico a través de cálculos y algoritm os que se ejecutan en la
red o enrutam iento estático ejecutado manualm ente por el adm inistrador o incluso
ambos métodos.

4.1.1 Enrutamiento estático
La configuración de las rutas estáticas se realiza a través del comando de
configuración global de IOS ip route. El comando utiliza varios parám etros, entre
los que se incluyen la dirección de red y la m áscara de red asociada, así com o
información acerca del lugar al que deberían enviarse los paquetes destinados para
dicha red.
La inform ación de destino puede adoptar una de las siguientes formas:
• U na dirección IP específica del siguiente router de la ruta.
® L a dirección de red de otra ruta de la tabla de enrutam iento a la que
deben reenviarse los paquetes.

146

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

• U na interfaz conectada directam ente en la que se encuentra la red de
destino.
Router(config)#ip route[dirección IP de la red destino +
máscara] [IP del primer salto/interfaz de salida] [distancia
administrativa]

Donde:

• dirección IP de la red destimo+máscara: hace referencia a la red a la
que se pretende tener acceso y su conespondiente m áscara de red o
subred. Si el destino es un host específico se debe identificar la red a la
que pertenece dicho host.

• IP del primer salto/interfaz de salida: se debe elegir entre configurar
la IP del próxim o salto (hace referencia a la dirección IP de la interfaz
del siguiente router) o el nom bre de la interfaz del propio router por
donde saldrán los paquetes hacia el destino. Por ejem plo, si el
adm inistrador no conoce o tiene dudas acerca del próxim o salto utilizará
su pro p ia interfaz de salida, de lo contrario es conveniente hacerlo con
la IP del próxim o salto.

• distancia administrativa: parám etro opcional (de 1 a 255) que si no se
configura será igual a 1. Este valor hará que si existen m ás rutas
estática^ o protocolos de ennitam iento configurados en el router cada
uno de estos tendrá m ayor o m enor im portancia según sea el valor de su
distancia adm inistrativa. Cuanto m ás baja, m ayor im portancia.

\

R e d de d e stin o
172.16.0.0

Router_B(config)#ip route 172.16.0.0 255.255.0.0 200.200.10.1 120

© R A -M A

CAPÍTULO 4. EN RU TA M IEN TO BÁSICO

147

La sintaxis que se m uestra apunta a la red 172.16.0.0 saliendo por el
próxim o salto 200.200.10.1 con una distancia adm inistrativa de 120.

R e d de d e s tin o

172.16.0.0

R o u t e r _ B (config) #ip route 172.16.0.0 255.255.0.0

serial

0 120

La sintaxis que se m uestra apunta a la red 172.16.0.0 saliendo por la
interfaz serial 0 del propio router con una distancia adm inistrativa de 120.

4.1.2 Situaciones en las que se aconsejan las rutas estáticas
• U n circuito de datos es especialm ente poco fiable y deja de funcionar
constantem ente. E n estas circunstancias, un protocolo de enrutam iento
dinám ico podrá producir dem asiada inestabilidad, m ientras que las rutas
estáticas no cambian.
• Existe una sola conexión con un solo ISP. En lugar de conocer todas las
rutas globales de Internet, se utiliza una sola ruta estática.
• Se puede acceder a una red a través de una conexión de acceso
telefónico. Dicha red no puede proporcionar las actualizaciones
constantes que requieren un protocolo de enrutam iento dinámico.
® U n cliente o cualquier otra red vinculada no desean intercam biar
inform ación de enrutam iento dinámico. Se puede utilizar una ruta
estática para proporcionar inform ación acerca de la disponibilidad de
dicha red.

148

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M a

4.1.3 Configuración de rutas estáticas por defecto
Cuando el destino al que se pretende llegar son m últiples redes o no se
conocen se pueden crear rutas estáticas por defecto com o lo m uestra la siguiente
sintaxis:
Router(config)#ip route 0.0.0.0 0.0.0.0[IP del primer salto/interfaz
de salida] [distancia administrativa]

Internet

<C

>

Entrada/salida

Router_B(config)#ip route 0.0.0.0 0.0.0.0 serial 0

O bserve que los parám etros de configuración en lugar de una dirección de
red específica de destino se utilizan ceros en los octetos de red y m áscara, el-resto
de los parám etros serán iguales a las rutas estáticas convencionales.

^RECUERDE:

Cuando configure una ruta de red predeterminada, siga estas directrices
importantes:
• Si la inform ación de enrutam iento dinám ico no se intercam bia con la
entidad externa, como un IPS, el uso de una ruta estática suele ser la
forma m ás fácil de generar una ruta predeterm inada.
® Si la inform ación de enrutam iento dinám ico no se intercam bia con uno
o varios IPS, el uso del com ando ip d e fa u lt-n e tw o rk es la form a más
apropiada de designar una o varias rutas de red predeterminadas
posibles.

CAPÍTU LO 4. EN R U T A M IEN T 0 BÁSICO

0 R A-MA

149

• N o es apropiado configurar m ás de u n router de la Intranet con una ru ta
predeterm inada por defecto a m enos que dicho router tenga u n a
conexión a Internet a través de un ISP. Si lo hace puede provocar que
los routers sin conectividad con destinos desconocidos se envíen
paquetes a ellos m ism os, con lo que se produce u n a im posibilidad d e
acceso. L a excepción es aquellos routers que no intercam bian la
inform ación de enrutam iento dinám ico o que tienen solam ente
conexiones ocasionales con la Intranet a través de m edios tales com o
RDSI o SV C de Fram e-Relay.
• Los routers que no intercam bian inform ación de enrutam iento dinám ico
o que se encuentran en conexiones de acceso telefónico, com o RDSI o
SVC de Fram e-Relay, deben configurarse
com o una ruta
predeterm inada por defecto.
® Si una Intranet no está conectada a ninguna red externa, com o Internet,
la configuración de red predeterm inada debe colocarse en uno o varios
routers que se encuentren en el núcleo de la red y que tengan toda la
topología de enrutam iento de red de la Intranet específica.

4.1.4 Configuración de una red de último recurso
El siguiente com ando m uestra la configuración de u n a red de por defecto o
de último recurso:
*
Router (conf ig) #ip
recurso]

default-network [dirección I P

de

la

red

de ultimo

4.2 ENRUTAMIENTO DINÁMICO
Si se diseñasen redes que utilizaran exclusivam ente rutas estáticas sería
tedioso adm inistrarlas y no responderían bien a las interrupciones y a los cam bios
de topología que suelen suceder con cierta frecuencia. P ara responder a estos
problemas se desarrollaron los protocolos de enrutam iento dinám ico.
Los protocolos de enrutam iento dinám ico son algoritm os que perm iten que
los routers publiquen, o anuncien, la existencia de la inform ación de ruta de red IP
necesaria para crear la tabla de enrutam iento. Dichos algoritm os tam bién
determinan el criterio de selección de la ruta que sigue el paquete cuando se le
presenta al router esperando una decisión de conm utar. Los objetivos del protocolo
de enrutam iento consisten en proporcionar al usuario la posibilidad de seleccionar
la ruta idónea en la red, reaccionar con rapidez a los cam bios de la m ism a y realizar

150

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN C C N A 640-802

© R A -M A

dichas tareas de la m anera m ás sencilla y con la m enor sobrecarga del router
posible.
Los protocolos de enrutam iento dinám ico se configuran en un router para
poder describir y adm inistrar dinám icam ente las rutas disponibles en la red.
Para habilitar un protocolo de enrutam iento dinám ico, se han de realizar las
siguientes tareas:
® Seleccionar un protocolo de enrutam iento.
® Seleccionar las redes IP que serán anunciadas.
Tam bién se han de asignar direcciones de red/subred y las m áscaras de
subred apropiadas a las distintas interfaces. El enrutam iento dinám ico utiliza
difusiones y m ultidifusiones para com unicarse con otros routers.
El com ando ro u te r es el encargado de iniciar el proceso de enrutamiento,
posteriorm ente se asocian las redes con el com ando n etw o rk .
router(config) (trouter [protocolo] [ID o sistema autónomo]
router(config-router)#network[número de red directamente conectada]

4.3 INTRODUCCIÓN A RIF
R IP (Protocolo de inform ación de enrutam iento) es uno de los protocolos
de enrutam iento m ás antiguos utilizado por dispositivos basados en IP. Su
im plem entación original fue para el protocolo Xerox a principios de los ochenta.
G anó popularidad cuando se distribuyó con U N IX com o protocolo de enrutamiento
para esa im plem entación TCP/IP. RIP es un protocolo d e v e c to r de d istan cia que
utiliza la cuenta de saltos del router com o m étrica. La cuenta de saltos m áxim a de
RIP es 15. C ualquier ruta que exceda de los 15 saltos se etiqueta com o inalcanzable
al establecerse la cuenta de saltos en 16. En RIP la inform ación de enrutam iento se
propaga de un router a los otros vecinos por m edio de u n a difusión de IP usando el
protocolo U D P y el puerto 520.
El protocolo R IP v l (versión 1) es un protocolo de enrutam iento con clase
que no adm ite la publicación de la inform ación de la m áscara de red. El protocolo
R IP v 2 (versión 2) es un protocolo sin clase que adm ite CIDR, VLSM , resum en de
rutas y seguridad m ediante texto simple y autenticación M D 5.

CAPÍTU LO 4. E N RU TA M IEN TO BÁSICO

151

4.3.1 Características de RIPvl y RIPv2
• RIP es u n protocolo de enrutam iento basado en vectores distancia.
• RIP utiliza el núm ero de saltos como m étrica para la selección de rutas.
• El núm ero m áxim o de saltos permitido en RIP es 15.
• RIP difunde actualizaciones de enrutam iento por m edio de la tabla de
enrutam iento com pleta cada 30 segundos, por om isión.
« RIP puede realizar equilibrado de carga en un m áxim o de seis rutas de
igual coste (la especificación por om isión es de cuatro rutas).
o R IP v l requiere que se use una sola m áscara de red para cada número de
red de clase principal que es anunciado. La m áscara es una m áscara de
subred de longitud fija. El estándar RIP-1 no contem pla actualizaciones
desencadenadas.
• R IP v 2 p ennite m áscaras de subred de longitud variable (VLSM ) en la
interconexión.
El
estándar
R IPv2
perm ite
actualizaciones
desencadenadas, a diferencia de R IP v l. La definición del núm ero
m áxim o de rutas paralelas permitidas en la tabla de enrutam iento faculta
a R IP para llevar a cabo el equilibrado de carga.

4.3.2 Sintaxis de la configuración de RIP
El proceso de configuración de RIP es bastante sim ple, una vez iniciado el
proceso de configuración se deben especificar las redes que participan en el
enrutamiento. Si es necesario la versión y el balanceo de ruta.
Router(config)#router rip
Router(config-router)#network [dirección de red]
Router(config-router)#version [tipo de versión]
Router(config-router)#maximum-paths [número]

Donde:
® N etw o rk : especifica las redes directam ente conectadas al router que
serán anunciadas por RIP.
® V ersión: adopta un valor de 1 o 2 para especificar la versión de RIP que
se v a a utilizar. Si no se especifica la versión, el softw are IOS adopta

152

REDES CISCO : G U ÍA D E ESTUDIO PARA LA CERTIFICACIÓN CC N A 640-802

C; Ra - m a

com o opción predeterm inada el envío de RJP versión 1 pero recibe
actualizaciones de ambas versiones, 1 y 2.
m a x im u m -p a th s (opcional): habilita el equilibrado de carga.

4 NOTA:

RIP no lleva identificadores de proceso ni de sistema autónomo, por lo tanto
no es posible hacer distinciones entre distintos dispositivos.

4.3.3 Redistribución estática en RIP
C uando un sistem a autónomo posee una sola puerta de entrada/salida se
puede configurar una ruta estática o una ruta estática por defecto de m anera que
todos los paquetes que quieran llegar a m últiples redes externas lo hagan por medio
de esa ruta preestablecida. Para que todos los routers contenidos dentro del mismo
sistem a autónom o ten g an conocim iento de la existencia de esa ruta es necesario
redistribuirla dentro del protocolo. Esto se hace con el com ando redistribute

static.

4.4 CASO PRACTICO

4.4.1 Configuración de redistribución estática en RIP
En el ejem plo se h a configurado una ruta estática p o r defecto, que sale a
través de la interfaz Serial 0 del router B. Esta interfaz se ha desactivado de manera
que no transm ita inform ación de protocolo hacia el router D utilizando el comando

passive-interface.

CAPÍTU LO 4. E N R U T A M IEN T O BÁSICO

153

R o u t e r (config)#ip

route 0.0.0.0 0.0.0.0 serialO
rip
R o u t e r (config-router)^network 192.168.1.0
R o u t e r (config-router)ttnetwork 200.200.10.0
R o u t e r (config-router)ttredistribute static
R o u t e r (config-router)#passive-interface serial 0
R o u t e r (config)#router

L a siguiente captura del show ip route del router A m uestra en la ultim a
linea como ha aprendido la ruta estatica por medio de RIP ilustrado por R*, donde
R es RIP y * ruta candidata por defecto.
Kouter_A#show ip route

Codes»: C - c o n n e c t e d , S - static,I - IGRP,R - RIP,M - mobile, B - BGP
D - 3IGF.P,EX - El GRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1,N2 - OSPF N S S A external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, LI - IS-IS level-1, L2 - XS-IS level-2, * candidate default
U - per-user static route, o - ODR
Gateway of last resort is 172.25.1.1 to network 0.0.0.0
C
C
R
R
R*

192.168.1.0/24 is directly connected, EthernetO
200.200.1.0/24 is directly connected, Ethernetl
204.170.0.0/24 [120/5] v i a 172.25.2.1, 00:00:15, SerialO
172.16.0.0/16 [120/8] via 172.25.2.1, 00:00:20, Seriall
0.0.0.0/0 [120/1] via 172.25.2.1, 00:00:02, SerialO.1

154

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CC N A 640-802

© R A -M a

4.5 VERIFICACIÓN DE RIP
El show ip route m uestra una tabla de enrutam iento donde se observan dos
redes directam ente conectadas identificadas con la letra C, y dos aprendidas por
RIP que llevan la letra R.
Router#show ip route
Codes: C - connected,S - static,I - IGRP,R - RIP,M - mobile, B - BGP
D - EIGRP, EX - EIGRP external,O - OSPF, IA - OSPF inter area
NI - OSPF NSSA. external type 1,N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGp
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * candidate default
U - per-user static route, o - ODR
Gateway of last resort is not set
C
C
R
R

192.168.1.0/24
200.2 00.1.0/24
204.170.0.0/24
172.16.0.0/16

is directly connected, EthernetO
is directly connected, Ethernetl
[120/5] v i a 172.25.2.1, 00:00:15, SerialO
[120/8] via 172.25.2.1, 00:00:20, Seriall

La línea:
R

204.170.0.0/24

[120/5] via 172.25.2.1,

00:00:15,

SerialO

Se interpreta de la siguiente manera:
® R: protocolo de enrutam iento, en este caso RIP.
• 204.170.0.0/24: red aprendida.
® [120/5] : distancia adm inistradva/m étrica, en este caso la m étrica son
saltos.
® via 172.25.2.1: cam ino por el cual se ha aprendido.
a 00:00:15: tiem po transcurrido desde la últim a actualización, RIP se
actualiza cada 30 segundos.
® SerialO: interfaz de salida/entrada.

l0r a -M A ________________________________________________ CAPÍTULO 4.

E N R U T A M IEN TO BÁSICO

155

Para ver los procesos que ejecuta RIP utilice el com ando:
debug ip rip

Copia de un show ip pro to co ls:
Routerishow ip protocols
Routing Protocol is "rip"
Sending updates every 3 0 seconds, next due in 7 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filt e r list for all interfaces is not set
Incoming update filt e r list for all interfaces is not set
Redistributing: rip
Default version control: send v e r s i o n 1, receive any version
Interface
Send Recv
Key-chain
Ethernetl
1
Routing for N e t w o r k s :

12

162.168.1.0
200 .2 0 0 .1.0
Routing Information S o u r c e s :
Gateway
Distance
Last Update
200.200.1.1
120
00:00:17
Distance: (default is 120)

4.6 INTRODUCCIÓN A IGRP
IG R P (Protocolo de enrutam iento de gateway interior) es_un protocolo de
vector de distancia m ejorado que fue desarrollado por Cisco System s a m ediados
de los ochenta. Fue diseñado para corregir algunos de los defectos de RIP y para
proporcionar un m ejor soporte para redes grandes con enlaces de diferentes anchos
de banda. IGRP calcula su m étrica en base a diferentes atributos de ruta de red que
puede configurar el usuario, com o el retraso de red, ancho d e banda y el retraso
basados en la velocidad y capacidad relativas de la interfaz. L os atributos de carga
y fiabilidad se calculan según el rendim iento de la interfaz en la gestión de tráfico
real de la red, aunque no están activados de m anera predeterm inada para las
decisiones de enrutam iento.
Como RIP, IGRP utiliza publicaciones IP para com unicar la información
de enrutamiento a los routers vecinos. N o obstante, IGRP está designado como su
propio protocolo de capa de transporte. No depende de UDP o T C P para com unicar
la información de la ruta de red. Como IGRP no tien e m ecanism os de
retroalimentación, funciona de una m anera sim ilar a UDP.
IGRP ofrece tres im portantes m ejoras sobre el protocolo RIP. En prim er
lugar, la m étrica de IG RP puede adm itir una red con un núm ero máximo de 255
saltos de router.

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-MA

E n segundo lugar, la m étrica de IGRP puede distinguir entre los diferentes
tipos de m edios de conexión y los costes asociados a cada uno de ellos. En tercer
lugar, IG R P ofrece una convergencia de funcionalidad enviando la información
sobre cam bios en la re d a m edida que está disponible, en vez de esperar a las horas
program adas con regularidad para la actualización.
IG R P es un protocolo de enrutam iento basado en vectores de distancia, sus
características son:

• Escalabilidad mejorada: enrutam iento en redes m ás grandes, posee un
núm ero m áxim o predeterm inado de 100 saltos, aunque puede ser
configurado con hasta 255 saltos.

* Métrica sofisticada: m étrica com puesta que proporciona una mayor
flexibilidad en la selección de rutas. Se usa el retraso de interconexión y
el ancho d e banda y se pueden incluir otros parám etros como la
fiabilidad, la carga y la M TU.
® S o p o rte d e m ú ltip les ru ta s : IGRP puede m antener hasta un máximo de
seis rutas de coste diferente entre redes de origen y destino. Se pueden
usar varias rutas para aum entar el ancho de banda disponible o para
conseguir redundancia de rutas. IGRP perm ite actualizaciones
desencadenadas.

RECUERDE:
E l térm ino convergencia hace referencia a la capacidad de los rouíers de
poseer la m ism a inform ación de enrutam iento actualizada. Las siglas VLSM son
las de máscara de subred de longitud variable.

L os protocolos vector distancia inundan la red con broadcast de
actualizaciones de enrutamiento.

-

156

CAPITULO 4. E N R U TA M IEN TO BASICO

0R A -M A _

157

•yV,
'V

RECUERDE:

P ro to c o lo

RIP

RIPv2

IGRP

EIGRP

Vector distancia

X

X

X

X

Estado de enlace

IS IS

OSPF

X

X

Resumen
automático de ruta

X

X

X

X

X

Resumen manual
de ruta

X

X

X

X

X

X

X

X

X

X

Soporte VLSM
Propietario de
Cisco

X

X

Convergencia

Lento

Lento

Lento

Muy
rápido

Muy
rápido

Muy
rápido

Distancia
administrativa

120

120

100

90

115

110

30

30

90

Saltos

Saltos

Com­
puesta

Com­
puesta

Coste

Coste

t

Ticüipd dé
actualización
Métrica

4.7 FUNDAMENTOS PARA EL EXAMEN
a Recuerde las condiciones necesarias para la utilización de rutas
estáticas.
® Analice las diferencias entre las rutas estáticas y las rutas estáticas p o r
defecto y cuáles em plear en cada situación.
• Tenga en cuenta las directrices recom endables a la hora de configurar
un enrutam iento estático.

158

REDES CISCO : GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©R A -M A

• Estudie el funcionam iento de R IP vl y RIPv2, com párelos entre ambos
y con otros protocolos de enrutam iento vector distancia.
• M em orice todos los com andos necesarios para la activación de R IP vl y
RIPv2 y su verificación.
• Ejercite todas
sim uladores.

las

configuraciones

en

dispositivos

reales

o en

Capítulo 5

ENRUTAMIENTO AVANZADO
5.1 INTRODUCCIÓN A EIGRP
El protocolo de enrutam iento de gatew ay interior m ejorado E IG R P
(Enchaced Interior Gateway Routing Protoco /) es una versión m ejorada del
protocolo IGRP original desarrollado por Cisco System s.
EIG RP m antiene el‘ m ism o algoritm o de v ecto r d e d ista n c ia y la
información de m étrica original de IGRP; no obstante, se han m ejorado
apreciablemente el tiem po de convergencia y los aspectos relativos a la capacidad
de ampliación. EIG RP e IGRP usan cálculos de m étrica diferentes. EIGRP
multiplica la m étrica de IGRP por u n factor de 256. Esto ocurre porque EIGRP usa
una m étrica que tiene 32 bits de largo, e IGRP u sa una m étrica de 24 bits. L a
información EIG RP puede m ultiplicarse o dividirse por 256 para un intercam bio
fácil con IGRP. IG R P tiene un núm ero de saltos m áxim o de 255. El límite m áxim o
para el núm ero de saltos en EIG RP es 224. Esto es m ás que suficiente para adm itir
grandes redes.
EIG RP ofrece características que no se encontraban en su antecesor, IGRP
como el soporte para V L S M y los resúmenes de ruta. A dem ás, EIGRP ofrece
características que se encuentran en protocolos como OSPF, como las
actualizaciones increm entales parciales y un tiem po de convergencia reducido.
Como en el caso del protocolo IG R P, EIGRP publica la inform ación de la tabla de
enrutamiento solo a los routers vecinos.

160

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CC N A 640-802

© RA-M a

EIGRP m antiene las siguientes tres tablas:
• Tabla de vecinos.
• Tabla de topología.
• Tabla de enrutam iento.
Los routers vecinos se descubren por m edio de u n protocolo H elio sencillo
intercam biado por los routers que pertenecen a la m ism a red física estableciendo
adyacencias. H elio utiliza para intercam biar paquetes de saludo una dirección
m ulticast 224.0.0.10, U na vez descubiertos los routers vecinos, EIG RP utiliza un
protocolo de transporte fiable para garantizar la entrega correcta y ordenada de la
inform ación y las actualizaciones de la tabla de enrutam iento. Un router hace el
seguim iento de sus propias rutas conectadas y, adem ás, de todas las rutas públicas
de los routers vecinos. B asándose en esta inform ación, EIG RP puede seleccionar
eficaz y rápidam ente la ru ta de m enor coste hasta un destino y garantizar que la
ruta no forma parte de un bucle de enrutam iento; esta ruta elegida com o principal
será la llam ada S ucesor.
Al alm acenar la inform ación de enrutam iento de los routers vecinos, el
algoritm o puede determ inar con m ayor rapidez una ruta de sustitución o un sucesor
factible en caso de que haya u n fallo de enlace o cualquier otro evento de
m odificación de la topología.
El saludo y la inform ación de enrutam iento EIG RP son transportados
m ediante el protocolo d e transporte EIGRP. El transporte EIGRP define un
protocolo fiable de publicación, acuse de recibo y petición para garantizar que el
saludo y la inform ación d e enrutam iento se distribuyen adecuadam ente a todos los
routers vecinos.
Cuando existen cam bios de topologías EIG RP recurre a D U A L (algoritmo
de actualización difusa) para conseguir una rápida convergencia entre los routers,
estos alm acenan sus propias tablas de enrutam iento con rutas alternativas (sucesor
factible), si no existiera alguna ruta alternativa, EIG R P recurre a sus routers
vecinos para conseguir inform ación acerca de ese cam ino alternativo.

EIGRP combina las ventajas de los protocolos de estado de enlace con las de
los protocolos de vector de distancia.

CAPÍTULO 5. EN RU TA M IEN TO A V A N ZA D O

gj RA-MA

161

5.1.1 Métricas F.IGRP
EIGRP utiliza una m étrica de enrutam iento com puesta. L a ruta que posea
la métrica m ás baja será considerada la ruta óptima. Las m étricas de EIG RP están
ponderadas m ediante constantes desde K0 hasta K5 que convierten los vectores de
métrica EIGRP en cantidades escalables.
L a m étrica utilizada p o r EIG RP se compone de:
® K l= A n c h o de b a n d a : valor m ínimo de ancho de banda en kbps en la
ruta hacia el destino.
« K 2 = F iab ilid ad : fiabilidad entre el origen y el destino, determ inado por
el intercam bio de m ensajes de actividad expresado e n porcentajes.
• K 3 = R etra so : retraso de interfaz acum ulado a lo largo de la ruta en
m icrosegundos.
• K 4 = C arg a: carga de un enlace entre el origen y el destino. M edido en
bits por segundo es el ancho de banda real de la ruta.
• K 5=M T U : valor de la unidad m áxim a de transm isión de la ruta
expresado en bytes.
La m étrica EIG RP se . calcula en base a las variables resultantes de las
constantes K1 y K3. El v alor m ínim o de ancho de banda se divide por 107
multiplicado por 256, m ientras que el retraso es la sum atoria d e todos los retrasos
de la ruta en m icrosegundos m ultiplicado por 256.

N O TA :

La información de M TV se envía en los mensajes de actualización del
protocolo, sin embargo no se utiliza en e l cálculo de la métrica.

162

REDES CISCO: G U ÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-M A

5.2 CONFIGURACIÓN DE EIGRP
En el proceso de configuración de EIG RP se debe especificar el núm ero de
sistema autónomo (A S) que identificará al conjunto de routers que participan de
ese m ism o protocolo, posteriorm ente asociar las redes o subredes directamente
conectadas, y los parám etros opcionales si así se requiriera.
router (conf ig) ftrouter eigrp [sistema autónomo]
router(config-router)inetwork [dirección de red]
router(config-router)#eigrp log-neighbor-changes
Router(config)#interface [tipo][número]
router(config-if)#bandwidth [kilobits]

En versiones actuales de IOS se puede especificar una w ildcard de tal
m anera que identifique si se trata de una red o subred la que deba anunciarse. En
capítulos posteriores se explica el funcionam iento detallado de las wildcard.
router(config)#router eigrp [sistema autónomo]
router(config-router)#network [dirección de red][wildcard]

Donde:

• router eigrp: especifica com o protocolo de enrutam iento a EIGRP
para un sistem a autónom o, este valor varía de 1 a 65535.
« n e tw q rk r especifica las redes directam ente conectadas al router que
serán anunciadas por EIGRP.
• b a n d w id th : el proceso de enrutam iento utiliza el com ando bandwidth
para calcular la m étrica y es conveniente configurar el com ando para
que coincida con la velocidad de línea de la interfaz.

® log-neighbor-changes:

habilita el registro de los cam bios de
adyacencia de vecinos para m onitorear la estabilidad del sistem a de
enrutam iento y para ayudar a detectar problem as.

Para el caso que desee desactivar el resum en de ruta, por ejem plo al tener
redes discontinuas, p u ed e ejecutar el com ando:
router(config-router)#no auto-summary

CAPÍTULO 5. EN R U T A M IEN T O AVANZADO

Para

163

crear m anualm ente un resumen de ruta puede hacerlo indicando el

AS (sistem a autónom o EIG RP) y la red de resumen:
(config-router)#ip summary-address eigrp
[dirección de red-máscara]

router

[sistema autónomo]

EIGRP se redistribuye automáticamente con otros sistemas autónomos EIGRP
identificando las rutas como EIGRP externo y con IG R P si es el mismo
número de sistema autónomo.

5.2.1 Equilibrado de carga
El equilibrado de carga en los routers con rutas de coste equivalente suele
ser por defecto de un m áxim o de cuatro. El equilibrado puede m odificarse hasta un
máximo de seis rutas. EIG RP puede a su vez equilibrar tráfico por m últiples rutas
con diferentes m étricas utilizando un m ultiplicador de varianza, por defecto el
valor de la varianza es uno equilibrando la carga por costes equivalentes.
*
roater(config)irouter eigrp [sistema autónomo]
router(config-router) ftnetwork [dirección de red]
Router (conf ig-router) #maximum-paths [número máximo]
Router(config-router)#variance [métrica] [nultiplicador]

5.2.2 Ajustes de los temporizadores
*' Los intervalos de helio y hold por defecto m antienen los valores de 5 y 15
segundos respectivam ente. E stos valores pueden m odificarse dentro de las
respectivas interfaces teniendo en cuenta que deben ser iguales para todos los
routers del sistem a autónomo.
Router(config-if)#ip helio-interval eigrp[sistema autónomo]
[segundos]
Router(config-if)#ip hold-time eigrp [sistema autónomo] [segundos]

164

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN C C N A 640-802

© RA-M a

5.2.3 Filtrados de rutas
EIG RP perm ite el filtrado de rutas en las interfaces de m anera entrante o
saliente asociando listas de acceso al protocolo.
Router(config)#routei eigrp [sistema autónomo]
Router(config-router)#distribute-list[número de lista] [in¡out]
[interfaz]

5.2.4 Desactivación de una interfaz EIGRP
Para im pedir que una interfaz envíe publicaciones de enrutam iento EIGRP
se puede desactivar la interfaz dentro del protocolo especificando el tipo y número
de dicha interfaz.
Router(config) itrouter eigrp [sistema autónomo]
Router(config-router)ttpassive-interface [tipo][número]

5.2.5 Redistribución estática en EIGRP
E IG R P redistribuye rutas aprendidas estáticam ente dirigidas hacia un
destino en particular o p o r defecto.
Router(config)#ip route [red destino][gateway|interfaz]
Router(config)#router eigrp [sistema autónomo]
,
Router(config-router)#redistribute static

5.2.6 Configuración de intervalos helio
Los intervalos de saludo y los tiem pos de espera se configuran por interfaz
y no tienen que coincidir con otros routers EIG RP para establecer adyacencias.
Router(config-if)#ip helio-interval eigrp

[número de AS][segundos]

Si cam bia el intervalo de saludo, asegúrese de cam biar tam bién el tiempo
de espera a un valor igual o superior al intervalo de saludo. D e lo contrario, la
adyacencia de vecinos se desactivará después de que haya term inado el tiem po de
espera y antes del próxim o intervalo de saludo.
Router(config-if)#ip hold-time eigrp

[número de AS][segundos]

El v alo r segundos para los intervalos de saludo y de tiem po de espera
puede variar de 1 a 65535.

CAPÍTULO 5. EN RU TA M IEN TO AVANZADO

© r a -m a

165

5.3 AUTENTICACIÓN EIGRP
La
numerarla
configurar
habilitar la

autenticación EIG RP com ienza creando una cadena de claves,
y asociarla con la clave correspondiente. Posteriorm ente se puede
un sistem a seguro de encriptación com o MD5 dentro de la interfaz y
autenticación dentro de la m ism a interfaz.

R o u t e r (config)#key

chain nombre

R o u t e r (config-keychain)#key número
R o u t e r (config-keychain-key)#key-string nombre
R o u t e r (config-keychain-key)#exit
R o u t e r (config-keychain)#exit
R o u t e r (config)#interface

[tipo][número]

R o u t e r (config-if) #ip authentication mode eigrp

[sistema autónomo]

md5
R o u t e r (config-if)#ip a u t h e n t i c a t i o n k e y - c h a i n eigrp
autónomo] nombre de la cadena

[sistema

5.4 CASO PRÁCTICO

5.4.1 Configuración de un AS con EIGRP
— - - -

Madrid(config)#router eigrp 100
Madrid(config-router) tfnetwork 172.16.128 .0 0.0.15. 255
Madrid(config-router)inetwork 172.16.64.0 0.0.15.255
Madrid(config-router)#eigrp log-neighbor-changes
Madrid(config)#interface serial 0/0
Madrid(config-if)#ip address 172.16.128.1 2 55.255.240.0

-

La sintaxis m uestra la configuración de un sistem a autónom o 100 con
E ig r p

-

166

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICACIÓN C C N A 640-802

©

r a -m a

Madrid(config-if)#bandwidth 64
Madrid(config-if)#clock rate 200000
Madrid(config-if)#no shutdown
Madrid(config)Sinterface serial 0/1
Madrid(config-if)#ip address 172.16.64.1 255.255.240.0
Madrid(config-if )#bandwidth 64
Madrid(config-i f )#nc shutdown

5.4.2 Configuración de filtro de ruta EIGRP
En el ejem plo que sigue se han creado dos listas de acceso estándar, la
A C L 10 denegará cualquier inform ación de enrutam iento de la red 192.168.20.0,
m ientras que la ACL 20 enviará inform ación de enrutam iento EIG RP de la red
200.20.20.0. Am bas listas se asocian al protocolo de enrutam iento EIG RP 100.
Router#configure terminal
Router(config)#access-list 10 deny 192.168.50.0 0.0.0.255
Router(config)#access-list 10 permit any
Router(config)#access-list 20 permit 200.20.20.0 0.0.0.255
Router(config)#router eigrp 100
Router(config-router)#distribute-list 10 in Serial 0/0
Router (config-router) jfdistribute-list 20 out Serial 0/1
R o u t e r (config-router)#network 17 2.16.0.0
Router(config-router)Inetwork 192.168.10.0

5.4.3 Configuración de redistribución estática en EIGRP
En el ejem plo se ilustra un router com o única salida y entrada para el
sistem a autónom o 100. L a distribución estática perm ite que todos los routers
im plicados en el m ism o sistem a conozcan la ruta estática com o salida
predeterm inada.

q

CAPÍTULO 5. ENRUTA M IE N TO AVANZADO

rA-M A

Borde

167

(config)#ip route 192.168.0.0 2 55.255.255.0 220.20.20.1 120

B o r d e (config)#router eigrp 100
Borde(config-router)#network 192.168.1.0
B o r d e (config-router)#network 200 .200.10 .0
Borde(config-router)#redistribute static
B o r d e (config-router)#passive-interface serial 0

5.5 VERIFICACIÓN EIGRP
Algunos com andos para la verificación y control E IG R P son:
® show ip route: m uestra la tabla de enrutam iento.

• show ip protocols: m uestra los parám etros todos los protocolos.
• show ip eigrp neighbors: m uestra la inform ación de los vecinos
EIG RP.

• show ip eigrp topology: m uestra la tabla de to pologia EIGRP.
• debug ip eigrp: m uestra la inform ación de los paquetes.
Router#show ip protocols
>
Routing Protocol is "eigrp 1 0 0 "
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight Kl=l, K2 = 0, K3=l, K4=0, K5=0
EIGRP maximum hopcount 100
EIGRP maximum metric variance 1
Redistributing: eigrp 55
Automatic network summarization is in effect
Automatic address summarization:
1 9 2 . 1 6 8 . 2 0 . 0 / 2 4 for LoopbackO, SerialO
192.170.0.0/16 for EthernetO
Summarizing with metric 128256
Maximum path: 4
Routing for Networks:
172.30.0.0
1 9 2 . 1 6 8 . 2 0 .0

Routing Information Sources:
Gateway
Distance
Last Update
172.25.5.1
90
00:01:49
Distance: internal 90 external 1 7 0

168

REDES CISCO: G U ÍA DE ESTUDIO PARA LA C E R TIFICA C IÓ N CCNA 640-802

©RA-M a

Router#show ip route eigrp
D
172.22.0.0/16 [90/2172416] vía 172.25.2.1, 00:00:35, SerialO.l
172.25.0.0/16 is variably subnetted, 6 subnets, 4 masks
D
172.25.25.6/32
[90/2300416] via 172.25.2.1, 00:00:35, SerialO.l
D
172.25.25.1/32
[90/2297856] via 172.25.2.1, 00:00:35, SerialO.l
D
172.25.1.0/24 [90/2172416] via 172.25.2.1, 00:00:35, SerialO.l
D
172.25.0.0/16 is a summary, 00:03:10, NullO
D
10.0.0.0/8 [90/4357120] via 172.25.2.1, 00:00:35, SerialO.l

*Observe la m étrica en [90/4357120]
^D istancia adm inistrativa en [90/4357120]

5.6 INTRODUCCIÓN A OSFF
El protocolo O S P F , Prim ero la ruta libre m ás corta (Open Shortest Path
First) fue creado a finales de los ochenta. Se diseñó p ara cubrir las necesidades de
las grandes redes IP que otros protocolos com o RIP no podían soportar, incluyendo
V LSM , autenticación de origen de ruta, convergencia rápida, etiquetado de rutas
conocidas m ediante protocolos de enrutam iento externo y publicaciones de ruta de
m ultidifusión. El protocolo OSPF versión 2 es la im plem entación más actualizada,
aparece especificado en la RFC 2328.
OSPF funciona dividiendo una Intranet o un sistem a autónom o en unidades
jerárquicas de m enor tam año. C ada una de estaá áreas se enlaza a un área backbone
m ediante un router fronterizo. Todos los paquetes enviados desde una dirección de
una estación de trabajo de un área a otra de un área diferente atraviesan el área
backbone, independientem ente de la existencia de una conexión directa entre las
dos áreas. A unque es posible el funcionam iento de una red OSPF únicam ente con
el área backbone, OSPF escala bien cuando la red se subdivide en un núm ero de
áreas m ás pequeñas.
OSPF es un protocolo de enrutam iento por estado de enlace que a
diferencia de RIP e IG R P que publican sus rutas solo a routers vecinos, los routers
OSPF envían publicaciones del estado de enlace L S A (Link-State Advertisment) a
todos los routers pertenecientes a la m ism a área jerárq u ica m ediante una
m ultidifusión de IP. L a L S A contiene inform ación sobre las interfaces conectadas,
la m étrica utilizada y otros datos adicionales necesarios para calcular las bases de
datos de la ruta y la topología de red. Los routers OSPF acum ulan información
sobre el estado de enlace y ejecutan el algoritm o S P F (que tam bién se conoce con
el nom bre de su creador, D ijkstra) para calcular la ruta m ás corta a cada nodo.

© RA-MA

CAPÍTULO 5. E N R U TA M IEN TO AVANZADO

169

Para determ inar qué interfaces reciben las publicaciones de estado de
enlace, los routers ejecutan el protocolo OSPF Helio. Los routers vecinos
intercambian m ensajes helio p ara determ inar qué otros routers existen en una
determinada interfaz y sirven com o mensajes de actividad que indican la
accesibilidad de dichos routers.
Cuando se detecta un router vecino, se intercam bia inform ación de
topología OSPF. Cuando los routers están sincronizados, se dice que han form ado
una adyacencia.
Las LSA se envían y reciben solo en adyacencias. La inform ación d e la
LSA se transporta en paquetes m ediante la capa de transporte OSPF que define un
proceso fiable de publicación, acuse de recibo y petición p ara garantizar que la
información de la LSA se distribuye adecuadamente a todos los routers de un área.
Existen cuatro tipos de LSA. Los tipos más comunes son los que publican
información sobre los enlaces de red conectados de un router y los que publican las
redes disponibles ñiera de las áreas OSPF.
La m étrica de enrutam iento de OSPF es el coste que se calcula en base al
ancho de banda de la interfaz y es confígurable por parte del usuario.
La fórm ula para calcular el coste es:
108
A ncho de b an d a

5.6.1 OSPF en una topología mwltiacceso con difusión
Dado que el enrutam iento OSPF depende del estado de enlace entre dos
routers, los vecinos deben reconocerse entre sí para com partir inform ación. E ste
procéso se hace por m edio del protocolo Helio.
Los paquetes se envían cada 10 segundos (form a predeterm inada)
utilizando la dirección de m ultidifusión 224.0.0.5. Para declarar a un vecino caído
el router espera cuatro veces el tiem po del intervalo Helio (intervalo D ead).
Los routers de un entorno m ultiacceso, com o un entorno Ethernet, deben
elegir un router designado (D R ) y un router designado de reserva (B D R ) para que
representen a la red.
Un DR lleva a cabo tareas de envío y sincronización. El B D R solo actuará
si el D R falla. Cada router debe establecer una adyacencia con el D R y el BDR.

170

REDES CISCO: G U ÍA D E ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

Router
Designado

de reserva
Router ID

200 . 200 . 110.220

En redes con difusión se lleva a cabo la elección de DR y BDR

NOTA:

Un rouier se ve a s í mismo listado en un paquete Helio que recibe de un
vecino.

5.6.2 Elección del router designado
La elección de un router designado (DR) y un router designado de reserva
(BD R) en una topología m ultiacceso con difusión cum ple los siguientes requisitos:
• El router con el valor de prioridad m ás alto es el router designado D R .
• El router con el segundo valor es el router designado de reserva BDR.
• El v alor predeterm inado de la prioridad OSPF de la interfaz es 1. Un
router con prioridad 0 no es elegible. E n caso de em pate se usa el ID de
router.
9

ID de router. Este núm ero de 32 bits identifica únicam ente al router
dentro de un sistem a autónom o. La dirección IP m ás alta de una interfaz
activa se elige por defecto.

CAPÍTULO 5. EN RU TA M IEN TO AVANZADO

o RA-M A

171

5.6.3 OSPF en una topología NBMA
Las redes NBMA son aquellas que soportan más de dos routers pero que
no tienen capacidad de difusión. Fram e-Relay, ATM , X .25 son algunos ejem plos
de redes NBM A. La selección del D R se convierte en un tem a im portante ya q u e el
£)R y el BD R deben tener conectividad física total .con todos los routers de la red.
Router Designado
Router ID

200.200.110.224

Router Designado
de reserva
Router ID

Router ID

2 0 0 . 2 0 0 . 110.220

200.200.110.192

Router ID

¿

200.200.110.205

OSPF en redes NBM: debe existir conectividad entre todos los routers

5.6.4 OSPF en una topología punto a punto
E n redes punto a punto el router detecta dinám icam ente a sus vecinos
enviando paquetes Helio con la dirección de m ultidifusión 224.0.0.5. No se lleva a

cabo elección y no existe concepto de DR o BDR.
Los intervalos H elio y D ead son de 10 y 40 segundos respectivam ente.

OSPF en redes punto a punto:
no hay elección de DR ni BDR.

172

REDES CISCO: GUÍA D E ESTUDIO PARA LA C E R T IFIC A C IÓ N CCNA 640-802

O R A -M A

5.6,5 M antenim iento de la inform ación de enrutam iento
Paso 1 - U n router advierte un cam bio de estado de un enlace y hace una
m ultidifusión de un paquete LSU (actualización de estado de enlace) con la
IP 224.0.0.6.
Paso 2 - El DR acusa recepción e inunda la red con la LSU utilizando la
dirección de m ultidifusión 224.0.0.5.

Paso 3 - Si se conecta un router con otra red, reenviará la LSU al DR de
dicha red.

Paso 4 - C uando un router recibe la L S U que incluye la LSA (publicación
de estado de enlace) diferente, cam biará su base de datos.

5.7 CONFIGURACIÓN DE OSPF EN UNA SOLA ÁREA
H abilitar OSPF por medio del com ando:
Router(config)#router ospf número de proceso
Router(config-router)#network dirección wildcard area área

Donde:

• Número d e pnwesn: es el núm ero que se usa internam ente para
identificar si existen m últiples procesos OSPF en ejecución dentro del
router.

• Network: identifica las redes directam ente conectadas, identificadas por
medio de su correspondiente m áscara de wildcard.

® Area: p ara cada red, deberá identificar además a qué área pertenece. El
área principal o de Backbone es el área 0.

5.7.1 A dm inistración de la selección del DR y BDR
La elección del D R y del D B R puede m anipularse acorde a las necesidades
existentes variando los valores de la prioridad dentro de la interfaz o subinterfaz
que participe en el dom inio OSPF (rango de 1 a 65535).
Router#configure terminal
Router(config)#interface [tipo][número]
Router(config-if)#ip ospf priority [1-65535]

CAPÍTULO 5. ENRUTAM IENTO AVANZADO

©RA-M A

173

E sta decisión puede aplicarse tam bién con la creación de una interfaz de
Loopback cuyo valor se tendrá en cuenta como prioritario al m om ento de definir el
ID del router.

Router
R o u t e r

(config)#interface loopback [número]
(conf ig-if) #ip address [dirección IP-máscaréi]

_"0~RFCUERDE:

Para la configuración de OSPF, las interfaces que participan del proceso
deben estar configuradas y activas previamente.

.

5 7.2 Cálculo del coste del enlace
El coste se calcula usando la fórmula 108/bandw idth, donde el ancho de
banda se expresa en bps. El C isco IOS determ ina autom áticam ente el coste
basándose en el ancho de banda de la interfaz.
Para m odificar el ancho de banda sobre la interfaz utilice el siguiente
comando:
Router(config)#interface serial 0/0
Router(config-if)#bandwidth 64

U se el siguiente com ando de configuración de interfaz para cam biar el
coste del enlace:
Router (conf ig-if)#ip ospf cost nunuber
«5-

5.7.3 Autenticación OSPF
Para crear una contraseña de autenticación en texto sim ple utilice el
siguiente com ando dentro de la interfaz:
Router(config-if)#ip ospf authentication-key contraseña

Para establecer un nivel de encriptación en la contraseña de autenticación
puede utilizarse el siguiente com ando dentro de la interfaz:
Router(config-if)#ip ospf message-digest-key
[tipo de encriptación]

[identificador] md5

174

REDES CISCO : GUÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

Router(config)#router ospf
Router(config-router)#area
Router(config-router)#area

© R A -M A

[número de proceso]
[número] authentication
[número] authentication message-digest

5.7.4 Administración del protocolo Helio
De m anera predeterm inada, los paquetes de saludo OSPF (H elio) se envían
cada 10 segundos en segm entos m ultiacceso y punto a punto, y cada 30 segundos
en segm entos m ultiacceso sin broadcast (NBM A).
El intervalo m uerto (Dead) es el período, expresado en segundos, que el
router esperará para recibir un paquete de saludo antes de declarar al vecino
desactivado. Cisco utiliza de form a predeterm inada cuatro veces el intervalo de
Helio. E n el caso de los segm entos m ultiacceso y punto a punto, dicho período es
de 40 segundos. En el caso de las redes N B M A , el intervalo m uerto es de 120
segundos.
Para configurar los intervalos de H elio y de D ead en una interfaz se deben
utilizar los siguientes com andos:
Router(contig-if)#ip ospf hello-interval [segundos]
Router(config-if)#ip ospf dead-interval [segundos]

5.8 QSPF EN MÚLTIPLES ÁREAS
La capacidad de OSPF de separar una gran red en diferentes áreas más
pequeñas se denom ina enrutam iento jerárquico. E sta red jerárquica perm ite dividir
un AS (sistem a autónom o) en redes más pequeñas llam adas áreas que se conectan
al área 0 o á r e a de b ac k b o n e. Las actualizaciones de enrutam iento interno como
el recálculo de la base de datos se producen dentro de cada área, es decir que si por
ejem plo una interfaz se tom a inestable el recálculo se circunscribe a su área sin
afectar al resto. Esta tarea hace que los cálculos S P F solo incluyan al área en
cuestión sin que esto afecte a las demás áreas.
Las actualizaciones de estado de enlace L S U pueden publicar rutas
resum idas entre áreas en lugar de una por red. La inform ación de enrutamiento
entre áreas puede ser filtrada haciendo m ás selectivo y eficaz el enrutamiento
dinám ico.

©RA-M A

CAPÍTULO 5. EN R U T A M IEN T O AVANZADO

175

5.9 CASO PRACTICO

5.9.1 Configuración de OSPF en una sola área
En el ejem plo se m uestra la sintaxis de la configuración dé O S P F 100 en
un router (RouterDR).

RouterDR (conf ig) ttrouter ospf 100
RouterDR (conf ig-router) #network 192.168.0.0 0.0.0^255 area 0
RouterDR(config-router)#network 192.170.0.0 0.0.0.255 area 0
RouterDR (config-router) #network 192.178.0.0 0.0.0.255 area 0
RouterDR(config-if)#exit
RouterDR(config) #interface loopback 1
RouterDR(config-if)#ip address 200.200.10.10 255.255.255.0
RouterDR(config-if)#exit
RouterDR(config)#interface ethernet 0/0
RouterDR(config-if)#ip address 192.168.0.2 255.255.255.0
RouterDR(config-if) #no shutdown
RouterDR(conf ig-if) #ip ospf priority 2
RouterDR (config-if )#bandwidth 64
RouterDR(config-if ) #ip ospf cost 10
RouterDR(config-if)#ip ospf message-digest-key 1 md5 AlaKran
RouterDR(config-if )#ip ospf hello-interval 20
RouterDR(config-if)#ip ospf dead-interval 50
RouterDR(config-if) #exit
RouterDR(config)#router ospf 100
RouterDR(config-router)#area 0 authentication
RouterDR(config-router)#area 0 authentication message-digest

176

REDES CISCO: GUÍA DE ESTU D IO PA RA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

5.9.2 Corafígisracióe de OSPF en múltiples áreas
La sintaxis m uestra la configuración básica de OSPF 200 en dos áreas.

OSPF 200
Área 1

OSPF 200

Á re a 0
R o u t e r D R (config)#interface ethernet 0/0
RouterDR(config-if)#ip address 172.18.0.1 255.255.0.0
RouterDR(config-if)#no shutdown
Rou t e r D R (config)#interface ethernet 0/1
RouterDR(config-if)#ip address 201.110.10.4 255.255.255.0
RouterDR (config -if) #no -shutdown
..
- *RouterDR(config)#router ospf 200
RouterDR(config-router)#network 201.110.10.4 0.0.0.255 area 0
RouterDR(config-router)#network 172.18.0.0 0.0.255.255 area 1
RouterDR(config-if)#exit

En principio, el router intentará utilizar un ID buscando interfaces
virtuales o loopback, si no encuentra configuración de las mismas lo hará con la
interfaz física con la dirección IP más alta.
Los valores de los intervalos de Helio y de D ead deben coincidir en los
router adyacentes para que O SP F fu n cio n e correctamente.
A nte la posibilidad de flapping los routers esperan unos instantes antes
de recalcular su tabla de enrutamiento.

o RA-MA

CAPÍTULO 5. ENRU TA M IEN TO AVANZADO

177

5.10 VERIFICACIÓN OSPF
A lgunos com andos para la verificación y control O SPF son:

• show ip route: m uestra la tabla de enrutam iento.
• show ip protocols: m uestra los parám etros del protocolo.
• show ip ospf neighbors: m uestra la inform ación de los vecinos OSPF.
• debug ip ospf events: m uestra adyacencias, DR, inundaciones, etc.
® debug ip ospf packet: m uestra la inform ación de los paquetes.
• debug ip ospf helio: m uestra las actualizaciones H elio.

Router # s h o w ip p rotocols

Routing Protocol is "ospf 100"
O u t g o i n g u p d a t e filter list for all i n terfaces is not set
Inco m i n g u p d a t e filter list for all interfaces is not set
Router ID 2 00.200.10.10

It is an area border and autonomous system boundary router
Redistributing External Routes from.
Number of areas in this router is 3. 3 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
192.168.0.0
0.0.0.255 area
192.170.0.0
0.0.0.255 area
*192.178.0.0
0.0.0.255 area

0
0
0

Routing Information Sources:
Gateway
Distance
192.168.0.1
110
192.170.0.26
110
122.178.0.1
110

Last Update
00:01:30
16:44:07
00:01:30

Distance:

(default is 110)

178

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CC N A 640-802

© R A -M A

5.11 FUNDAMENTOS PARA EL EXAMEN
• Recuerde los conceptos fundam entales sobre el tipo de protocolo que es
EIGRP, su funcionam iento, tipos de tablas que utiliza y topologías.
• Analice el funcionam iento de D U A L y cóm o descubre las rutas.
• Estudie las m étricas utilizadas p o r EIGRP, cuáles son las constantes y
cómo funcionan y las que lo hacen por defecto.
• Estudie todos los com andos com pletos utilizados para la configuración
de EIG RP, incluidos los de verificación de funcionam iento.
• M em orice los conceptos fundam entales sobre el tipo de protocolo que
es OSPF, su funcionam iento y los tipos de tablas que utiliza.
• Recuerde las diferentes topologías sobre las que puede funcionar OSPF,
en qué caso existe elección de D R y B D R y cóm o se hace tal elección.
• Analice la m étrica y elección de ruta de O SPF.
• Estudie todos los com andos com pletos utilizados para la configuración
de OSPF, incluidos los de verificación de funcionam iento.
• Tenga un concepto claro del funcionam iento de O SPF en m últiples
áreas.
• Ejercite todas
sim uladores.

las

configuraciones

en

dispositivos

reales

o

en

C a p í t u lo 6

REDES INALAMBRICAS
6.1 CONCEPTOS BÁSICOS SOBRE WLAN
La utilización de las W L A N (W ireless LA N ) es hoy en día de uso
frecuente y cada vez m ás veloz, eficaz y seguro. El funcionam iento de las W LAN
es sim ilar en m uchos aspectos al de las LAN tradicionales. L a norm a IEEE 802.3
establece el estándar para las redes LAN m ientras que el IEEE 802.11 lo hace para
la familia de redes inalám bricas^ A m bas definen, entre otras cosas, el form ato d e la
irania que se diferencia en que las W LAN no usan una tram a estándar 802.3. P er lo
tanto, el térm ino E thernet inalám brica puede resultar engañoso al ser básicam ente
diferentes. En el caso de las direcciones MAC es de 6 B ytes (48 bits) para los dos
tipos de estándares. L a diferencia m ás grande entre los dos m étodos es la
posibilidad de transm itir datos sin necesidad de cableado, aunque esto puede estar
limitado al espacio aéreo si existen objetos que puedan interferir con las ondas de
radiofrecuencia.
Ethernet puede transm itir de forma full-duplex sim plem ente si un
ordenador se encuentra directam ente conectado a un puerto de un sw itch, creando
así su propio dom inio de colisión. Sin em bargo, com o se detalló en capítulos
anteriores, si el m edio es com partido, Ethernet posee herram ientas para detectar
colisiones y elaborar m ecanism os para solucionar tal efecto perjudicial. El
CSM A /CD perm ite a los dispositivos escuchar antes de transm itir o generar un
algoritmo de espera ante colisiones en el m edio com partido. D ebido a que la
radiofrecuencia (RF) es un m edio com partido, se pueden producir colisiones d e la
misma m anera que se producen en un m edio com partido cableado. L a principal
diferencia es que no existe u n m étodo por el que un nodo origen pueda detectar que

180

R E D E S CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

©R A -M A

ha ocurrido una colisión. Por eso, las W LA N utilizan A cceso M últiple con
D etección de Portadora/C arrier y Prevención de C olisiones (CSM A7CA) similar en
su funcionam iento al C SM A /C D de Ethernet.
La finalidad de este libro no es profundizar más allá de los conceptos
básicos, estándares y m étodos de seguridad.

6.2 E S T Á N D A R E S W L A N
El estándar IEEE 802.11 es un protocolo de com unicaciones que define el
uso de las dos capas inferiores del m odelo OSI (capas física y de enlace de datos),
especificando sus norm as de funcionam iento para una red inalám brica (WLAN).
La tecnología clave que contiene el estándar 802.11 es el Espectro de Dispersión de
Secuencia D irecta (D SSS). El DSSS se aplica a los dispositivos inalám bricos que
operan dentro de u n intervalo de 1 a 2 M bps. U n sistem a de D SSS puede transmitir
hasta 11 M bps, pero si o p era por encim a de los 2 M bps se considera que no cumple
con la norm a.

Imagen típica de las WLAN en cada tipo de red
y sus tecnologías

6 .2 .1 8 0 2 .1 1 b
802.11b tam bién recibe el nombre de W i-Fi o inalám brico de alta
velocidad y se refiere a los sistem as DSSS que operan a 1, 2; 5,5 y 11 M bps. Todos

© RA-MA

CAPÍTULO 6. R E D E S INALÁM BRICAS 181

los sistem as 802.1 Ib cum plen con la norm a de forma retrospectiva, ya que tam bién
son com patibles con 802.11 para velocidades de transm isión de datos de 1 y 2
Ivíbps solo para DSSS. Esta com patibilidad retrospectiva es de sum a im portancia
ya que perm ite la actualización de la red inalám brica sin reem plazar las N IC o los
puntos de acceso.
Los dispositivos de 802.11b logran un m ayor índice de tasa de
transferencia de datos y a que utilizan una técnica de codificación diferente a la del
802.11, perm itiendo la transferencia de una mayor cantidad de datos en la m ism a
cantidad de tiem po. La m ayoría de los dispositivos 802.11b todavía no alcanzan
tasa de transferencia de 11 Mbps y, p o r lo general, trabajan en u n intervalo de 2 a 4
Mbps.

6.2.2 8 0 2 .1 1 a
802.11a abarca los dispositivos W LAN que operan en la banda d e
transmisión de 5 GHz. El uso del rango de 5 GHz no perm ite la interoperabilidad
de los dispositivos 802.11b ya que estos operan dentro de los 2,4 GHz. 802.11a
puede proporcionar una tasa de transferencia de datos de 54 M bps y con una
tecnología propietaria que se conoce como duplicación de la velocidad h a
alcanzado los 108 Mbps. En las redes de producción, la velocidad estándar es de
20-26 M bps.

6.2.3 8 0 2 .l i g
802.1 lg ofrece tasa de transferencia igual que 802.11a pero con
compatibilidad retrospectiva para los dispositivos 802.1 Ib utilizando tecnología d e
modulación por M ultiplexión por D ivisión de Frecuencia O rtogonal (OFDM ).
Cisco ha desarrollado un punto de acceso que permite que los dispositivos 802.1 Ib
y 802.11a coexistan en la m ism a W LA N . El punto de acceso brinda servicios d e
gateway que perm iten que estos dispositivos, que de o tra m anera serían
incompatibles, se comuniquen.

6.2.4 8 0 2 .l i e
A diferencia de las otras versiones de Wi-Fi, 802.1 l n puede trabajar en dos
bandas de frecuencias: 2,4 GHz (la que emplean 802.11b y 802.1 lg ) y 5 GHz (la
que usa 802.11a). Gracias a ello, 802.l l n es compatible con dispositivos basados
en todas las ediciones anteriores de W i-Fi. Además, es útil que trabaje en la banda
de 5 GHz, ya que está m enos congestionada y en 802.1 ln perm ite alcanzar u n
mayor rendim iento. Ofrece una velocidad teórica m áxim a de 248 Mbps.

182

REDES CISCO: GUÍA DE ESTUDIO PA RA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

6 .2 .5 A lia n z a W i-F i
La alianza W i-Fi es una asociación internacional sin ánim o de lucro,
form ada en 1999, para certificar interoperabilidad entre productos W LA N basados
en la especificación IE E E 802.11. El logotipo W i-Fi CERTIFIED viene de la
alianza W i-Fi e indica que el producto ha cum plido con rigurosas pruebas, de
interoperabilidad, para asegurar que aquellos de diferentes proveedores operen de
m anera adecuada en conjunto. Otra de las actividades de esta alianza involucra el
trabajo activo en la creación de nuevos y m ás robustos estándares de seguridad.

6.3 F U N C I O N A M I E N T O Y D IS P O S I T I V O S W L A N
Una red inalám brica puede constar de tan solo dos dispositivos. Los nodos
pueden ser sim ples estaciones de trabajo de escritorio o portátiles. Equipada con
N IC inalám bricas, se puede establecer una red del tipo “ad-hoc” com parable a una
red cableada p ar a p ar o punto a punto. A m bos dispositivos funcionan como
servidores y clientes en este entorno. Aunque brinda conectividad, la seguridad es
m ínim a, al igual que la tasa de transferencia.

/•

\

\

\\

/

/

En una red no siempre los dispositivos pueden ser totalmente inalámbricos

©RA-M A

CAPÍTULO 6. RED ES INALÁM BRICAS

183

Para resolver posibles problem as de com patibilidad y m ejorar operatividad,
se suele instalar u n punto de acceso (AP) para que actúc com o hub central dentro
de la infraestructura de la W LAN. El AP se conecta m ediante cableado a la L A N
tradicional a fin de proporcionar acceso a Internet y conectividad a la red cableada.
Los A P están equipados con antenas y brindan conectividad inalám brica a un área
específica que recibe el nom bre de celda. Según la com posición estructural del
lugar donde se instaló el AP y del tam año y ganancia de las antenas, el tamaño de
la celda puede variar enormem ente. P ara brindar servicio a áreas más extensas, es
posible instalar m últiples puntos de acceso con cierto grado de superposición. E sta
superposición perm ite pasar de una celda a otra (ro am in g ). Esto es m uy parecido a
los servicios que brindan las em presas de teléfonos m óviles. La superposición, en
redes con m últiples puntos de acceso, es fundamental para perm itir el m ovim iento
de los dispositivos dentro de la W LAN.
Cuando se activa un cliente dentro de la W LA N , la red com enzará a
escuchar para ver si hay un dispositivo com patible con el cual asociarse. Esto se
conoce como escaneo y puede ser activo o pasivo.
El escaneo activo hace que se envíe un pedido de sondeo desde el nodo
inalámbrico que busca conectarse a la red. Este pedido d e sondeo incluirá el
Identificador del Servicio (SSID) de la red a la que se desea conectar. Cuando se
encuentra un AP con el m ismo S S ID , el AP emite una respuesta de sondeo. Se
completan los pasos de autenticación y asociación.
Los nodos de ' escaneo pasivo esperan las tram as de adm inistración
(beacons) que son transm itidas por el AP (modo de infraestructura) o nodos pares
(ad-hoc). Cuando un nodo recibe un beacon que contiene el SSID de la red a la que
se está tratando de conectar, se realiza un intento de conexión a la red. El escaneo
pasivo es un proceso continuo y los nodos pueden asociarse o desasociarse de los
AP con los cam bios en la potencia de la señal.
Una vez establecida la conectividad con la W LAN, u n nodo transm itirá las
tramas de igual form a que en cualquier otra red 802. C uando un nodo fuente envía
una trama, el nodo receptor devuelve un acuse de recibo positivo (ACK). Esto
puede consum ir un 50% del ancho de banda disponible. E ste gasto, al combinarse
con el del protocolo de prevención de colisiones, reduce la tasa de transferencia de
datos a casi un 50% de su valor real. El rendim iento de la red tam bién estará
afectado por la potencia de la señal y por la degradación de la calidad de la señal
debido a la distancia o interferencia.

184

REDES CISCO: GUÍA D E ESTUDIO PARA L A CERTIFICA C IÓ N CC N A 640-802

©

r a -m a

6.4 R A D I O F R E C U E N C I A E N W L A N
M uchas com unicaciones de W LA N ocurren dentro de la banda de 2,4 GHz
com prendido en un rango de 2,412 a 2,484 GHz; m ientras que otras utilizan una
banda de 5 G H z en un rango de 5,150 a 5,825 GHz.
El principio de la m odulación W LA N es em paquetar tantos datos como
sean posibles dentro de una señal y de esa m anera m inim izar las posibles pérdidas
por interferencias o ruidos. Cuando los datos se pierden deben ser retransmitidos
utilizando m ás recursos.
A unque el receptor espera encontrar la portadora en una frecuencia fija, la
m odulación hace que la portadora varíe cada cierto tiem po. Esta variación de la
frecuencia de la portadora se llam a canal, a la que se hace referencia con un tipo de
num eración. Los canales W LA N están definidos en el estándar 802.11.
Las características de una señal de RF pueden variar según el m edio que
atraviesa, por interferencias electrom agnéticas, ruidos, señales de otras RF,
teléfonos inalám bricos, m icroondas, etc. Algunas otras causas son las siguientes:
®

R eflexión: la RF viaja a través del aire com o u n a onda, si se encontrase
con un m aterial reflectivo la señal puede ser reflejada o rebotada.

®

R efracc ió n : cuando la señal RF atraviesa cuerpos de diferentes densidades
puede ser refractada, reduciendo la calidad y la velocidad de la onda.

©RA-M A

CAPÍTULO 6. REDES INALÁM BRICAS

185

A bsorción: cuando una señal 'de RF atraviesa un m aterial que pueda
absorber su energía la señal será atenuada; cuanto más denso sea el
m aterial más atenuación sufrirá la señal.

ooooooood;:

OQCCOOOQO

*

D ispersión: cuando la señal RF se topa con un m edio m uy denso o
irregular puede dispersarse en diferentes direcciones.

®

D ifracción: cuando la señal de RF se topa con u n objeto que puede
interrum pir o absorber intensidad podría crear una zona m uerta en la
cobertura.

®

Z o n as de F resn el: uno de los factores que influyen en una señal de radio
es la distancia que debe sortear hasta el destino. Técnicam ente la zona
Fresnel es el volum en de espacio entre em isor y receptor de RF, de m anera
que el desfase entre las ondas en dicho volum en no supere los 180°.

186

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-M a

Algunos de los factores que se deben tener en cuenta en las zonas Fresnel
pueden ser:

U tilización de antenas correctas.

A usencia de condiciones clim atológicas adversas.

V isión directa.

®

A ltura correcta de las antenas.

6.4.1 M e d ic ió n de la se ñ a l d e r a d io fr e c u e n c ia
U na señal de RF puede ser m edida en función de su potencia o energía en
unidades de W atts (W ) o m iliwatt, que es una m ilésim a parte de un W att. Por
ejemplo, un teléfono m óvil puede tener una potencia aproxim ada de 200 m W y un
punto de acceso W LA N entre 1 y 100 m W .
Los valores de potencia pueden variar en un am plio rango, las
com paraciones y los cálculos son com plicados. Los decibelios (dB ) se utilizan para
m anejar volúm enes de potencia a partir de una referencia conocida. Son logaritm os
representados en un am plio rango de valores en una escala lineal.
Para el cálculo del volum en de potencia en dB se utiliza la siguiente
fórmula:
(

p

dB = \ 0 log io
P
\

^
serial

referencia

y

Donde la señal de referencia puede ser com parada en 1 m W o en 1 W. Para
cualquiera de los casos la abreviatura de los decibelios puede ser:

CAPÍTULO 6. RE D E S INALÁM BRICAS

187

• dB m , referenciada con 1 Mw.

• dBw, referenciada con 1 W.
La potencia utilizada en las W LAN ronda los 100 m W o menos, por lo
tanto se utiliza la abreviatura dB m .

6.5 A U T E N T IC A C I Ó N Y A S O C I A C IÓ N
La autenticación de las W LA N se produce en la capa 2 del m odelo OSI. Es
el proceso de autenticar el dispositivo no al usuario. Este es u n punto fundam ental
a tener en cuenta con respecto a la seguridad, detección de fallos y adm inistración
general de una W LAN.
El proceso se inicia cuando el cliente envía una tram a de petición de
autenticación al AP y éste acepta o rechaza la trama. El cliente recibe una respuesta
por m edio de u na tram a de respuesta de autenticación. T am bién puede configurarse
el AP para derivar la tarea de autenticación a un servidor de autenticación, que
realizaría un proceso de credencial m ás exhaustivo.
La asociación que se realiza después de la autenticación es el estado que
permite que un cliente use los servicios del AP para transferir datos.
Tipos de autenticación y asociación:.

:

• No autenticado y no asociado: el nodo está desconectado de la red y
no está asociado a un punto de acceso.
• Autenticado y no asociado: el nodo ha sido autenticado en la red pero
todavía no ha sido asociado al punto de acceso.
® Autenticado y asociado: el nodo está conectado a la red y puede
transm itir y recibir datos a través del punto de acceso.

606 M É TO D O S DE A U TE N T IC A C IÓ N

6.6.1 W EP
W EP ( Wired Equivalency Privacy ) es un sistem a de cifrado incluido en el
estándar 802.11 como protocolo para redes W ireless que perm ite encriptar la
inform ación que se transm ite. Proporciona encrintación a nivel 7 F«tá KasaHn ™ »1

188

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

©R A -M A

algoritm o de encriptación R C4, y utiliza claves de 64, 128 o 256 bits. Es poco
seguro debido a su arquitectura, por lo que al aum entar los tam años de las claves de
encriptación solo aum enta el tiem po necesario para rom perlo.

6 .6 .2 W P A
W PA ( Wi-Fi Protected Access - A cceso protegido W i-Fi) es un sistema
para asegurar redes inalám bricas, creado para corregir las carencias de seguridad de
W EP; los investigadores han encontrado varias debilidades en W EP (tal como un
ataque estadístico que perm ite recuperar la clave W EP). W PA im plem enta la
m ayoría del estándar IEEE 802.1 li, y fue creado com o una m edida intermedia
para ocupar el lugar de W E P m ientras 802.1 li era preparado.
W PA fue diseñado para utilizar un servidor de autenticación (normalmente
un servidor R A D IU S), que distribuye claves diferentes a cada usuario; sin
em bargo, tam bién se puede utilizar en un modo m enos seguro de clave precom partida (P S K , Pre-Shared Key). La inform ación es cifrada utilizando el
algoritm o RC4, con una clave de 128 bits y un vector de inicialización de 48 bits.
U na de las m ejoras sobre W EP es dada por el Protocolo de Integridad de
Clave Tem poral (TKIP, Temporal Key Integrity Protocol), que cam bia claves
dinám icam ente a m edida que el sistem a es utilizado. C uando esto se com bina con
un vector de inicialización (IV) m ucho m ás grande, evita los ataques de
recuperación de clave (ataques estadísticos) a los que es susceptible W EP.
A dicionalm ente a la autenticación y cifrado, W PA tam bién m ejora la
integridad de la inform ación cifrada. El com parador de redundancia cíclica (CRC)
utilizado en W EP es inseguro, ya que es posible alterar la inform ación y actualizar
el CRC del m ensaje sin conocer la clave W EP. W PA im plem enta un chequeo de
integridad del m ensaje llam ado Michael. Adem ás W PA incluye protección contra
ataques de repetición, y a que incluye un contador de tram as.
Al increm entar el tam año de las claves, el núm ero de llaves en uso, y al
agregar un sistem a de verificación de m ensajes, W PA hace que la entrada no
autorizada a redes inalám bricas sea m ucho m ás difícil. El algoritm o M ichael fue el
m ás fuerte que los diseñadores de W PA pudieron crear, bajo la prem isa de que
debía funcionar en las tarjetas de red inalám bricas m ás viejas; sin em bargo es
susceptible a ataques. P ara limitar este riesgo, las redes W PA se desconectan
durante 30 segundos cada vez que se detecta un intento de ataque.

CA PÍTU LO 6. REDES INALÁM BRICAS

© R A -M A

189

6 .6.3 W P A -2
W PA-2
versión previa,
características,
Particularmente

está basada en el nuevo estándar IEEE 802.11 i. W PA, por ser una
que se podría considerar de m igración, n o soporta todas las
m ientras que W PA -2 ya im plem enta el estándar completo.
W PA no se puede utilizar en redes ad-hoc.

Cliente

Pun to de acceso

Servidor
S ervidor
RADIUS
B a se de D atos
_________
El AP bloquea todas las peticiones
Petición de identidad h a sta que se com plete la autenticación
<«••••♦.............
Inicio

Identidad

Identidad

Se esta b le ce un túnel seguro

>
El se rvid o r autentica al cliente

+
..................
C la ve de adm inistración, WPA, CCKM

Secuencia de autenticación a través de un servidor RADIUS

6.7 C A S O P R A C T I C O

6.7.1 C o n fig u r a c ió n b á s ic a d e un p u n to d e a c c e so
La configuración básica de un AP puede resum irse en los siguientes pasos:
1.

Com pruebe la conexión local y si se utiliza D H C P . V erifique qué tipo
de direccionam iento IP utilizará, tenga en cuenta la m áscara y el
gateway.

190

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN CC N A 640-802

© RA-M A

2.

Instale el punto de acceso. C onecte el AP en la red, com pruebe con un
ping su correcta conectividad.

3.

Configure el SSID en el punto de acceso, que luego utilizará el cliente.

4.

Instale y configure a un cliente inalám brico. C onfigure en los
ordenadores correspondientes las direcciones IP y las respectivas
asociaciones.

5.

V erifique el funcionam iento de la red inalám brica. E stablecida la
conexión la red ya es funcional.

6.

Configure la seguridad W P A -2 con PSK .

7.

V erifique el funcionam iento de la red inalám brica. U na vez
configurados los parám etros de seguridad vuelva a verificar el correcto
funcionam iento de la red.

Captura de pantalla de un AP para la
configuración IP

,g rA-MA

CAPÍTULO 6. RED ES INALÁM BRICAS

Captura de pantalla de un AP para la
configuración del SSID

Captura de pantalla de un AP para la
configuración de autenticación.

6.8 F U N D A M E N T O S P A R A E L E X A M E N
• Estudie los conceptos básicos sobre las W LA N .
• A nalice las diferencias y similitudes entre C SM A /C D y CSM A/CA.

191

192

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN C C N A 640-802

© RA-MA

• E studie detalladam ente los estándares 802.11.
• R ecuerde qué es la alianza W i-Fi.
• R ecuerde y analice el funcionam iento de los dispositivos inalám bricos.
• Estudie y analice la im plem entación de las políticas de seguridad y
autenticación, m étodos y protocolos.

C ap ítu lo 7

LISTAS DE ACCESO
7.1 C R ITER IO S B E FILTRA DO
Desde la prim era vez que se conectaron varios sistem as para formar una
red, ha existido una necesidad de restringir el acceso a determ inados sistem as o
partes de la red p or m otivos de seguridad, privacidad y otros. M ediante la
utilización de las funciones de filtrado de paquetes del software IOS, un
administrador de red puede restringir el acceso a determ inados sistem as, segm entos
de red, rangos de direcciones y servicios, basándose en una serie de criterios. La
capacidad de restringir el acceso cobra m ayor im portancia cuando la red de u n a
empresa se conecta con otras redes externas, com o otras em presas asociadas o
Internet.

7.1.1 A dm inistración básica del tráfico IP
Los routers se sirven de las listas de control de acceso (ACL) para
identificar el tráfico. E sta identificación puede usarse después para filtrarlo y
conseguir una m ejor adm inistración del tráfico global de la red. Las listas de acceso
constituyen una eficaz herram ienta para el control de la red. Las listas de acceso
añaden la flexibilidad necesaria para filtrar el flujo de paquetes que entra y sale de
las diferentes interfaces del router.
El filtrado de paquetes perm ite controlar el m ovim iento de estos dentro de
la red. Este control puede ayudar a lim itar el tráfico originado p o r el propio router.

194

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

O R A -M A

U na lista de acceso IP es un listado secuencial de condiciones de perm iso o
prohibición que se aplican a direcciones IP o a protocolos IP de capa superior.
Las listas de acceso identifican el tráfico que ha de ser filtrado en su
tránsito por el router, pero no pueden filtrar el tráfico originado p o r el propio
router.
Las listas de acceso pueden aplicarse tam bién a los puertos de líneas de
term inal virtual para perm itir y denegar tráfico Telnet entrante o saliente, no es
posible bloquear el acceso Telnet desde el m ism o router.
Se pueden usar listas de acceso IP para establecer un control m ás fino o la
hora de separar el tráfico en diferentes colas de prioridades y personalizadas. Una
lista de acceso tam bién puede utilizarse para identificar el tráfico “interesante” que
sirve para activar las llam adas del enrutam iento por llam ada telefónica bajo
dem anda (DDR). Las listas de acceso son m ecanism os opcionales del software
C isco IOS que pueden ser configurados para filtrar o verificar paquetes con el fin
de determ inar si deben ser retransm itidos hacia su destino, o bien descartados.
Cuando un paquete llega a una interfaz, el router com prueba si el paquete
puede ser retransm itido verificando su tabla de enrutam iento. Si no existe ninguna
ruta hasta la dirección de destino, el paquete es descartado. A continuación, el
router com prueba si la interfaz de destino está agrupada en alguna lista de acceso.
De no ser así, el p aquete puede ser enviado al búfer de salida. Si el paquete de
salida está d esu ñ a d o a u n puerto, que no h a sido agrupado a ninguna lista de acceso
de salida, dicho paquete será enviado directam ente al puerto destinado. Si el
paquete de salida está destinado a un puerto que h a sido agrupado en una lista de
acceso saliente, antes de que el paquete pueda ser enviado al puerto destinado será
verificado por una serie de instrucciones de la lista de acceso asociada con dicha
interfaz. D ependiendo del resultado de estas pruebas, el paquete será adm itido o
denegado.
Para las listas salientes, un p e rm it significa enviar al búfer de salida,
m ientras que deny se traduce en descartar el paquete.
Para las listas entrantes un perm it significa continuar el procesam iento del
paquete tras su recepción en una interfaz, m ientras que deny significa descartar el
paquete.
Cuando se descarta un paquete IP, IC M P devuelve un paquete especial
notificando al rem itente que el destino h a sido inalcanzable.

CAPÍTULO 7. LISTA S DE ACCESO

195

7.1.2 P r u e b a d e la s c o n d ic io n e s de u n a A C L
Las instrucciones de una lista de acceso operan en un orden lógico
secuencial. Evalúan los paquetes de principio a fin, instrucción a instrucción. Si la
cabecera de un paquete se ajusta a u n a instrucción de la lista d e acceso, el resto de
las instrucciones de la lista serán om itidas, y el paquete será perm itido o denegado
según se especifique en la instrucción competente.
Si la cabecera de un paquete no se ajusta a una instrucción de la lista de
acceso, la prueba continúa con la siguiente instrucción de la lista.

El proceso de com paración sigue hasta llegar al final de la lista, cuando el
paquete será denegado im plícitam ente.

U na vez que se produce una coincidencia, se aplica la opción de perm iso o
denegación y se pone fin a las pruebas de dicho paquete. E sto significa que una
condición que deniega un paquete en una instrucción no puede ser afinada en otra
instrucción posterior.
La im plicación de este m odo de com portamiento es que el orden en que
figuran las instrucciones en la lista de acceso es esencial. H ay una instrucción final
que se aplica a todos los paquetes que no han pasado ninguna de las pruebas
anteriores. Esta condición final se aplica a todos esos paquetes y se traduce en una
condición de denegación del paquete.
En lugar de salir por alguna interfaz, todos los paquetes que no satisfacen
las instrucciones de la lista de acceso son descartados.
Esta instrucción final se conoce como la denegación im plícita de todo, al
final de cada lista de acceso. A unque esta instrucción no aparece en la
configuración del router, siem pre está activa. Debido a dicha condición, es
necesario que en toda lista de acceso exista al m enos una instrucción permit, en
caso contrario la lista de acceso bloquearía todo el tráfico.

7.2 T IPO S DE LISTA S D E ACCESO
7.2.1 Listas de acceso estándar
Las listas de acceso estándar solo com prueban las direcciones de origen de
los paquetes que solicitan enrutam iento. El resultado es el perm iso o la denegación
de la salida del paquete por parte del protocolo, basándose en la dirección IP de la
red-subred-host de origen.

196

REDES CISCO : GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-MA

7 .2 .2 L is ta s d e a c c e so e x te n d id a s
Las listas de acceso extendidas com prueban tanto la dirección de origen
com o la de destino de cada paquete. Tam bién pueden verificar protocolos
especificados, núm eros de puerto y otros parám etros.

7 .2 .3 L is ta s d e a c c e so co n n o m b r e
Perm iten asignar nom bres en lugar de un rango num érico en las listas de
acceso estándar y extendidas.

7.3 A P L I C A C I Ó N D E U N A L IS T A D E A C C E S O
Las listas de acceso expresan el conjunto de reglas que proporcionan un
control añadido para los paquetes que entran en interfaces de entrada, paquetes que
se trasm iten por el router y paquetes que salen de las interfaces de salida del router.
U na vez creada, una ACL debe asociarse a una o varias interfaces de forma
que analice todos los paquetes que pasen por estas y a sea de m anera entrante o
saliente según corresponda el caso. La m anera de determ inar cuál de los casos es el
que corresponde es pensar si los paquetes van hacia la red en cuestión (saliente) o
si vienen de ella (entrante).
T as ACL deben ubicarse donde más repercutan sobre la eficacia. Las reglas
básicas son:
»

U bicar las ACL extendidas lo más cerca posible del origen del
tráfico denegado. De esta m anera, el tráfico no deseado se filtra sin
atravesar la infraestructura de red.

®

Com o las ACL estándar no especifican las direcciones de destino,
colóquelas lo m ás cerca del destino posible.

7.3.1 L ista de acceso entrante
Los paquetes entrantes son procesados antes de ser enrutados a una interfaz
de salida, si el paquete pasa las pruebas de filtrado, será procesado para su
enrutam iento (evita la sobrecarga asociada a las búsquedas en las tablas de
enrutam iento si el paquete ha de ser descartado por las pruebas de filtrado).

CAPÍTULO 7. LISTAS DE ACCESO

©RA-M A

197

Procesamiento de una ACL entrante, el paquete entrante
es filtrado antes de su enrutamiento

7.3.2 L ista d e a e c e so s a lie n te
Los paquetes entrantes son enrutados a la interfaz de salida y después son
procesados por medio de la lista de acceso de salida antes de su transm isión.

Procesamiento de una ACL saliente, el paquete saliente
debe ser enrutado antes de su respectivo filtrado

198

REDES CISCO: GUÍA D E ESTUDIO PA RA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

A N OTA :
El estudio de este libro se basa en las listas de acceso IP.

V RECUERDE:
Las listas de acceso no actúan sobre paquetes originados en el propio
router, como las actualizaciones de enrutamiento a las sesiones telnet salientes.

7 .4 M Á S C A R A C O M O D ÍN
Puede ser necesario probar condiciones para un grupo o rango de
direcciones IP, o bien para una dirección IP individual. La com paración de
direcciones tiene lugar usando m áscaras que actúan a m odo de com odines en las
direcciones de la lista de acceso, para identificar los bits de la dirección IP que han
de coincidir explícitam ente y cuáles pueden ser ignorados. El enm ascaram iento
w ildcard para los bits de direcciones IP utiliza los núm eros 1 y 0 para referirse a los
bits de la dirección. T eniendo en cuenta que:

U n bit de m áscara w ildcard 10 significa “com probar el valor
correspondiente”.

Un bit de m áscara w ildcard 1 significa “N o com probar (ignorar) el
valor del bit correspondiente” .

Para los casos m ás frecuentes de enm ascaram iento w ildcard se pueden
utilizar abreviaturas.
®

H o st = m áscara com odín 0.0.0.0, utilizada para un host específico.

®

A n y = 0.0.0.0 255.255.255.255, utilizado para definir a cualquier
host, red o subred.

En el caso de perm itir o denegar redes o subredes enteras se deben ignorar
todos los host pertenecientes a dicha dirección de red o subred. Cualquier dirección
de host será leída com o dirección de red o subred. Por ejem plo, el siguiente caso:

CA PÍTU LO 7. LISTAS DE ACCESO

© RA-M A

D irección IP

172

16

32

0

En binarios

10 1 0 1 1 0 0

00010000

00100000

oooooooo

M áscara de red

11 1 1 11 11

11 11 11 11

11100000

oooooooo

w ildcard

00000000

oooooooo

00011111

11 1 1 1 1 1 1

R esultado

Se tienen
en cuenta 8
bits

Se tienen
en cuenta 8
bits

Se tienen
en cuenta 3
bits, se
ignoran 5

Ignorados

199

Wildcard: 0.0.31.255
C álculo rápido:
Reste la m áscara de subred 255.255.224.0 al valor 255.255.255.255.255:

_ 2 5 5 .2 5 5 .2 5 5 .2 5 5
2 5 5 .2 5 5 .2 2 4 .0 0 0
0 0 0 .0 0 0 .0 3 1 .2 5 5

E l resultado es la m áscara w ildcard 0.0.31.255.

f

l

7 .5 C A S O P R A C T IC O

7.5.1 C á lc u lo d e w ilc a r d
Las w ildcard tam bién perm iten identificar rangos sim plificando la cantidad
de com andos a introducir, en este ejem plo la w ildcard debe identificar el rango de
subredes entre la 172.16.16.0/24 y la 172.16.31.0/24.

200

R ED ES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

Trabaje con el tercer octeto, se debe trabajar con el rango entra 16 y 31:

16

000 1 oooo

17

ooo 1 OOOl

18

000 1 0010

19

000 1 0011

20

000 1 0100

21

000 1 0101

22

000 1 0110

30

000 1 1110

31

000 1 1111
Los bits a ignorar ju n to con los del cuarto
octeto estarán en 1
[00001111.11111111 = 15.255]
[" >
El bit c o m ú n 'e s
valor decimal 16,

el correspondiente al

por lo tanto, la W ildcard será:

172.16.16.0

0.0.15.255

7 .6 P R O C E S O D E C O N F I G U R A C IÓ N D E A C L
El proceso de creación de una ACL se lleva a cabo creando la lista y
posteriorm ente asociándola a una interfaz entrante o saliente.

7.6.1 L is ta s d e a c c e so n u m e r a d a s
Las A C L num eradas llevan un núm ero identificativo que las identifica
según sus características. La siguiente tabla m uestra los rangos de listas de acceso
num eradas:

©RA-M A

CA PÍTU LO 7. LISTAS DE ACCESO

ACL

Rango

Rango extendido

IP estándar

1-99

1300-1999

IP extendida

100-199

2000-2699

Prot, type code

200-299

D EC net

300-399

XNS estándar

400-499

XNS extendida

500-599

A pple Talk

600-699

IPX estándar

800-899

IPX extendida

900-999

Filtros Sap

1000-1099

201

7.6.2 C o n fig u r a c ió n d e A C L e stá n d a r
Las listas de acceso IP estándar verifican solo la dirección de origen e n la
cabetera del paquete IP(capa 3).
Router(config)#access-list [1-99] [permit¡deny] [dirección de
origen][máscara comodín]

Donde:
® 1-99: identifica el rango y número de lista.

® Permit|deny: indica si esta entrada perm itirá o bloqueará el tráfico a
partir de la dirección origen.

o Dirección de origen : identifica la dirección IP de origen.

202

REDES CISCO: G U ÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-M a

• Máscara comodín (wildcard): identifica los bits del cam po de la
dirección que serán com probados.

NOTA:

La máscara predeterm inada es 0.0.0.0 (coincidencia de todos los bits).

7 .6 .3 A so c ia c ió n d e la A C L e stá n d a r a u n a in te r fa z
U na vez configurada asocie la ACL estándar a la interfaz a través del
siguiente com ando dentro del m odo de dicha interfaz.
Router(config-if)#ip access-group[N°

de lista de acceso][in|out]

Donde:

• Número de lista de acceso: indica el núm ero de lista de acceso que
será aplicada a esa interfaz.
• In |o u t: selecciona si la lista de acceso se aplicará com o filtro de entrada
o de salida.

7 .6 .4

C o n fig u r a c ió n d e A C L e x te n d id a

Las listas de acceso IP extendidas pueden verificar otros m uchos
elem entos, incluidas opciones de la cabecera del segm ento (capa 4), com o los
núm eros de puerto.
• D irecciones IP de origen y destino, protocolos específicos,
a N úm eros de puerto TCP y UDP.
El proceso de configuración de una ACL IP extendida es el siguiente:
Router(config)#access-l i s t [100-199] [permit|deny] [protocolo]
[dirección de origen][máscara comodín][dirección de destino]
[máscara comodín] [puerto] [establisehed] [log]

® 100-199: identifica el rango y núm ero de lista.

CAPITU LO 7. LISTAS DE ACCESO 203

0 RA-MA_

® P erm it|d en y : indica si la entrada perm itirá o bloqueará el tráfico desde
la dirección origen hacia el destino.
• P rotocolo: como por ejem plo IP, TCP, U D P, ICM P.

• Dirección origen, dirección destino: identifican direcciones IP de
origen y destino.
• M á s c a ra com odín: son las máscaras wildcard. Identifica los bits del
cam po de la dirección que serán com probados.
• P u e rto (opcional): puede ser, por ejemplo, lt (m enor que), gt (m ayor
que), eq (igual a), o neq (distinto que) y un núm ero de puerto de
protocolo correspondiente.
• E stab liseh ed (opcional): se usa solo para TCP de entrada. Esto permite
que el tráfico TCP pase si el paquete utiliza una conexión ya establecida
(por ejem plo, posee un conjunto de bits A C K ).
• L og (opcional): envía un m ensaje de registro a la consola a un servidor
syslog determ inado.
Algunos de los núm eros de puerto más conocidos, se detallan con m ayor
profundidad m ás adelante:
21

FTP

23

TELNET

25

SMTP

69

TFTP

53

DNS

80

HTTP

109

P OP 2

204

REDES CISCO: G U ÍA DE ESTU D IO PARA LA C ERTIFICA C IÓ N CCNA 640-802

©

r a -m a

7 .6 .5 A so c ia c ió n d e la s A C L e x te n d id a a u n a in te r fa z
La asociación de las ACL a una interfaz en particular se realiza en el modo
de interfaz aplicando el siguiente comando.
Router (config-if)#ip access-group[N° de lista de acceso] [in|out]

Donde:
• N ú m ero de lista de acceso: indica el núm ero de lista de acceso que
será aplicada a esa interfaz.
• In |o u t: selecciona si la lista de acceso se aplicará como filtro de entrada
o de salida.

7 .6 .6 A p lic a c ió n d e u n a A C L a la lín e a de te ln e t
Para evitar intrusiones no deseadas en las conexiones de telnet se puede
crear una lista de acceso estándar y asociarla a la Line VTY. El proceso de creación
se lleva a cabo com o una A C L estándar denegando o permitiendo un origen hacia
esa interfaz. El m odo de asociar la ACL a la Línea de telnet es el siguiente:
router (config)#line v ty 0 4
router(config-line)#access-class[N° de lista de acceso][in|out]

C onexiones virtu a le s

Puerto físico EO/O
Line V TY 0

Puerto físico Eü/1
Line V T Y O 1

Puerto físico EO/2
Line V TY O 2

Puerto físico EO/3
Line V TY 0 3

CAPITOLO 7. LISTA S DE ACCESO 205

) RA-MA

7 .7

C A S O P R A C T IC O

7.7.1 C o n fig u r a c ió n de u n a A C L e stá n d a r
Se ha denegado en el router rem oto la red 192.168.1.0 y luego se ha
permitido a cualquier origen, posteriorm ente se asoció la ACL a la interfaz Serial
0/0 como saliente.

Red
destino
Router#configure terminal
R o u t e r (config)#aecess-list 10 deny 192.168.1.0 0.0.0. 0
Router(config)#access-list 10 permit any
R o u t e r (config) #interface serial 0/0
Router (conlig-if ) #ip acceacs-cji-Oup 10 out

7.7.2 C o n fig u r a c ió n d e u n a A C L e x te n d id a
Se ha denegado al host A, 204.204.10.1 (identificándolo con la abreviatura
“host”) iia c ia el puerto 80 de cualquier red de destino (usando el térm ino any).
Posteriormente se perm ite todo tráfico IP. Esta ACL se asoció a la interfaz ethem et
0/1 como entrante.
Router(config) #access-list 120 deny tcp host 204.204. 10.1
Router(config) #access-list 120 permit ip any any
Router(config) ttinterface ethernet 0/1
Router(config-if)#ip access-group 120 in

any eq 80

206

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

©RA-MA

W EB

7.7.3 C on figu ración de AC L con subred
En el siguiente caso la subred 200.20.10.64/29 tiene denegado el acceso de
todos sus hosts en ei protocolo UDP, m ientras que los restantes protocolos y otras
subredes tienen libre acceso. La A C L es asociada a la ethem et 0/0 com o entrante.
Observe la w ilcard utilizada en este caso.
Router(config)# a c c e s s -list 100 deny udp 200.20 .10 .64 0.0.0 .7 any
Ilouter (config) # a c c s s s -list 10 0 permit ip any any
Router(config)#interface ethernet 0/0
Router(config-if)#ip access-group 10 0 in

Procedim iento para hallar la m áscara com odín de la subred:
200.200.10.64/29 es lo mismo que 200.200.10.64 255.255.255.248

2 5 5 .2 5 5 .2 5 5 .2 5 5
2 5 5 .2 5 5 .2 5 5 .2 4 8
0 0 0 .0 0 0 .0 0 0 .0 0 7
W i l c a r d : 0 .0 .0 .7
*

CAPÍTULO 7. LISTAS DE A CC ESO 2 0 7

0 rA -M a
V'K

^y_RECUERMl
Al fin a l de cada ACL existe una negación implícita. Debe existir a l
menos un permit.

7.8 B O R R A D O D E L A S L IS T A S D E A C C E S O
Desde el modo interfaz donde se aplicó la lista desasociar dicha ACL.
Tenga en cuenta que en una interfaz puede tener asociadas varias ACL.
Router(config-if)#no ip access-group[N° de lista de acceso]

Posteriorm ente desde el m odo global elimine la ACL:
router(config)#no access-list[N° de lista de acceso]

7.9 L IS T A S D E A C C E S O IP C O N N O M B R E
Con listas de acceso IP num eradas, para m odificar una lista tendría que
borrar prim ero la lista de acceso y volver a introducirla de nuevo con las
correcciones necesarias.
En una lista de acceso num erada no es posible borrar instrucciones
individuales. Las listas de acceso IP con nom bre perm iten elim inar entradas
individuales de u na lista específica. El borrado de entradas individuales perm ite
modificar las listas de acceso sin tener que elim inarlas y volver a configurarlas
desde el principio. Sin em bargo, no es posible insertar elem entos selectivam ente e n
una lista.

7.9.1 C o n fig u r a c ió n d e u n a lis ta de a c c e so n o m b r a d a
Básicam ente, la configuración de una ACL nom brada es igual a las
extendidas o estándar num eradas. Si se agrega un elem ento a la lista, este se coloca
al final de la misma. N o es posible usar el mismo nom bre para varias listas d e
acceso. Las listas de acceso de diferentes tipos tam poco pueden com partir nom bre.
Router(config)#ip a c c e s s -list[standard|extended] nombre
Router(config[std|ext]nací)# [permit|deny][condiciones de prueba]
Router(config)#Interfaz asociación de la ACL
Router(config-if)#ip access-group nombre [in|out]

208

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

O R A -M A

Para elim inar una instrucción individual, anteponga no a la condición de
prueba.
Router(config[std|ext]nací)#no[permit|deny][condiciones de prueba]

7 .1 0 C A S O P R Á C T IC O

7.10.1 C onfigurados! de lana AC L nom brada
Se creó una A C L con el nom bre IN TRA N ET que deniega todo tráfico de
cualquier origen a cualquier destino hacia el puerto 21, luego se perm ite cualquier
otro tráfico IP. Se usó el com ando log (opcional) para enviar inform ación de la
ACL a un servidor. Se asocia a la interfaz ethem et 1 com o saliente.
Router(config) #ip access-list extended INTRANET
Router(config-ext-nacl)#deny tcp any any eq 21 log
Router(config-ext-nacl)Spermit ip any any
Router(config-ext-nacl)#exit
Router(config) #interface ethernet 1
Router(config-if)#ip access-group INTRANET out

7.11 C O M E N T A R I O S E N L A S A C L
Las ACL perm iten agregar com entarios para facilitar su com prensión o
funcionam iento. El com ando rem ark no actúa sobre las sentencias de las A C L pero
brindan a los técnicos la posibilidad de una visión rápida sobre la actividad de las
listas.
Los com entarios pueden agregarse tanto a las ACL nom bradas como
tam bién a las num eradas, la clave reside en agregar los com entarios antes de la
configuración de los perm isos o denegaciones.
L a sintaxis m u estra una ACL nom brada con el com ando remark:
Router(config) #ip access-list[standard|extended]
Router(config[std|ext]nací)#remark comentario

nombre

CAPITU LO 7. LISTA S DE ACCESO 209

L a sintaxis m uestra una A C L num erada con el com ando remark:
R o u t e r (config)#ip

access-list

[número]

remark comentario

7.12 O T R O S T IP O S D E L IS T A S D E A C C E S O
7.12.1 L ista s d e a c c e so d in á m ic a s
E ste tipo de ACL depende de telnet a partir de la autenticación de los
usuarios que quieran atravesar el router y que han sido previam ente bloqueados por
una A C L extendida. U na A C L dinám ica añadida a la A C L extendida existente
permitirá tráfico a los usuarios que son autenticados en una sesión de telnet por u n
período de tiem po en particular.

7.12.2 L ista s de a c c e so r e fle x iv a s
Perm iten el filtrado de paquetes IP en función de la inform ación de la
sesión de capa superior. M ayorm ente se utilizan para perm itir el tráfico saliente y
para lim itar el entrante en respuesta a las sesiones originadas dentro del router.

7 .1 2 .3 L ista s de a c c e s o b a s a d a s en tie m p o
E ste tipo de ACL perm ite la configuración para poner en actividad el
filtrado de paquetes solo en períodos de tiempo determ inados p o r el adm inistrador.
En algunos casos puede ser m uy útil la utilización de A C L en algunos m om entos
del día o particularm ente en solo algunos días de la semana.

7.13 P U E R T O S T C P M Á S U T IL I Z A D O S E N L A S A C L
N úm ero
de p u erto

C om ando

P ro to co lo

7

echo

Echo

9

discard

Discard

13

daytime

Daytime

19

Chargen

Character Generator

210

REDES CISCO: GUÍA DE ESTUDIO PA RA LA CERTIFICACIÓN CC N A 640-802

20

ftp-data

FTP Data Connections

21

ftp

File Transfer Protocol

23

telnet

Telnet

25

sm tp

Simple Mail Transport
Protocol

37

time

Time

53

domain

Domain Name Service

43

whois

Nickname

49

tacacs

TAC Access Control
System

70

gopher

Gopher

79

finger

Finger

80

www-http

World Wide Web

101

hostname

NIC Hostfiame Server

109

p°p2

Post Office Protocol v2

110

pop3

Post Office Protocol v3

111

sunrpc

Sun Remote Procedure
Call

113

ident

Ident Protocol

119

nntp

Network News Transport
Protocol

179

bgP

Border Gateway Protocol

194

ire

Internet Relay Chat

496

pim-auto-rp

PIM Auto-RP

512

exec

Exec

©RA-

CAPÍTU LO 7. LISTAS DE ACC ESO 211

a r A-MA

513

login

Login

514

cmd

Remote commands

515

lpd

Printer service

517

talk

Talk

540

uucp

Unix-to-Unix Copy
Program

7.14 P U E R T O S U D P M Á S U T IL I Z A D O S E N L A S A C L
Comando

Protocolo

7

echo

Echo


y

discard

Discard

il

time

Time

42

nameserver

IEN116 name service

49

tacacs

TAC Access Control
System

53

domain

Domain Name Service

67

bootps

Bootstrap Protocol server

68

bootpc

Bootstrap Protocol client

69

tftp

Trivial File Transfer
Protocol

111

sunrpc

Sun Remote Procedure
Call

123

ntp

Network Time Protocol

137

netbios-ns

NetBios name service

138

netbios-dgm

NetBios datagram service

de puerto

212

R E D E S CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

139

netbios-ss

NetBios Session Service

161

snmp

Simple Network
Management Protocol

162

snmptrap

SNMP Traps

177

xdmcp

X Display Manager
Control Protocol

195

dnsix

DNSIX Security Protocol
Auditing

434

mobile-ip

Mobile IP Registration

496

pim-auto-rp

PIM Auto-RP

500

isakmp

Internet Security
Association and Key
Management Protocol

512

biff

Biff

513

who

Who Service

514

syslog

System Logger

517

talk

Talk

520

rip

Routing Information
Protocol

©RA-

7.15 P R O T O C O L O S M Á S U T I L I Z A D O S E N L A S A C L
Comando

Descripción

eigrp

Cisco EIGRP routing protocol

gre

Cisco GRE tunneling

icmp

Internet Control Message Protocol

igmp

Internet Gateway Message Protocol

CA PÍTU LO 7. LISTA S DE ACC ESO 213

©RA-MA

ip

Any Internet Protocol

ospf

OSPF routing protocol

pep

Payload Compression Protocol

tcp

Transmission Control Protocol

udp

User Datagram Protocol

7.16 V E R I F I C A C I Ó N A C L
V erifica si una lista de acceso está asociada a u na interfaz:
Router#show ip interface [tipo de interfaz] [N° de interfaz]

M uestra inform ación de la interfaz IP:
Router#show access-list

M uesta inform ación general de las ACL y de las interfaces asociadas:
Router#running-config

M uestra contenido de todas las listas de acceso:
Router#show access-lists
Standard IP access list 10
deny
192.168.1.0
Extended IP access list 120
deny
tcp host 204.204.10.1 any eq 80
permit ip any any
Extended IP access list INTRANET
deny
tcp any any eq 21 log
permit ip any any

R o uter#sh o w [protocolo]access-list[N°

lista de a c c e s o |nombre]

214

RE D E S CISCO: G U ÍA D E ESTU D IO PARA LA CERTIFICACIÓN C C N A 640-802

© R A -M A

^R EC U ER D E:

Una lista de acceso puede ser aplicada a múltiples interfaces.
Solo pu ed e haber una lista de acceso p o r protocolo, p o r dirección y por
interfaz.
E s posible tener varias listas para una interfaz, pero cada una debe
pertenecer a un protocolo diferente.
Organice las listas de acceso de modo que las referencias más específicas
a una red o subred aparezcan delante de las más generales.
Coloque las condiciones de cumplimiento más frecuentes antes de las
menos habituales.
Las adiciones a las listas se agregan siem pre al fin a l de estas, pero
siempre delante de la condición de denegación implícita.
N o es posible agregar ni eliminar selectivamente instrucciones de una
lista cuando se usan listas de acceso numeradas, pero s í cuando se usan listas de
acceso IP con nombre.
A menos que term ine una lista de acceso con una condición de permiso
implícito de todo, se denegará todo el tráfico que no cumpla ninguna de las
condiciones establecidas en la lista al existir un deny implícito al fin a l de cada
lista.
Toda lista de acceso debe incluir al m enos una instrucción permit. En
caso contrario, todo el tráfico será denegado.
Cree una lista de acceso antes de aplicarla a la interfaz. Una interfaz con
una lista de acceso inexistente o indefinida aplicada al m ism o perm itirá todo el
tráfico.
Las listas de acceso perm iten filtrar solo el tráfico que pasa por el router.
No pueden hacer de filtro para el tráfico originado p o r el propio router.

©

CAPÍTULO 7. L IST A S DE A CC ESO 2 15

r a -m a

RECUERDE:

E l orden en el que aparecen las instrucciones en la lista de acceso es
fundam ental para un filtrado correcto. La práctica recomendada consiste en
crear las listas de acceso usando un editor de texto y descargarlas después en u n
router vía TFTP o copiando y pegando el texto. Las listas de acceso se procesan
de arriba a abajo. S i coloca las pruebas más específicas y las que se verificarán
con más frecuencia al comienzo de la lista de acceso, se reducirá la carga de
procesamiento. Solo las listas de acceso con nombre perm iten la supresión,
aunque no la alteración del orden de instrucciones individuales en la lista. S i
desea reordenar las instrucciones de una lista de acceso, deberá eliminar la lista
completa y volver a crearla en el orden apropiado o con las instrucciones
correctas.

'^ R E C U E R D E :

Las listas de acceso extendidas deben colocarse norm alm ente lo m ás
cerca posible del origen del tráfico que será denegado, mientras que las estándar,
lo más cerca posible del destino.

7.17 F U N D A M E N T O S P A R A E L E X A M E N
® R ecuerde los fundam entos para el filtrado y adm inistración del tráfico
IP.
• M em orice las pruebas de condiciones que efectúa el router y cuáles son
los resultados en cada caso.
® Estudie los tipos de ACL, su asociación con las interfaces del router y
cuál es la m anera más adecuada para aplicarlas.
® Estudie y analice la función de las máscaras com odín y su efecto en las
ACL.
9

M em orice los rangos de las ACL numeradas.

• M em orice los núm eros
configuración de las ACL.

de

puertos

básicos

em pleados

en

la

216

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

• R ecuerde que existen otros tipos de ACL, sepa cuáles son.
• M em orice los com andos para las configuraciones de todas las ACL
teniendo en cuenta las condiciones fundam entales para su correcto
funcionam iento, incluidos los com andos para su visualización.
•5

• Recuerde que existe un tipo especial de ACL para telnet.
• Ejercite todo lo que pueda con las wildcard.
® Ejercite todas
sim uladores.

las

configuraciones

en

dispositivos

reales

o en

Capítulo 8

CONMUTACIÓN DE LAN
8.1 C O N M U T A C I Ó N D E C A P A 2
Las redes ethem et pueden m ejorar su desem peño a partir de la
conmutación de tramas. La conm utación perm ite segm entar una LA N creando
dominios de colisión con anchos de banda exclusivos para cada segm ento pudiendo
transmitir y recibir al m ism o tiem po sin el retardo que provocarían las colisiones.
El ancho de banda dedicado por puerto es llamado m icro seg m en tació n .
Los puentes, switches y routers dividen las redes en segm entos.
® Los puentes trabajan a nivel de software generando alta latencia.
® Los routers utilizan gran cantidad de recursos.
® Los switches lo hacen a nivel de hardware siendo tan rápidos como el
m edio lo exija.

218

REDES CISCO: GUÍA DE ESTUDIO PA RA LA CERTIFICA C IÓ N CCNA 640-802

© RA-MA

Segmento A

tór

.A

Segmento B

Segmento C

Segmento D

Los puentes, switches y routers dividen las redes en segmentos

La conm utación permite:

• Comunicaciones dedicadas entre dispositivos. Los hosts poseen un
dom inio de colisión puro libre de colisiones, increm entando la rapidez
de transm isión.

• M últiples conversaciones simultáneas. Los hosts pueden establecer
conversaciones sim ultáneas entre segm entos gracias a los circuitos
virtuales proporcionados por los switch.

• Comunicaciones full-duplex. El ancho de banda dedicado por puerto
perm ite transm itir y recibir a la vez, duplicando el ancho de banda
teórico.

® Adaptación a la velocidad del medio. La conm utación creada por un
sw itch funciona a nivel de hardw are (ASIC), respondiendo tan
rápidam ente como el m edio lo perm ita.

8.1.1 C onm utación con sw itch
Un sw itch segm enta una red en dom inios de colisión, tantos com o puertos
activos posea. A prender direcciones, reenviar, filtrar paquetes y evitar bucles
tam bién son funciones de un switch.
El sw itch segm enta el tráfico de m anera que los paquetes destinados a un
dom inio de colisión determ inado no se propaguen a otro segm ento aprendiendo las

CA PÍTU LO 8. CO N M U TA C IÓ N DE LAN 219

©RA-M A

direcciones M AC de los hosts. A diferencia de u n hub, un sw itch no inunda todos

los puertos con las tram as, por el contrario el switch es selectivo con cada trama.
Debido a que los sw itches controlan el tráfico para m últiples segm entos al
mismo tiem po, han de im plem entar m em oria búfer para que puedan recibir y
t r a n s m i t i r .tramas independientem ente en cada puerto o segm ento.
U n switch nunca aprende direcciones de difusión o m ultidifusión, dado que
las direcciones no aparecen en estos casos como dirección d e origen de la tram a.
Una tram a de broadcast será transm itida a todos los puertos a la vez.

8.2 T E C N O L O G Í A S D E C O N M U T A C IÓ N
8.2.1 A lm a c e n a m ie n to y e n v ío
El switch debe recibir la tram a completa antes de enviarla p o r el puerto
correspondiente. Lee la dirección MAC destino, com prueba e l C R C (contador de

redundancia cíclica, utilizado en las tram as para verificar errores de envío), aplica
los filtrados correspondientes y retransm ite. Si el CRC es incorrecto, se descarta la
trama. El retraso de envío o latencia suele ser m ayor debido a que el sw itch debe
almacenar la tram a com pleta, verificarla y posteriorm ente enviarla al segm ento
correspondiente.

8.2.2 M é to d o d e c o r te
El switch verifica la dirección MAC de destino en cuanto recibe la
cabecera de la trama, y com ienza de inmediato a enviar la tram a. La desventaja de
este modo es que el sw itch podría retransm itir una tram a de colisión o una tram a
con un valor de CRC incorrecto, pero la latencia es m uy baja.

8.2.3 L ib r e d e fr a g m e n to s
M odo de corte m odificado, el switch lee los prim eros 64 bytes antes de
retransmitir la trama. N orm alm ente las colisiones tienen lugar en los prim eros 64
bytes de una trama. El sw itch solo envía las tramas que están libres de colisiones.

220

REDES C ISC O : G U ÍA D E ESTUDIO PARA LA CERTIFICACION CCNA 640-802

© R A -M a

8.3 A P R E N D I Z A J E D E D IR E C C IO N E S
U n sw itch crea circuitos virtuales entre segm entos, para ello debe
identificar las direcciones M AC de destino, buscar en su tabla de direcciones MAC
a qué puerto debe enviarla y ejecutar el envío. Cuando un sw itch se inicia no posee
datos sobre los hosts conectados a sus puertos, por lo tanto inunda todos los puertos
esperando capturar la M AC correspondiente.
A m edida que las tram as atraviesan el sw itch, este las comienza a
alm acenar en la m em oria C A M (m em oria de contenido direccionable)
asociándolas a u n puerto de salida e indicando en cada entrada una m arca horaria a
fin de que pasado cierto tiem po sea elim inada preservando el espacio en memoria.
Si un sw itch detecta que la tram a pertenece al m ism o segm ento de donde proviene
no la recibe evitando tráfico, si por el contrario el destino pertenece a otro
segm ento, solo enviará la tram a al puerto correspondiente de salida. Si la trama
fuera un broadcast, el sw itch inundará todos los puertos con dicha tram a.

V
Un switch crea circuitos virtuales mapeando
la dirección MAC de destino con el puerto
de salida correspondiente

La siguiente cap tu ra m uestra la tabla M AC de un switch:

switch#sh mac-address-table
Dynamic Address Count:
Secure Address Count:
Static Address (User-defined)
System Self Address Count:
Total MAC addresses:
Maximum MAC addresses:

Count:

172
0
0
76
248
8192

CA PITU LO 8. CO N M U TA CIO N DE LAN 221

0RA-MA_

Non - s t a t i c Address Table:

p e stination

Address

oooo .0c07 .acOl
0000 ,0c07 .acOb
0000 ,c0e5 ,b8d4
0001 .9757 .d2 9c
0001 .9757 .d2 9c
0001 .9757 .d2 9c

0001 .9757 ,d2 9c

0001 .9757 .d29c
0001
0001
0001
0001

.9757
.9757
.9757
.9757

,d2 9c
.d2 9c
.d2 9c
.d2 9c

Address Type
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic

VLAN
12
11
12
1
2
3
4
5
6
7
8
9

Destination Port
GigabitEthernetO/l
GigabitEthernetO/l
GigabitEthernet0/2
GigabitEthernetO/l
GigabitEthernet0/l
GigabitEthernetO/l
GigabitEthernetO/l
GigabitEthernetO/1
GigabitEthernetO/1
Gi gab i tE therne 10/1
Gi gab i tE therne10/1
GigabitEthernetO/I

8.3.1 B u cles de c a p a 2
Las redes están diseñadas por lo general con enlaces y dispositivos
redundantes. Estos diseños elim inan la posibilidad de que un punto de fallo
individual origine al m ism o tiem po varios problem as que deben ser tenidos e n
cuenta. Sin algún servicio que evite bucles, cada switch inundaría las difusiones e n
un bucle infinito. E sta situación se conoce como bucle de p u en te.
La propagación continua de estas difusiones a través del bucle produce una
tormenta de difusión, lo que da com o resultado un desperdicio del ancho de banda,
así como impactos serios en el rendim iento de la red. Podrían ser distribuidas
múltiples copias de tram as sin difusión a los puestos de destino.
M uchos protocolos esperan recibir una sola copia de cada transm isión. L a
presencia de m últiples copias de la m ism a tram a podría ser causa de errores
irrecuperables.
*Una inestabilidad en el contenido de la tabla de direcciones M AC da com o
resultado que se reciban varias copias de una m ism a tram a en diferentes puertos del
switch.

222

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

©RA-M a

PCI

Los bucles y las tramas duplicadas son algunos
de los problemas que soluciona STP.

8 .4 P R O T O C O L O D E Á R B O L D E E X P A N S I Ó N
ST P, Protocolo de Á rbol de Expansión, es un protocolo de capa dos
publicado en la especificación del estándar IE E E 802.Id.
El objetivo del árbol de expansión es m antener una red libre de bucles. Un
cam ino libre de bucles se consigue cuando u n dispositivo es capaz de reconocer un
bucle en la topología y bloquear uno o más puertos redundantes.
El protocolo Árbol de expansión explora constantem ente la red, de forma
que cualquier fallo o adición en un enlace, sw itch o bridge es detectado al instante.
C uando cam bia la topología de red, el algoritm o de árbol de expansión reconfigura
los puertos del sw itch o el bridge para evitar u n a pérdida total de la conectividad.
Los sw itches intercam bian inform ación m ulticast (B P D U ) cada dos
segundos, si se detecta alguna anorm alidad en algún puerto STP, cam biará de
estado algún puerto autom áticam ente utilizando algún camino redundante sin que
se pierda conectividad en la red.

CAPÍTU LO 8. C O N M U TA CIÓ N DE LAN 223

f (P

Los sw itches solo pueden ejecutar varias instancias STP m ientras que los
solo una. C isco desarrolló P V S T + para que una red pueda ejecutar u n a
in s ta n c ia de STP para cada V LAN de l a red.
u e n te s

8.4.1 P r o c e so S T P
STP funciona autom áticam ente siguiendo los siguientes criterios:

• Elección de un switch raíz. En un dom inio de difusión solo debería
existir un switch raíz. Todos los puertos del bridge raíz se encuentran
en estado enviando y se denom inan puertos designados. Cuando está e n
este estado, un puerto puede enviar y recibir tráfico. La elección de u n
sw itch raíz se lleva a cabo determ inando el switch que posea la m enor
prioridad. Este valor es la suma de la prioridad p o r defecto dentro de
un rango de 1 al 65536 (20 a 216) y el ID del sw itch equivalente a la
dirección M AC. Por defecto la prioridad es 2 1= = 32768 y es un valor
configurable. U n adm inistrador puede cam biar la elección del sw itch
raíz por diversos m otivos configurando un valor de prioridad menor a
32768. Los dem ás sw itches del dom inio se llam an switch no raíz.

• Puerto raíz. El puerto raíz corresponde a la ruta de m enor coste desde
el switch no raíz, hasta el switch raíz. Los puertos raíz se encuentran
en estado de envío o retransm isión y proporcionan conectividad hacia
atrás al sw itch raíz. La ruta de m enor coste al sw itch raíz se basa en el
ancho de banda.

Puertos designados. El puerto designado es el que conecta los
segm entos al switch raíz y solo puede haber un puerto designado por
segm ento. Los puertos designados se encuentran en estado de
retransm isión y son los responsables del reenvío de tráfico entre
segm entos. Los puertos no designados se encuentran norm alm ente en
estado de bloqueo con el fin de rom per la topología de bucle.

NOTA:

En una red grande pueden convivir en un mismo dominio V TP varios switches
servidores trabajando de manera redundante, sin embargo esta alternativa
puede dificultar la tarea del administrador.

n

224

REDES CISCO : G U ÍA DE ESTUDIO PARA, L A CERTIFICACIÓN C C N A 640-802

© R A-M a

8 .4 .2 E s ta d o s d e los p u e r to s d e S T P
Los puertos del switch que participan de STP tom an diferentes estados
según su funcionalidad en la red.

® Bloqueando. Inicialm ente todos los puertos se encuentran en este
estado. Si STP determ ina que el puerto debe continuar en ese estado
solo escuchará las BPDU pero no las enviará.
• E sc u c h a n d o . En este estado los puertos determ inan la m ejor topología
enviando y recibiendo las BPDU.

• Aprendiendo. El puerto com ienza a com pletar su tabla M AC, pero aún
no envía tram as. El puerto se prepara para evitar inundaciones
innecesarias.

• Enviando. El puerto com ienza a enviar y recibir tram as.
Existe u n quinto estado que es desactivado cuando el puerto se encuentra
físicam ente desconectado o anulado por el sistem a operativo, aunque no es un
estado real de STP pues no participa de la operativa STP.

Ç ...
Segm ent

Puerto designado
enviando ^

Puerto raíz

enviando

Sw itch r a íz
^

Puerto designado/-*

Switch no raíz

enviando

Seg m en to 2
Puerto en estado

bloqijeando

Para evitar bucles, STP bloquea los puertos necesarios

CAPÍTU LO 8. C O N M U TA CIÓ N DE LAN

225

8>5 P R O T O C O L O D E Á R B O L D E E X P A N S I Ó N R Á P I D O
R S T P es la versión m ejorada de STP definido p o r el estándar IE E E
lw. El protocolo de árbol de expansión rápido funciona con los m ism os
parámetros básicos que su antecesor:
§0 2

® Designa el sw itch raíz con las m ismas condiciones que STP.
® Elige el puerto raíz del sw itch no-raíz con las m ism as reglas.
® Los puertos designados segm entan la LAN con los m ism os criterios.
A pesar de estas sim ilitudes con STP, el m odo rápido mejora la
convergencia entre los dispositivos y a que STP tarda 50 segundos en pasar del
estado bloqueando al enviando m ientras que R STP lo hace prácticam ente de
inmediato sin necesidad de que los puertos pasen por los otros estados. RSTP es
com patible con sw itches que solo utilicen STP.
En m uchos casos
desechado.

el puerto bloqueado es llam ado tam bién puerto

"^R E C U E R D E :

E l tiempo que lleva p1 cambio de estado desde bloqueado a envío es de 5 0
segundos.

8.6 R E D E S V I R T U A L E S
Las VLAN (Lan Virtuales) proveen seguridad, segm entación, flexibilidad,
permiten agrupar usuarios de un m ism o dominio de broadcast con independencia
de su ubicación física en la red. U sando la tecnología V LA N se pueden agrupar
lógicamente puertos del switch y los usuarios conectados a ellos en grupos d e
trabajo con interés com ún.
U tilizando la electrónica y los m edios existentes es posible asociar usuarios
lógicamente con total independencia de su ubicación física incluso a través de una
WAN. Las VLAN pueden existir en un solo switch o bien abarcar varios de ellos.
Las VLAN pueden extenderse a m últiples switch por m edio de enlaces troncales
que se encargan de transportar tráfico de múltiples VLAN.

226

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

El rendimiento de una red se ve am pliam ente m ejorado al no propagarse
las difusiones de un segmento a otro aum entando tam bién los m árgenes de
seguridad. Para que las VLAN puedan com unicarse son necesarios los servicios de
routers que pueden implementar el uso de A C L para m antener el m argen de
seguridad necesario.

VLAN 2
Ventas

VLAN 3
RRHH

VLAN 4
Admin

Switches
de planta

VLAN i Gestión

Ejemplo de utilización de VLAN

8 .7 T R U N K IN G
M uchas veces es necesario agrupar usuarios de la m ism a VLAN que se
encuentran ubicados en diferentes zonas, para conseguir esta com unicación los
switches utilizan un enlace troncal. Para que los switches envíen inform ación sobre
las VLAN que tienen configuradas a través de enlaces troncales es necesario que
las tram as sean identificadas con el propósito de saber a qué V LA N pertenecen.
A m edida que las tram as salen del sw itch son etiquetadas para indicar a
qué VLAN corresponden, esta etiqueta es retirada una vez que entra en el switch de
destino para ser enviada al puerto de V LA N correspondiente.

CAPÍTULO 8. CON M U TA CIÓ N DE LAN 227

© RA-M A

U n puerto de sw itch que pertenece a una V LA N determ inada es llam ado
puerto de acceso, m ientras que un puerto que transm ite inform ación de varias
VLAN a través de un enlace punto a punto es llamado p u e rto tro n c a l.
La inform ación de todas las V LA N creadas viajará por el enlace trocal
automáticamente, la V LA N 1, que es la VLAN por defecto o nativa, lleva la
información de estado de los puertos. Tam bién es la V LA N de gestión.

E n la c e T ro n c a l

Para evitar que todas las VLAN viajen por el
troncal es necesario quitarla manualmente

8.7.1 E tiq u e ta d o d e tr a m a
La norm ativa IE E E 802.1 q identifica el m ecanism o de etiquetado de tram a
de capa 2 m ultivendedor. El protocolo 802.I q interconecta switches, routers y
servidores. Solo los puertos FastE them et y G igabitE them et soportan el enlace
troncal con el etiquetado 8 0 2 .lq, tam bién conocido com o D o tlq .
Los sw itches C isco im plem entan una variante de etiquetado propietaria, la
ISL (Inter Switch Link ). ISL funciona a nivel de capa 2 y añade una verificación
por redundancia cíclica (C R C ). ISL posee muy baja latencia debido a que el.
etiquetado utiliza tecnología ASIC.
El etiquetado de la tram a es eliminado de la tram a al salir de un puerto de
acceso antes de ser enviada al dispositivo final.

228

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN CC N A 640-802

© RA-M a

Enlace Troncai ISL

TRAMA

TRAMA

Cabecera ISL
26 Bytes

CRC
4 Bytes

Ejemplo de un etiquetado ISL
Enlace Troncal 802. IQ

TRAMA
Dirección
destino
Dirección
origen

Longitud

FCS

Etiqueta 8 0 2 .1Q
4 Bytes

Ejemplo de un etiquetado Dotlq

"'i N O T A :

Los switches reconocen la existencia de V L A N a través del etiquetado de
trama, identificando el núm ero de VLAN independientem ente del nombre que
estas posean en cada switch.

CAPÍTULO 8. C O N M U T A C IÓ N DE LAN

Çi RA-MA_

229

8.8 V L A N T R Ü N K I N G P R O T O C O L
Para conseguir conectividad entre V L A N a través de un enlace troncal
entre switches, las V L A N deben estar configuradas en cada sw itch.
V T P ( Vían Trunking Protocoí) proporciona un m edio sencillo de m antener
una configuración de VLAN coherente a través de toda la red conm utada. VTP
permite soluciones de red conm utada fácilm ente escalable a otras dim ensiones,
reduciendo la necesidad de configuración m anual de la red.
VTP es un protocolo de m ensajería de capa 2 que m antiene la m ism a
relación de la configuración V LA N a través de un dom inio de adm inistración
común, gestionando las adiciones, supresiones y cambios de nom bre de las V LA N
a través de las redes. Existen varias versiones de VTP; en el caso particular de
nuestro enfoque no es fundam ental especificar las diferencias entre ellas.
Un dom inio VTP son varios switches interconectados que com parten un
mismo entorno VTP. C ada switch se configura para residir en un único dom inio
VTP.
Copia de un show vtp statu s:

switch#show vtp status
VTP Version 1
Configuration Revision
Maximum VLANs supported locally
Number of existing VLANs
VTP Operating Mode
VTP Domain Name
VTP Pruning Mode
VTP V2 Mode
VTP Traps Generation
MD5 digest
0x30
Configuration last modified by

:

2

: 63 —
: 254

-

...

.

.. .

.

: 20
:
:
:
:
:
:

Client
damian
Enabled
Disabled
Enabled
0x38 0x3F 0x5F OxFO 0x58 0xB6 0x74

04.10.2.3 at 11-4-06 14:49:55

8.9 M O DO S DE O PE R A C IÓ N YTP
Cuando se configura V TP es im portante elegir el m odo adecuado, ya que
VTP es una herram ienta m uy potente y puede crear problem as en la red.

230

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN C C N A 640-802

© RA-M a

VTP opera en estos tres m odos:
• M odo servidor.
• M odo cliente.
• M odo transparente.

Modo
Servidor

Cliente

Modo
Transparente

Modo
Cliente

orr,:r,io VTP
En un mismo dominio VTP la información de VLAN
configurada en el servidor se transmite a todos los clientes

8.9.1 M o d o s e r v id o r
El modo VTP predeterm inado es el m odo servidor. En m odo servidor
pueden crearse, m odificar y suprim ir V LA N y otros parám etros de configuración
que afectan a todo el dom inio VTP. En m odo servidor, las configuraciones de
V LA N se guardan en la m em oria de acceso aleatoria no volátil (NVRAM ).
E n este m odo se envían y retransm iten avisos V TP y se sincroniza la
inform ación de configuración de V LA N con otros switches.

© RA-MA

CAPITULO 8. CO N M U TA CIO N DE LAN

231

E l modo servidor debe elegirse para e l switch que se usará para crear,
modificar o suprim ir VLAN.

En una red grande pueden convivir en un mismo dominio VTP varios switches
servidores trabajando de manera redundante, sin embargo esta alternativa
puede dificultar la tarea del administrador.

8.9.2 M o d o c lie n te
U n dispositivo que opera en m odo V TP cliente no puede crear, cam biar ni
suprimir VLAN.
U n cliente VTP no guarda la configuración VLAN en m em oria no volátil.
Tanto en m odo cliente com o en m odo servidor, los sw itches sincronizan su
configuración V L A N con la del sw itch que tenga el núm ero d e revisión más alto ¿n
el dominio V TP.
E n este modo se envían y retransm iten avisos V TP y se sincroniza la
información de configuración de V LA N con otros switches.

9

r ec u er d e

E l modo cliente debe configurarse para cualquier switch que se añada al
dominio VTP para prevenir un posible reemplazo de configuraciones de VLAN.

8.9.3 M odo transparente
U n sw itch que opera en V TP transparente no crea avisos V TP ni sincroniza
su configuración de VLAN con la inform ación recibida desde otros switches del
dominio de adm inistración. R eenvía los avisos V TP recibidos desde otros switches
que forman parte del m ismo dom inio de administración.

232

REDES CISCO: GUÍA DE ESTUDIO PARA LA C ERTIFICA C IÓ N CCNA 640-802

© RA-M a

U n switch configurado en el modo transparente puede crear, suprimir y
m odificar V LA N , pero los cambios no se transm iten a otros sw itches del dominio
afectan tan solo al sw itch local.

RECUERDE:
E l modo transparente debe usarse en un switch que se necesite para
avisos VTP a otros switches, pero que necesitan también capacidad para
administrar sus VLAN independientemente.

NOTA:

La pertenencia de los puertos de switch a las VLAN se asigna manualmente
puerto a puerto (pertenencia VLAN estática o basada en puertos).

8 .9 .4 R e c o r te V T P
P or defecto todas las líneas troncales transportan el tráfico de todas las
V LAN configuradas. Algún tráfico innecesario podría inundar los enlaces
perdiendo efectividad. Eí recorte o p ru n in g VTP perm ite determ inar cuál es el
tráfico que inunda el enlace troncal evitando enviarlo a los switches que no tengan
configurados puertos de la V LA N destino.

NOTA:

La VLAN1 es la VLAN de administración y se utiliza para tareas de gestión
como las publicaciones VTP, no será omitida por el Pruning VTP.

CAPÍTULO 8. C O N M U T A C IÓ N D E LAN 233

8.10 F U N D A M E N T O S P A R A E L E X A M E N
® R ecuerde y analice los conceptos sobre la m icrosegm entación y los
beneficios de la conm utación de capa 2.
o R ecuerde cuáles son los dispositivos que pueden segm entar una LAN y
cóm o sería el rendim iento de la red con cada uno de ellos.
® Estudie las tecnologías de conm utación, el funcionam iento de cada uno
de los m étodos.
® A nalice el funcionam iento del aprendizaje de direcciones de un switch.
® R azone la problem ática que generan los bucles de capa 2.
• Estudie todos los conceptos sobre STP, procesos y estados de los
puertos.
® D eterm ine las sim ilitudes y diferencias entre RSTP y STP.
• R ecuerde las razones fundam entales para el uso y aplicación de VLAN.
» A nalice los beneficios asociados del uso de VLAN.
■ T enga claras las diferencias entre un puerto de acceso y u n puerto
troncal y para qué utilizaría cada uno.
• R ecuerde qué es un enlace troncal y para qué sirve.
® M em orice los tipos de etiquetado de tram a, p ara
diferencias fundam entales entre ambos formatos.

qué sirven y las

® M em orice y analice el funcionam iento detallado de V TP, sus m odos de
operación y el recorte VTP.

C apítulo 9

CONGIFIGURACIÓN
DEL SWITCH
9.1 C O N F I G U R A C IÓ N I N I C I A L D E L S W I T C H
P ara la configuración inicial del switch se utiliza el puerto de consola
conectado a un cable transpuesto o de consola y un adaptador RJ-45 a DB-9 para
conectarse al puerto C O M 1 del ordenador. Este debe tener instalado un software de
emulación de term inal, com o el HyperTerm inal.
Los parám etros de configuración son ios siguientes:





®

El puerto COM adecuado.
9600 baudios.
8 bits de datos.
Sin paridad.
1 bit de parada.
Sin control de flujo.

236

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802
mm Ê B w m Ê B a œ m m B œ s t m s ! s

© R A -M a

j u

La imagen corresponde a una captura de pantalla de HyperTerminal

9.1.1 A sig n a c ió n d e n o m b r e y c o n tr a s e ñ a s
La asignación de un nom bre exclusivo al sw itch y las contraseñas
correspondientes se realiza en el m odo de configuración global, m ediante los
siguientes com andos:
Switch>enable
Switch#configure terminal
Switch(config)#hostname SW_MADRID
SW_MADRID (config) #eriajjl« password contranoñ*
SW_MADRID(config)#enable secret contraseña
SW_MADRID(config)#line consolé 0
SW_MADRID(config-line)#login
SW_MADRID(config-line)#password contraseña
SW_MADRID(config)#line vty 0 4
SW_MADRID(config-line)#login
SW_MADRID(config-line)#password contraseña

*

9.1.2 A signación de dirección IP
P ara configurar la dirección IP a un sw itch se debe hacer sobre una interfaz
de vían. P or defecto la VLAN 1 es V LA N nativa del switch, al asignar un
direccionam iento a la in te rfa z vían 1 se podrá adm inistrar el dispositivo vía telnet.
Si se configura otra interfaz de vían autom áticam ente queda anulada la anterior
configuración pues solo adm ite una sola interfaz de vían.
S W _ 2 9 5 0 (config)#interface vían 1
S W 2 9 5 0 ( c o n f i g - v l a n ) # i p address [dirección ip + máscara]
SW_2950(config-vlan)#no shutdown

CAPÍTULO 9. C O N FIG U R A C IÓ N DEL SWITCH

® r A-MA

237

Si el switch necesita enviar inform ación a una re d diferente a la de
administración se debe configurar un gateway.
gW 295°(config)#ip default-gateway[IP de gateway]

Para verificar la configuración IP establecida en la V L A N de gestión.
gW

2 9

S 0 #show interface vían 1

9.1.3 G uardar y borrar la configuración
Los com andos que perm iten hacer copias de seguridad de RAM a N V R A M
o TFTP, tanto de la configuración com o de la IOS del sw itch son sim ilares a los
descritos para los routers en el C apítulo 3. La siguiente sintaxis m uestra cóm o
copiar de la RAN a la N V R A M y b o n a rla posteriormente.

S w i t c h # c o p y running-config startup-config
Switch#erase

s t a r t u p - c o n f ig

Erasing the nvram filesystem will remove all files!
[confirm]
Erase of nvram:

Continue?

complete

A pesar de eliminar la configuración de la N V R A M las VLAN no se
eliminan debido a que se guardan en un archivo en la m em oria flash llamado
VLAÑ.dat.

A pesar de ser un dispositivo antiguo es importante tener en cuenta la
asignación de dirección IP en un switch 1900 y el borrado de la configuración
de la N VRAM :
SW_1900(config)#ip address [dirección ip + máscara]
SW_1900(config)#ip default-gateway[IP de gateway]
SW_1900(config)#delete nvram

238

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-MA

9.1.4 C onfiguración de puertos
La configuración básica de puertos se lleva a cabo m ediante la
determ inación de la velocidad y el modo de transm isión. Por defecto, la velocidad
asignada es la establecida según el tipo de puerto.
Switch(config)#interface FastEthernet 0/1
Switch(config-if)#speed [10 | 100 | auto]
Switch(config-if)#duplex [full | half | auto]
Switch(config-if)#no shutdown

Puede verse la ta b la M A C con las asociaciones de cada puerto con los
siguientes com andos:
Switch#show mac address-table
Switch#show mac-address-table

9.1.5 Seguridad de puertos
El com ando switchport port-security perm ite asociar la prim era dirección
M AC a dicho puerto:
Switch(config)#interface FastEthernet 0/1
Switch(config-if)#switchport port-security

La cantidad posible de direcciones M AC asociadas al puerto tiene un valor
• ...com prendido entre 1 y 132, el com ando switchport port-security maximun
perm ite establecer la cantidad m áxim a perm itida. El ejem plo ilustra la
configuración de un puerto con 10 direcciones M A C m áxim as posibles.
Switch(config)#interface FastEthernet 0/1
Switch(config-if)#switchport port-security máximum 10

En el caso de que se detecte algún intento de violación del puerto se puede
ejecutar el siguiente com ando, haciendo que el puerto quede automáticamente
cerrado.
Switch(config-if)#switchport port-security violation
[protect|res trict|shutdown]

9.2 R E C U P E R A C IÓ N DE C O N T R A SE Ñ A S
La recuperación de contraseñas le perm ite alcanzar el control
adm inistrativo de su dispositivo si ha perdido u olvidado su contraseña. Para lograr
esto necesita conseguir acceso físico a su router, ingresar sin la contraseña,
restaurar la configuración y restablecer la contraseña con un valor conocido.

CAPÍTULO 9. CO N FIG U R A CIÓ N DEL SWITCH

0 RA-MA.

239

9.2.1 P r o c e d im ie n to p a r a s w itc h e s ser ie s 2 9 0 0
P aso 1 - Apague el switch. V uelva a encenderlo m ientras presiona el botón
“M O D E ” (m odo) en la parte delantera del switch. D eje de presionar el
botón “M O D E” una vez que se apaga el LED STAT.
La siguiente inform ación debe aparecer en la pantalla:
C2950
Boot
Loader
(C2950-HBOOT-M)
Version
RELEASE
SOFTWARE (fcl)
Compiled Mon 22-Jul-02 18:57 by federtec
WS-C2950-24 starting...
Base ethernet MAC Address: 00 :0a:b7:72:2 b :40
Xmodem file system is available.

12 .1 (llr) EA1,

The system has bee n interrupted prior to initializing the
flash files
system. The following commands will initialize the flash
files system,
and finish loading the operating system software:
flash_init
loadhelper
boot

P aso 2 - Para inicializar el sistem a de archivos y term inar de cargar el
sistem a operativo, introduzca los siguientes com andos:
flash_init
load_helper
dir flash:

N o se olvide de escribir los dos puntos (:) después de la palabra “flash” en
el comando:
dir flash:

P aso 3 - Escriba re n a m e flash ¡config.text fflashrcoraílg.old para cam biar
el nom bre del archivo de configuración. E ste arc h iv o contiene la
definición de la c o n tra se ñ a .
P aso 4 - Escriba b o o t para arrancar el sistema. R esponda No a la pregunta:
Continue with the configuration dialog?

[yes/no]: N

240

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓ N CCNA 640-802

© RA-M a

Paso 5 - En el indicador del m odo EX EC privilegiado, escriba rename
flash:config.old flash:config.text para cam biar el nom bre del archivo de
configuración al nom bre original.
Paso 6 - Copie el archivo de configuración a la m em oria de la siguiente
m anera:
Switch#copy flash:config.text system:running-con£ig
Source filename [config.text] ? [enter]
Destination filename [running-config][enter]

P aso 7 - Se h a vuelto a cargar el archivo de configuración. Cam bie las
contraseñas anteriores que se desconocen com o se indica a continuación:

Switch#configure terminal
Switch(config)#no enable secret
Switch(config)#enable password contraseña nueva
Switch(config)#enable secret contraseña nueva
Switch(config)#line consolé 0
Switch(config-line)#password contraseña nueva
Switch(config-line)#exit
Switch(config)#line vty 0 15
Switch(config-line)#password contraseña nueva
Switch(config-line)#exit
Switch(config)#exit
Switch#copy running-config starLup-config '
Destination filename [startup-config]? [enter]
Building configuration...
[OK]

Switch#

9.3 C O N FIG U R A C IÓ N DE V L A N
C o n fig u ració n estática . Es la realizada por un adm inistrador creando las
V LA N y asignando m anualm ente los puertos a las respectivas VLAN. Por defecto
todos los puertos pertenecen a la VLAN1 hasta que el adm inistrador cam bie esta
configuración.
C o n fig u ració n d in ám ica. El IOS de los switches Catalyst soporta la
configuración dinám ica a través de un servidor de pertenencia de V L A N (VMPS).
El servidor VM PS puede ser un switch de gam a alta que ejecute u n sistema
operativo basado en set (CatOS).

f t R A -M A

___________________________________ CAPÍTULO 9. CONFIGURACIÓN DEL SWITCH 241

9.3.1 Configuración de VLAN en un swiích Catalyst
El proceso de configuración de una V LA N debe seguir los siguientes
pasos:
® C rear la VLAN.
® N om brar la VLAN.
® A sociar uno o más puertos a la VLAN creada.
E n la configuración de las VLAN se utiliza un nom bre que identificará
dicha VLAN, sin em bargo el sw itch solo tiene en cuenta el rango num érico de la
misma. El rango de configuración va desde 1 a 1001 y el rango am pliado va de
1006 a 4094. Las VLAN 1 y las 1002 a la 1005 son rangos reservados.

Switch(config)# vían [número de vían]
Switch(config-vlan)# ñame nombre de vían
Switch(vían)#exit
S w i t c h ( c o n f ig) # i n t e r f ace f a s t e t h e r n e t O/número de p u e r t o
S w i t c h ( c o n f ig- i f ) #switchport mode access

Switch(config-if)#switchport access vían

[número de vían]

Algunas IO S tam bién perm iten la configuración con el com ando vían
database. D e la m ism a m anera, el comando switchport mode access puede
abreviarse sim plificando en una sola línea de com andos, switchport access vían.
Switchttvlan database
Switch(vían)#vlan [número de vían]
Switch(vían)#exit

ñame nombre de vían

Switch(config)#interface fastethernet 0/número de puerto
Switch(config-if)#switchport access vían [número de vían]

RECUERDE:

La VLA N 1 es la llamada VLA N nativa o de administración, que p o r
defecto es a la que se le asigna la dirección IP de gestión del switch.

242 REDES CISCO : GUÍA D E ESTUDIO PARA LA C ER TIFICA CIÓ N CCN A 640-802

9.3.2 Configuración de VLAN en un switch 1900
Los sw itches C atalyst de la serie 1900 prácticam ente están en desuso, la
siguiente inform ación que se detalla es con carácter inform ativo. Ejem plo de la
creación de una V L A N 6 Adm inistración y su correspondiente asociación al Puerto
0 / 10 :
Sw_1900 (conf ig) ftvlan 6 name administración
Sw_1900(config)#interface ethernet 0/10
Sw_190 0 (config-i f )#vlan-membership static 6

El com ando vlan-membership asocia el puerto estáticam ente, con el
com ando static, a la V LA N 6.
Los sw itches 1900 solo poseen dos puertos FastEthem et, el 26 y el 27.
Estos puertos son llam ados A y B respectivam ente. Solo adm ite encapsulación ISL.
Sw_1900(config)#interface Fastethernet 0/26
Sw_1900(config-if)#trunk on
Sw_1900(config-if)#exit
Sw_1900(config)#exit
Sw_1900#show trunk A
DISL state:on, Trunking: on. Encapsulation type: ISL

9.4 ELIMINACIÓN DE UNA VLAN
En sw itches de las series 2900 es necesario elim inar el archivo de
inform ación de la base de datos de la V LA N que está alm acenado en la memoria
flash. Tenga especial cuidado de elim inar el archivo V LA N .dat y no otro.
Switch#vlan database
S w i t c h (vían)#no ví a n 3

El com ando para eliminar dicho archivo:
Switch#delete flash:vían.dat
Delete filename [ v ían.dat]? [Enter]
Delete f l a s h : v í a n .d a t ? [confirm][Intro]

Si no hay ningún archivo V LAN , aparece el siguiente m ensaje:
%Error deleting flashivlan.dat

(No such file or directory)

CAPÍTULO 9. CONFIGURACIÓN D EL SWITCH 243

9.5 HABILITACIÓN DEL ENLACE TRONCAL
Por defecto los puertos troncales trasladan la inform ación de todas la
VLAN configuradas, incluso la V LA N 1 que transporta los datos de gestión com o
por ejemplo VTP.
Existen tres estados de un puerto troncal.

• on, por defecto es el estado del puesto troncal (que se recom ienda).
• auto.
• desirable.
Switch(config)#interface fastethernet 0/24
Switch(config-if) #switchport mode trunk

Los switches 2950 solo poseen encapsulación 802. lq , en el caso de ser u n
switch 2900 se debe especificar la encapsulación deseada:
Switch( config) # i n t e r f a c e f a s t e t h e r n e t 0/24
S w i t c h (config- if) # s w i t c h p o r t mode trunk

Switch (config-if)#switchport trunk encapsulation

[Dotlq|lSL]

*

9.6 EN RUT AMIENTO ENTRE VLAN
Para que las V LA N puedan establecer com unicación entre ellas deben se r
necesarios los servicios de un router o un switch m ulticapa. L a interconexión puede
establecerse directam ente a través de interfaces físicas a cad a V L A N o con u n
enlace troncal. Para esto se deben establecer subinterfaces FastE them et, con su
encapsulación y dirección IP correspondiente de m anera que cada una de estas
subinterfaces pertenezca a un V LA N determinada.
L a com plem entación del filtrado de tram a en los sw itches y las listas de
acceso en los routers, hacen que la seguridad sea uno de los factores prim ordiales
en el uso de las VLAN.

244

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓ N CCNA 640-802_________ S¡ RA-MA
VLAN 2

V
V LA N

4

Enrutamiento entre VLAN con diferentes enlaces

Enrutamiento típico entre VLAN con enlaces troncales redundantes hacia los routers

Los pasos que siguen establecen las configuraciones de una subinterfaz
FastEthernet en un router:
Router(config)finterface fastethernet [N°de slot/N°de i n t e r f a z .N°de
subinterfaz]
Router(config-subif)#encapsulation [dotlq|ISL] [N°de vían]

) RA-MA

CAPÍTULO 9. CONFIGURACIÓN DEL SW ITCH 245

R o u t e r (config-subif)#ip address [direcciôn IP+mâscaral
R o u t e r ( c o n f i g - s u b i f ) #exit
R o u t e r ( c o n fig)»interface fastethernet [N°de s l o t / N “de interfaz]

Routes(config-if)#no shutdown

^R EC U ER D E:

Para que la subinterfaz esté “no shutdowrt” se debe ejecutar este
comando directamente desde la interfaz física.

9.7 CASO PRACTICO

9.7.1 Configuración de VLAN
Ejem plo de la creación de una VLAN 2 R R H H y una VLAN 3 V e n ta s y
su asociación a los puertos correspondientes, 12 y* 15 V L A N 3 y los puertos 16 al
24 (configurado por rango) V LA N 2.

i SubintGiga 0/0.1 ^
192.168.1,1/28
V ían 2 D o t lq
SubintGiga 0/0.2
200.200.10.1/16
V ían 3 D o t lq

246

REDES CISCO : GU ÍA DE ESTUDIO PARA LA CER TIFICA CIÓ N CCN A 640-802

©RA-M a

S w i t c h (config)# ví a n 3
Switch(config-vlan)# name Ventas
S w i t c h (vían)#exit
VLAN 3 added:
Name: Ventas
S w i t c h (vían)#exit
S w i t c h (config)#interface fastethernet 0/12
Switch(config-if)#switchport access v í a n 3
S w i t c h (config)#interface fastethernet 0/15
Switch(config-if)#switchport access vía n 3

S w i t c h (config)# vía n 2
S w i t c h (config-vlan)# name RRHH
Switch (vían)#exit
VLAN 2 added:
N a m e : RRHH
S w i t c h (vían)#exit
S w i t c h (config)#interface fastethernet 0/16-24
Sw i t c h (config-if)#switchport access vía n 2

El enlace troncal se realiza a través del puerto G igabitEthem et 0/1, según
m uestra la sintaxis.

Switch (conf ig) #interface G i g a b i t E t h e m e t 0/1
S w i t c h (config-if)#switchport mode trunk

9.7.2 Configuración del troncal en el router
Ejem plo de configuración de un enlace troncal sobre dos subinterfaces
G igabitEthem et:
Router (conf ig) #interf ace G i g a b i t E t h e m e t 0/0.1
Router(config-subif)#encapsulation dotlq 2
Router(config-subif)#ip address 192.168.1.1 255.255.255.0
Router(config-subif)#exit
Router (conf ig) ttinterf ace G i g a b i t E t h e m e t 0/0.2
Router(config-subif)#encapsulation dotlq 3
Router(config-subif)#ip address 200.200.10.1 255.255.255.0
Router(config-subif)#exit
Router (conf ig) #interf ace G i g a b i t E t h e m e t 0/0
Router(config-if)#no shutdown

CAPITULO 9. CONFIGURACION DEL SW ITCH 247

@ r A -M A _

9.8 VERIFICACION DE VLAN
En el resum en de la inform ación brindada por u n show vían que se
m u e s tr a a continuación se observa la asociación de las respectivas V L A N , con sus
p u e r to s asociados:

switch#show vían
VLAN Name

2

default
VENTAS

3

ADMINISTRACION

4

LOGISTICA

1

Status

Ports

active FaO/1, FaO/2, F a O / 3 , FaO/4
active Fa0/5, FaO/ 6, FaO/7, FaO/ 8 ,
Fa0/10, FaO/2 8, Fa0/30
FaO/9, FaO/11, F a O / 1 2 , FaO/13,
active FaO/14, FaO/15, F a O / 1 6 , FaO/17,
FaO/18, FaO/19, F a 0 / 2 0 , FaO/21,
active FaO/22, Fa0/23, FaO/24, FaO/25,
FaO/26, FaO/27, FaO/2 9, FaO/31,
FaO/32, FaO/3 3, F a O / 3 4 , FaO/35,
FaO/36, F aO/37, FaO/38, FaO/39,
Fa0/40, FaO/41, F a O / 4 2 , FaO/43,
FaO/44, FaO/4 5, F a O / 4 6 , FaO/47,
FaO/48

® show vían brief. M uestra la inform ación de V L A N resum ida.
® show vtp sta tu s. M uestra la inform ación del estado VTP.

• show interface trunk. M uestra los parám etros troncales.
• show spanning-tree vían N°. M uestra inform ación sobre el estado
STP.

9.9 CONFIGURACIÓN DE STP
La configuración de S T P viene habilitada por defecto. C isco desarrolló
PVST+ para que una red pueda ejecutar una instancia de ST P para cada V LA N de
la red. La creación de distintos sw itches raíz en STP por V L A N genera una red m ás
redundante. En ciertos casos será necesaria la configuración de la prioridad, cada
switch posee la m ism a prioridad predeterm inada (32768) y la elección del puente
raíz para cada V LA N se basará en la dirección M AC. Esta elección en ciertos casos
puede no ser la más conveniente.
switch(config)#spanning-tree vlan N° priority

[0-61440]

248

R ED ES

CISCO: GU ÍA D E ESTUDIO PARA LA CERTIFICACIÓ N CCNA 640-802

© RA-Ma

switch(config)#spanning-tree mode ?
xnst
Multiple spanning tree mode
pvst
Per-Vlan spanning tree mode
rapid-pvst Per-Vlan rapid spanning tree mode

switch(config)#interface Fastethernet N°
switch(config-if)#spanning-tree link-type ?
point-to-point
Consider the interface as point-to-point
shared
Consider the interface as shared

En ciertos casos será necesario desactivar STP aunque se recomienda
enfáticam ente no deshabilitar STP. En general, STP no es m uy exigente para el
procesador.
switch(config)#no spanning-tree ví a n N"

En la siguiente captura se observa resaltado la prioridad y m ás abajo el
estado y roll de los puertos

switch#show spanning-tree vlan

1

VLAN0001
Spanning tree enabled protocol ieee
Root ID
Priority
8192
Address
0 0 03.a O e a .f800
Cost
4
Port
27 (GigabitEthernetl/0/3)
Hello Time
2 sec
Max Age 20 sec
Forward
Delay 15 sec
Bridge ID Priority
32769
(priority 32768 sys-id-ext 1)
Address
0 0 1 b .9 0 b l .86 80
Hello Time
2 sec
Max Age 20 sec
Forward
Delay 15 sec
Aging Time 3 00
Interface

Role

Sts Cost

Prio.Nbr Type

Gil/0/3
Gi3/0/4

Root
Altn

FWD 4
BLK 4

128.27
128.132

P2p
P2p

9.10 CONFIGURACIÓN DE V TP
La configuración de V T P com ienza determ inando cuál será la función de
cada switch en la red. P or defecto, los sw itches vienen configurados en modo

CAPÍTULO 9. CONFIGURACIÓN DEL SWITCH 249

servidor, para cam biar a cualquiera de los otros estados se utiliza el siguiente
comando.
switch(config)#vtp mode

[servidor

| cliente

| transparente]

Se debe determ inar un nom bre de dom inio y u n a contraseña para este,
recuerde que un switch puede participar de diferentes dom inios VTP.
switch(config)#vtp domain nombre de dominio
switch(config)#vtp password contraseña

La siguiente sintaxis de un show vtp status m uestra la configuración de un
switch servidor.

switch#show vtp status
VTP Version : 2
C o n f i g u r a t i o n Revision : 0
Maxi mum VLANs supported locally : 64
Number of existing VLANs : 5
VTP Operating Mode : Servidor
VTP Domain Name : ccNa
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
MD5 digest : 0x8C 0x29 0x40 OxDD 0x7F 0x7A 0x63
Configuration last modified by 0.0.0.0 at 0-0-00 00 :00:00

9.10.1 Guardar y borrar la configuración
Los com andos que perm iten hacer copias de seguridad de RAM a N V R A M
o TFTP, tanto de la configuración com o de la IOS del sw itch son similares a los
descritos para los routers en el Capítulo 3. L a siguiente sintaxis m uestra cóm o
copiar de la R A N a la N V R A M y borrarla posteriorm ente.

Switch#copy running-config startup-config
Switchierase startup-config
Erasing the nvram filesystem will remove all files! Continue?
[confirm]
Erase of nvram: complete

252

REDES CISCO : GU ÍA DE ESTUDIO PARA LA CER TIFICA CIÓ N CCNA 640-802

© RA-M a

tiem po que dure la transm isión. Las sucesivas conexiones pueden o no
utilizar la m ism a ruta que la anterior.
Las conexiones de circuito conm utado suelen em plearse para entornos
que tengan uso esporádico, enlaces de respaldo o enlaces bajo demanda.
Este tipo de servicios tam bién pueden utilizar los servicios de telefonía
básicos m ediante una conexión asincrona conectada a un módem . Un
ejem plo es el de RDSI.
• P a q u e te s conm utados. Es un m étodo de conm utación donde los
dispositivos com parten un ún ico enlace punto-a-punto o puntom ultipunto para transportar paquetes desde un origen hacia un destino a
través de una intem etw ork portadora. Estas redes utilizan circuitos
virtuales para ofrecer conectividad, de form a perm anente o conmutada
(PV C o SVC). El destino es identificado por las cabeceras y el ancho
de b an d a es dedicado, sin em bargo una vez entregada la tram a el
proveedor puede com partirlo con otros clientes. Un ejem plo es el de
F ram e-R elay.
• C e ld a s co n m u tad a s. Es un m étodo sim ilar al de conm utación de
paquetes, solo que en lugar de se r paquetes de longitud variable se
utilizan celdas de longitud fija que se transporten sobre circuitos
virtuales. U n ejemplo es el de ATM .

10.1.2 Terminología WAN
Los térm inos y servicios asociados con las tecnologías W A N son
cuantiosos, sin em bargo los más utilizados son los siguientes:
• CPE
( Customer Premises
físicam ente en el cliente.

Equipment ):

dispositivos

ubicados

• D e m a rc a c ió n : punto en el que finaliza el CPE y com ienza el bucle
local.
® B ucle local: tam bién llam ada ú ltim a m illa, es el cableado desde la
d em arcación hasta la oficina central del proveedor.
® C O : oficina central donde se encuentra el switch CO, dentro de la red
pueden existir varios tipos de CO.

CAPITULO 10. REDES DE AREA AMPLIA 253

©IlA-M A^

Red de Pago: grupo de dispositivos y recursos que se encuentran dentro
de la nube.
S u s c rip to r

Red del ISP

Router
DTE

Sw itch CO

Zona del abonado (C P E )

Zona del p r o v e e d o r d e s e r v ic io s

::

Terminología WAN más utilizada

10.1.3 Estándares de línea serie WAN
El siguiente gráfico ilustra los diferentes tipos de conectores para las
interfaces serie:
>•a«»;-;
si

-•ígsat-*

grasas*

n

cu

cui

cu

Wi

M

ÎT [Irí


f]

e¿~£»

pr=sin

0X1 — -i- * - j a

¡ú

l :..i t
El

B

L---------------- J
EIA/TIA-232

s

i

..a

b

S

H

n ........j

L - , ------------------

EIA/TIA-449

V.35

X.21


a

ri

i .

V

t
i

B

i,:...

E1A-530

254

REDES CISCO: GUÍA DE ESTUDIO PARA LA CER TIFICA CIÓ N CCNA 640-802________

©

Los dispositivos W A N soportan los siguientes estándares de capa física® EIA /TIA-232.
• EIA /TIA -449.
• V.35.
• X.21.
• EIA-530.

La mayoría de los routers utilizan los conectores DB-60, aunque las tarjetas
W IC (W A N interface Card) utilizan una interfaz SmartSerial, lo que reduce
notablemente el tam año de las interfaces con las mismas propiedades que las
anteriores.

10.1.4 Encapsulación de capa 2 de WAN
Dependiendo de la tecnología W A N utilizada es necesario configurar el
tipo de encapsulam iento adecuado.
El siguiente com ando en el m odo interfaz habilita el encapsulam iento:
Router(config-if)#encapsulation

[tipo de encapsulación]

Entre los tipos de encapsulación W A N se detallan:
9

H D L C (High-Level Data Link Control ): es el tipo de encapsulación por
defecto de los routers Cisco, es u n protocolo de enlace de datos
síncrono propietario.

® P P P (Point-to-Point Protocol): es un protocolo estándar que ofrece

conexiones de router a router y de host a red. U tiliza enlaces síncronos y
asincronos. U tiliza m ecanism os de autenticación como PAP y CHAP.

CAPITULO 10. REDES DE AREA AMPLIA 255

• S L IP (Serial Link Internet Protocol): antecesor d e PPP ya casi e n
desuso.
• F ram e-R e lay : es un protocolo de enlace de datos conm utado y estándar
que m aneja varios circuitos virtuales para establecer las conexiones.
Posee corrección de errores y control de flujo.
• X.25/ L A P B {Link Access Procedure Balanced): antecesor de Fram eRelay m enos fiable que este último.
• A T M (Asynchonous Transfer Mode ): estándar p a ra la transmisión de
celdas de longitud fija. Se utiliza indistintam ente para voz, vídeo y
datos.

10.1.5 Intefaces WAN
Las interfaces seriales W A N responden de form a diferente a las interfaces
Ethernet. Es im portante poder identificar fallos para resolver posibles incidencias.
En muchos casos las interfaces serie tienen errores que no son locales, fallos en las
conexiones rem otas provocarán caídas inesperadas en dichas interfaces. Los
comandos show in terfa ces y show co n tro llers brindan soporte logístico para
definir errores o conflictos.
*router>show interfaces serial

0

Serial O is up, line protocol is up
Hardware is MCI Serial
Internet address is 131.108.156.98, subnet mask is 2 55.255.255.240
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usee, rely 255/255, load
1/255
Encapsulation HDLC, loopback not set, keepalive set (10 sec)
Last input 0:00:00, output 0:00:00, output hang n e v e r
Last clearing of "show interface" counters never
Output queue 0/40, 5762 drops; input queue 0/75, 301 drops
Five minute input rate 9000 bits/sec, 16 packets/sec
Five minute output rate 9000 bits/sec, 17 packets/sec
5780806 packets input,785841604 bytes, 0 no buffer
Received 7 57 broadcasts, 0 runts, 0 giants
146124 input errors, 87243 CRC, 58857 frame, 0 overrun, 0 ignored,
abort
5298821 packets output, 765669598 bytes, 0 underruns
0 output errors, 0 collisions, 2941 interface resets, 0 restarts
2 carrier transitions
Interface status line

3

256 REDES CISCO : GU ÍA D E ESTUDIO PARA LA CER TIFICA CIÓ N CC N A 640-802

En la sintaxis anterior se resalta el estado de la interfaz, errores en las
tramas, paquetes descartados, etc. Las dos sintaxis que siguen corresponden a un
router DCE y un router DTE, observe el detalle del sincronism o y tipo de conexión
RouterDCE# sh controllers serial 0/0
Interface Serial0/0
Hardware is PowerQUICC MPC860
DCE V .35, clock rate 56000
idb at 0x81081AC4, driver data structure at Ox81O84AC0
SCC R e g i s t e r s :
General [GSMR]=0x2:0x00000000, Protocol-specific [PSMR]=0x8
Events [SCCE]=0x0000 , Mask [SCCM]=0x0000, Status [SCCS]=0x00
Transmit on D e m a n d [TODR]=OxO, Data Sync [DSR]=0x7E7E
Interrupt R e g i s t e r s :
Config [CICR]= 0 x 0 0 3 6 7F80, Pending [CIPR]=OxOOOOCOOO
Mask
[CIMR]=0x00200000, In-srv
[CISR]=0x00000000
Command register [CR]=0x580
Port A [PADIR]=0x1030, [PAPAR]=0xFFFF
[PAODR]=0x0010, [PADAT]=0xCBFF
Port B [PBDIR]=0xO9C0F, [PBPAR]=0x0800E
[PBODR]=0x00000, [PBDAT]=0x3FFFD
Port C [PCDIR]=OxOOC , [PCPAR]=0x200
[PCSO]=OxC20,
[PCDAT]=0xDF2, [PCINT]=OxOOF
Receive Ring
r m d (68012830) : status 9000 length 60C address 3B6DAC4
r m d (68012838 ) : status B000 length 60C address 3B6D444
Transmit Ring
--More—
RouterDTE#sh controllers serial 0/0
Interface Serial0/0
Hardware is PowerQUICC MPC860
DTE V . 35 TX a n d R X clocks detected
idb at 0x81081AC4, driver data structure at Ox81084AC0
SCC Registers:
General [GSMR]=0x2 :0x0 0 000000, Protocol-specific [PSMR]=0x8
Events [SCCE]=0x0000, Mask [SCCM]=0x0000, Status [SCCS]=0x00
Transmit on D e m a n d [TODR]=OxO, Data Sync [DSR] =0x7E7E
Interrupt Registers:
Config [CICR] =Ox00367F80, Pending [CIPR]=OxOOOOCOOO
Mask
[CIMR]=0x00200000, In-srv
[CISR]=0x00000000
Command register [CR]=0x580
Port A [PADIR]=0x1030, [PAPAR]=0xFFFF
[PAODR]=0x0010, [PADAT]=0xCBFF
Port B [PBDIR]=0x09COF, [PBPAR]=Ox0800E
[PBODR]=0x00000, [PBDAT]=0x3FFFD
Port C [PCDIR]=0x00C, [PCPAR]=0x200
[PCSO]=0xC2 0,
[PCDAT]=0xDF2, [PCINT]=0x00F
Receive Ring
r m d (68012830) : status 9000 length 60C address 3B6DAC4
r m d (68012838) : status B000 length 60C address 3B6D444
Transmit Ring

CAPÍTULO 10. REDES DE ÁREA AMPLIA 257

0RAJVIA
'A i
- ^ RECUERDE:

Las interfaces D C E deben tener configurado el clock rate, es decir el
sincronismo o velocidad. Una interfaz local D T E puede presentar fallos si la
interfaz remota D C E no tiene correctamente configurado el valor del clock rate.
Vea el Capítulo 3. Los keepalive deben ser iguales en ambos extremos.

10.2 PR O TO C O LO PU N T O A PUNTO
P P P es un protocolo W A N de enlace de datos. S e diseñó como un
protocolo abierto para trabajar con varios protocolos de capa de red, com o IP, IPX
y Apple Talk.
Se puede considerar a PPP la versión no propietaria de H D L C , aunque el
protocolo subyacente es considerablem ente diferente. PPP ñinciona tanto con
encapsulación síncrona com o asincrona porque el protocolo usa un identificador
para denotar el inicio o el final de una trama. Dicho indicador se utiliza en las
encapsulaciones asincronas para señalar el inicio o el final de una tram a y se u sa
como una encapsulación síncrona orientada a bit. D entro de la tram a PPP el bit de
entramado es el encargado de señalar el comienzo y el fin de la tram a P PP
(identificado como 01111110). El cam po de direccionam iento de la tram a PPP es
un broadcast debido a que P P P no identifica estaciones individuales.
V

PPP se basa en el protocolo de control de enlaces L C P (Link Control
Protocol), que establece, configura y pone a prueba las conexiones de enlace de
datos que utiliza PPP. El protocolo de control de red N C P (NetWork Control
Protocol) es un conjunto de protocolos (uno por cada capa de red compatible con
PPP) que establece y configura diferentes capas de red para que funcionen a través
de PPP. Para IP, IPX y A pple Talk, las designaciones N C P son IPCP, IPXCP y
A T Á lK C P , respectivam ente.
PPP provee m ecanism os de control de errores y soporta los siguientes tipos
de interfaces físicas:
e Serie síncrona.
« Serie asincrona.
9

RDSI.

® HSSI.

258

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICA CIÓ N CCN A 640-802

© RA-M a

10.2.1 Establecimiento de una conexión PPP
El establecim iento de una sesión PPP tiene tres fases;
1. E stab lec im ien to del enlace: en esta fase cada dispositivo PPP envía
paquetes L C P para configurar y verificar el enlace de datos.
2.

A u ten ticació n : fase opcional, una vez establecido el enlace es elegido
el m étodo de autenticación. N orm alm ente los métodos de autenticación
son PAP y CHAP.

3.

P rotocolo de cap a de red: en esta fase el router envía paquetes NCP
para elegir y configurar uno o m ás protocolos de capa de red. A partir
de esta fase los datagram as pueden ser enviados.

10.2.2 Autenticación PAP
P A P (Protocolo de autenticación de contraseña) proporciona un m étodo de
autenticación sim ple utilizando un intercam bio de señales de dos vías. El proceso
de autenticación solo se realiza durante el establecim iento inicial del enlace.

Hola soy Sur

Autenticación simple con PAP

U na vez com pletada la fase de establecim iento PPP, el nodo remoto envía
repetidas veces al router extrem o su usuario y contraseña hasta que se acepta la
autenticación o se corta la conexión.

9

RECUERDE:

P A P no es un método de autenticación seguro, las contraseñas se envían
en modo abierto y no existe protección contra el registro de las mismas o los
ataques externos.

CAPITULO 10. REDES D E A R E A AMPLIA 259

10.2.3 Configuración de PPP con PAP
D efina el nom bre de usuario y la contraseña que espera recibir del router
remoto:
Router

(config) #username [nonbre

del

remoto]

password [contraseña

del

iremoto]
Para activar la encapsulación PPP con autenticación P A P en u n a interfaz se
¿che cambiar la encapsulación en dicha interfaz serial, el tipo d e autenticación y la
dirección IP:
R o u t e r (config-if)#encapsulation

PPP
authentication pap
R o u t e r (config-if)#ip address
[dirección IP+máscara]
R o u t e r (config-if)#no shutdown
R o u t e r (config-if)#ppp

O pcionalm ente puede configurar la com presión de u n softw are punto a
punto en interfaces seriales después de que haya activado la encapsulación PPP.
R o u t e r (config-if)#compress

[predictor | stac]

El com ando p p p q u aiity percentage garantiza que el enlace satisface los
requisitos de calidad que estableció, de lo contrario el enlace se cerraría.
Houter (con €ig-if) # ppp qualit'y

1-100

10.2.4 Autenticación CHAP
C H A P (Protocolo de autenticación por intercam bio de señales por desafío)
es un m étodo de autenticación m ás seguro que PAP.

Autenticación p o r desafio con CHAP

260

REDES CISCO: GU ÍA DE ESTUDIO PARA LA CERTIFICACIÓ N CCN A 640-802

© RA-Ma.

Se em plea durante el establecim iento del enlace y posteriorm ente se
verifica periódicam ente para com probar la identidad del router rem oto utilizando
señales de tres vías. La contraseña es encriptada utilizando M D5, una vez
establecido el enlace el router agrega un m ensaje desafío que es verificado por
am bos routers, si am bos coinciden, se acepta la autenticación, de lo contrario la
conexión se cierra inmediatam ente.

C H AP ofrece protección contra ataques externos mediante el uso de un
valor de desafío variable que es único e indescifrable. Esta repetición de desafíos
lim ita la posibilidad de ataques.

10=2.5 Configuración de PPP con CHAP
D efina el nom bre de usuario y la contraseña que espera recibir del router
remoto:
Router(config) jfusername nonbre del remoto password contraseña

Puede usar el m ism o nombre de host en m últiples routers cuando quiera
que el router rem oto crea que está conectado a un solo router.
P ara activar la encapsulación PPP con autenticación CHAP en una interfaz
se debe cam biar la encapsulación en dicha interfaz serial, el tipo de autenticación,
el nom bre con el que el router remoto reconocerá el local, la contraseña con la que
hará el desafío el router local y la dirección IP:
Router(config-if)#encapsulation PPP
Router(config-if)#ppp authentication chap
Router(config-if)#ip address [dirección IP+máscara]
Router(config-if)#no shutdown

Para autenticarse frente a un host desconocido debe configurar en la
interfaz correspondiente la contraseña que será enviada a los hosts que quieran
autenticar al router. Tam bién sirve para lim itar la cantidad de entradas en el router.
Router(config-if)#ppp chap password contraseña

CAPITULO 10. REDES DE AREA AM PLIA 261

0RA-MA

10.3 CASO PRACTICO

10.3.1 Configuración PPP con autenticación CHAP
Las siguientes sintaxis m uestran las configuraciones básicas de una
conexión serie punto a punto utilizando una encapsulación P PP y una autenticación
CHAP:

PPP
autenticación
CHAP

Local

-fS O /1

EO /1
192.168.0.1

203.24.33.1

192.168.0.0

Remoto

SO/O
203.24.33.2

E0/0
198.170.0,1

198.170,0.0

R outer Local:
Router (confi’g) #hostname Local
Local (config) i u s e m a m e Remoto passwotd cisco
Local(config)#interface serial 0/1
Local(config-if)#encapsulatlon PPP
Local(config-if)#ppp authentication chap
Local(config-if)#ip address 203.24.33.1 2 55.255.255.0
Local(config-if)#no shutdown
Local(config-if)#exit
Local(config)#interface ethernet 0/1
Local(config-if)#ip address 192.168.0.1 255.255.255.0
Local(config-if)#no shutdown
Local(config-if)#exit
Local(config)#router ospf 100
Local(config-router)#network 192.168.0.0 0.0.0.255 area 0
Local(config-router)#network 203.24.33.0 0.0.0.255 area 0

Router Remoto:
Router (conf ig) #hostname Remoto
Remoto(config)lusername Local password cisco
Remoto(config)#interface serial 0/0
Remoto(config-if)#clockrate 56000

262

RED ES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓ N CCN A 640-802

©RA-M A

Remoto (config-if)#encapsulation PPP
Remoto (config-if)#ppp authentication chap
Remoto(config-if)#ip address 203.24.33.2 255.255.255.0
Remoto(config-if)#no shutdown
Remoto(config)^interface ethernet 0/0
Remoto(config-if)#ip address 198.170.0.1 255.255.255.0
Remoto(config-if)#no shutdown
Remoto(config-if)#exit
Remoto (config) ttrouter ospf 100
Remoto (config-router)inetwork 198.170.0. 0 0.0.0.255 area 0
Remoto (config-router)#network 203.24.33.0 0.0.0.255 area 0

10.3.2 Verificación PPP

show in terfaces. M uestra el estado de las interfaces con su
autenticación.

debug p p p au th e n tic a tio n . M uestra el proceso de autenticación.

R o u t e r l # s h o w int bri0/0
BRIO i s s t a n d b y m o d e , l i n e p r o t o c o l i s d o w n
H a r d w a r e i s BRI
I n t e r n e t address is 10 .1.99.55/24
MTU 1 5 0 0 b y t e s , BW 54 K b i t , DLY 2 0 0 0 0 u s e e ,
r e l i a b i l i t y 255/255, tx lo a d 1/255, r x lo a d 1/255
E n capsulation PPP, l o o p b a c k n o t s e t
L a s t in p u t never, o u tp u t n ever, o u tp u t hang never
L a s t ►c l e a r i n g o f " s h o w i n t e r f a c e " c o u n t e r s n e v e r
I n p u t q u e u e : 0 / 7 5 / 0 / 0 ( s i z c / m a x / d r o p s / f liissliea) ; T o t a l o u t p u t
drops: 0
Q ueueing s tr a te g y : w eighted f a i r
O utput queue: 0/1000/64/0 (size/m ax to ta l/th r e s h o ld /d r o p s )
C onversations
0/0/16 (active/m ax activ e/m ax to ta l)
R e s e rv e d C o n v e rsa tio n s 0/0 (a llo c a te d /m a x a ll o c a t e d )
A v a i l a b l e B a n d w i d t h 48 k i l o b i t s / s e c
5 m inute input ra te 0 b its /s e c , 0 p a c k e ts /se c
5 m inute output ra te 0 b its /s e c , 0 p a c k e ts /s e c
0 p a c k e t s in p u t, 0 b y t e s , 0 no b u f f e r
R eceived 0 b ro a d c a sts, 0 ru n ts , 0 g ia n ts , 0 t h r o t t l e s
0 i n p u t e r r o r s , 0 CRC, 0 f r a m e , 0 o v e r r u n , 0 i g n o r e d , 0 a b o r t
0 p a ck e ts output, 0 bytes, 0 underruns
0 output errors, 0 c o llisio n s, 7 in te rfac e re sets
0 o u t p u t b u f f e r f a i l u r e s , 0 o u t p u t b u f f e r s swapped o u t
0 c a rrie r tran sitio n s

CAPÍTULO 10. REDES DE ÁREA AMPLIA 263

RA-MA

10.4 TRADUCCIÓN DE DIRECCIONES DE RED
N A T (Network Address Traslation ) permite acceder a Internet traduciendo
las direcciones privadas en direcciones IP registradas. Increm enta la seguridad y la
privacidad de la red local al traducir el direccionam iento interno a uno externo.
N A T tien e varias formas de trabajar según los requisitos y la flexibilidad
de que se disponga, cualquiera de ellas es sum am ente im portante a la hora de
controlar el tráfico hacia el exterior:

• Estáticamente: N A T perm ite la asignación de una a una entre las
direcciones locales y las exteriores o globales.

® Dinámicamente: N A T perm ite asignar a una red IP interna a varias
externas incluidas en un grupo o pool de direcciones.
• PAT (Port Address Traslation ): es una form a de N A T dinám ica,
com únm ente llam ada N A T sobrecargado, que asigna varias direcciones
IP internas a una sola externa. PAT utiliza núm eros de puertos de origen
únicos en la dirección global interna para distinguir entre las diferentes
traducciones.

10.4.1 Terminología NAT

*
® D irecció n loca! in te rn a : es la dirección IP asignada a un host de la red
interna.

• Dirección global interna: es la dirección IP asignada por el proveedor
de servicio que representa a la dirección local ante el mundo.

*

® Dirección local externa: es la dirección IP de un host externo tal com o
lo ve la red interna.
® D irecció n global e x tern a: es una dirección IP asignada por el
propietario a un host de la red externa.

26 4

R E D E S CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802 _________ _© RA-Ma

EO

;

10 . 10. 1.1

SO
; ' 204.204.10.1

zr

10.10.1.2

Ii-------Ñ A
T

---------/

2 0 4 .2 0 4 .1 0 .2

Traducción de una dirección de red estáticamente

D ire cció n IP
local in te rio r

t\
6 .5 .4 .7 :1 7 2 3

~~

>

1/

PA T utiliza núm eros de puertos de origen únicos en la dirección global
interna p a ra distinguir entre las diferentes traducciones

10=42 Configuración de NAT estático
Para co n fig u rar N A T estáticam ente utilice el sig u ie n te com ando:
R o u t e r (config)#ip nat inside source static

[ip interna][ip externa]

D efin a cuáles serán las interfaces de entrada y salid a y su correspondiente
direcció n IP:

CAPÍTULO 10. REDES DE ÁREA AMPLIA 265
pouter(c o n fig )S in te rfa c e [tipo][núm ero]
Router ( c o n f i g - i f ) # i p a d d r e s s [ i p de l a i n t e r f a z
Router( c o n f i g - i f ) #ip n a t in s id e
j^Q U ter ( C o n £ i g - i £ ) # n o

internan-m áscara]

sh u td o w n

pouter(c o n fig -if)# e x it
R o u te r(co n fig )# in te rfa c e
[tipo][núm ero]
R o u t e r ( c o n f i g - i f ) # ip
a d d re ss [ip de la in te r f a z
R outer( c o n f i g - i f ) #ip n a t o u ts id e
R o u t e r ( c o n f i g - i f ) #no
shutdown
Router( c o n f ig - if ) # e x it

externa-raiáscara]

10.4.3 Configuración de NAT dinámico
p a ra

P ara co n fig u rar N A T d in ám icam en te se debe crear un p o o l de direcciones,
ello utilice el siguiente com ando:

R o u te r(co n fig )# ip
netm ask[m áscara]

nat pool

no m b re

d el

p o o l[ip

inicio]

[ip

final]

D efin a u n a lista de acceso qu e perm ita solo a las d ire c c io n e s que deban
traducirse:
R outer(config)S accas-l i s t

1 perm it

[ip

interna

p e rm itid a ] [w ildcard]

A so cie la lista de acceso a! p o o l: "
R o u ter(config)#ip

nat

inside

source

list

1 pool

n o m b re

d e l

pool

D e fin a las interfaces de entrada y salida:
R o u te r(c o n fig )ftin te rfa c e [tipo][núm ero]
R o u t e r ( c o n f i g - i f ) #ip a d d r e s s [ip de l a i n t e r f a z
R o u t e r ( c o n f i g - i f ) #ip n a t in s id e
R o u t e r ( c o n f i g - i f ) #no sh u td o w n
R o u ter(co n fig -if)# ex it
R o u t e r ( c o n f i g ) # i n t e r f a c e [ t i p o ] [número]
R o u t e r (c o n f i g - i f ) #ip a d d r e s s [ip de l a i n t e r f a z
R o u t e r (c o n f i g - i f ) #ip n a t o u t s i d e
R o u t e r (c o n f i g - i f ) #no s h u t d o w n
R o u ter(co n fig -if)# ex it

interna+ m áscara]

externa+m áscara]

266

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-M a

10.4.4 Configuración de PAT
P A T o N A T so b re c a rg a d o se co n fig u ra d efiniendo u n a lista de acceso que
p erm ita so lo a las d ireccio n es que deban traducirse:
R outer(c o n fig )# a cc ess-list

1 perm it

[ip

interna

p e r m i t i d a ] [w ildcard]

A so cie d ich a lista a la interfaz de salida agregando al final el com ando
o v e rlo a d :

R o u ter(config)#ip
overload

nat

inside

source

lis t

1 in terface

[tipo][núm ero]

D e fin a las interfaces d e entrada y salida:
R
R
R
R
R
R
R
R
R
R

o u te r ( c o n fig ) # in te r f a c e [tipo][núm ero]
o u te r ( c o n f i g - i f ) # ip ad d ress [ip de la i n t e r f a z
outer(c o n fig -if)# ip nat inside
o u t e r ( c o n f i g - i f ) #no shutdow n
o u t e r (c o n f i g - i f ) # e x i t
o u te r (c o n fig )# i n t e r f a c e [tipo][núm ero]
o u te r ( c o n f i g - i f ) #ip a d d re ss [ip de la i n t e r f a z
o u te r(c o n fig -i f ) #ip n a t o u tsid e
o u t e r (c o n f i g - i f ) #no s h u td o w n
outer(c o n fig -if)# ex it

interna+ m áscara]

externa+m áscara]

10.5 CASO PRÁ CTICO

10.5.1 Configuración dinám ica de NAT
E l ejem plo m u estra la configuración de u n ro u ter con N A T dinám ico
donde se ha cread o un pool de d irecciones IP llam ado IN T E R N E T , la interfaz
entrante es la e th em et 0 /0 y la saliente la serial 0/1:
R o u t e r ( c o n f i g ) # i p n a t I NTERNET 2 0 4 . 2 0 4 . 1 0 . 2 0 2 0 4 . 2 0 4 . 1 0 . 3 0
255.255.255.0
R o u te r(c o n fig ) # a c c e s - lis t 1 perm it 1 9 2 .168.1.0 0 .0.0.255
R o u t e r ( c o n f i g ) # i p n a t i n s i d e s o u r c e l i s t 1 p o o l INTERNET
R o u t e r ( c o n f i g ) # i n t e r f a c e e t h e r n e t 0/0
R o u t e r ( c o n f ig - i f ) #ip a d d re ss 192 .1 6 8 .1 .2 5 255.255.255.0
R o u te r(c o n fig -if) #ip nat in sid e
R o u t e r ( c o n f i g - i f ) #no shutdow n

netm ask

©RA-MA

CAPÍTULO 10. REDES DE ÁREA AMPLIA 267

R o u t e r (config-if)#exit
R o u te r

(config)# interface serial

0/1

R o u t e r (config-if)#ip address 204.204.20.11 255.255.255.0
R o u t e r (config-if)#ip nat outside
Router
Router

(config-if)#no shutdown
(config-if)#exit

10.5.2 Verificación NAT
® Show ip n a t traslatio n s. M uestra las traslaciones de direcciones IP.
» Show ip n a t statistics. M uestra las estadísticas NAT.
« D ebug ip nat. M uestra los p ro ceso s de traslación de d irección.

Router# show ip nat translations
Pro I n s i d e
-----

global

171.16.233.209
171.16.233.210

Inside

local

192.168.1.95
192.168.1.89

O utside
-------

local

O utside

global

---------------

Router# show ip nat statistics
T o t a l t r a n s l a t i o n s : 2 (0 s t a t i c , 2 d y n a m i c ; 0 e x t e n d e d )
O utside i n t e r f a c e s : S e ría lo
Inside in te r f a c e s : E th e rn e tl
H its : 135
M isses: 5
Expired t r a n s l a t i o n s : 2
Dynamic m a p p i n g s :
-- I n s i d e S o u r c e
a c c e s s - l is t 1 pool net-208 re fc o u n t 2
pool n e t- 2 0 8 : netm ask 255.25 5 .2 5 5 .2 4 0
s t a r t 172.16 .2 3 3 .2 0 8 end 172.16.233.221
t y p e g e n e r i c , t o t a l a d d r e s s e s 14, a l l o c a t e d 2 (14%),

m isses

0

' 9 'R E C U E R D E :

L a s listas de acceso asociadas a N A T deben p erm itir solo el acceso a las
redes q u e se van a convertir, sea específico y no utilice el p e r m it any.

?6S

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©_RA-MA

10.6 FRAM E-RELAY
F ram e-R elay d efine el proceso para en v iar datos sobre la red pública de
datos, constituye u n a tecnología de enlace de datos o rien tad a a la conexión de alto
ren d im ien to y eficacia. F ram e-R elay deleg a en lo s p ro to co lo s de las capas
su p erio res la co rrecció n de errores (TC P).
Es un p ro to co lo basado en estándares de c a p a uno y d os del m odelo de
referen cia OSI. D e fin e la conexión entre la re d de u n p ro v eed o r de servicio y e]
d isp o sitiv o de un usu ario .
Los dispositivos F ram e-R elay se d iv id en en d o s grupos:
© D T E (D ala Terminal Equipm ent ): equipo del cliente que finaliza la
conexión F ram e-R elay.
• D C E (D a ta Circuit-Terminating Equipm ent ): son los dispositivos de
red p ro p ied ad del proveedor.

10.6.1 T e r m in o lo g ía Frame-Relay
» PVC. C ircu ito virtual perm anente. C irc u ito virtual que se establece de
form a p erm an en te. Los PVC p erm iten a h o rra r ancho de b anda asociado
con el estab lecim ien to y corte de c irc u ito s si determ inados circuitos

virtuales deben existir en todo m om ento.

• SVC. C ircu ito virtual conm utado. C ircu ito virtual que se establece de
form a d in ám ica a pedido y que se interru m p e cu ando la transm isión se
com pleta. L os SV C se u tilizan cuando la transm isión de datos es
esporádica.

e D L C I. Id en tificad o r de conexión de enlace de datos. V alo r que
especifica un PV C o SVC en u n a red Fram e-R elay. E n la especificación
F ram e-R elay básica, los D L C I son sig nificativos a nivel local (los
dispositivos conectados pueden usar d istin to s valores p ara especificar la
m ism a co n ex ión). En la especificación L M I extendida, los D LC I son
significativos a nivel global (los D L C I esp ecifican dispositivos finales
individuales).
« C IR - V elo cid ad de inform ación suscrita. V elocidad a la cual una red
Fram e-R elay acepta transferir in fo rm ació n en condiciones norm ales,
con un p ro m edio sobre un in crem en to de tiem p o m ínim o. L a C IR , que

CAPÍTULO 10. REDES DE ÁREA AMPLIA 269

jjR A -M A

se mide en bits por segundo, es una de las m étricas clave del tráfico
negociado.
® A R P inverso. Protocolo de resolución de direcciones inverso. M étodo
para crear rutas dinám icas en una red. Perm ite que un dispositivo
detecte la dirección de red de otro asociado a través de un circuito
virtual.
© L M L Interfaz de adm inistración local. Conjunto de m ejoras para la
especificación Fram e-Relay básica. La L M I incluye soporte para u n
m ecanism o de m ensajes de actividad, que verifica que los datos fluyan;
un mecanismo de m ulticast, que proporciona al servidor de red su DLCI
local y el D L C I m ulticast; direccionamiento global, que proporciona a
los DLCI significado global en lugar de sim plem ente significado local
en la red Fram e-Relay; y un mecanismo de estado, que indica el estado
en curso en los DLCI que el switch conoce.
a F E C N . N otificación explícita de congestión. Bit establecido por una red
Fram e-Relay para inform ar al DTE que recibe la tram a de que se ha
experim entado congestión en la mta desde el origen hacia el destino.
Los DTE que reciben tram as con el bit FECN establecido pueden
solicitar que los protocolos de mayor nivel tom en las acciones de
control de flujo que sean necesarias.
® B EC N . N otificación retrospectiva de congestión en la red. B it
establecido por una red Frame-Relay en las tram as que viajan en
dirección opuesta a las tram as que encuentran una ruta congestionada.
Los DTE que reciben tram as con el bit BECN ya establecido pueden
solicitar que los protocolos de mayor nivel tom en las acciones de
control de flujo que sean necesarias.

lü«6o2 Topologías Fram e-R elay
Una de las cuestiones m ás útiles que ofrece Fram e-R elay es la flexibilidad
de conexión hacia la nube Fram e-R elay. El proveedor ofrece circuitos virtuales
capaces de interconectar los sitios remotos con una topología particular.
© T opología de m alla co m p leta. Todos los routers disponen de circuitos
virtuales al resto de los destinos.
s T opología d e m alla p arcial. Es un tipo de m alla com pleta pero no
todos los sitios tienen acceso a los demás.

270

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

• T opología en estrella. Los sitios rem otos están conectados a un punto
central que por lo general ofrece un servicio o una aplicación.
"^"R E C U E R D E :

F ram e-R elay
enrutam iento.

utiliza

horizonte

dividido

para

evitar

bucles

je

10.6.3 Funcionam iento de Fram e-Relay
C ada circuito virtual está identificado de form a única por un D L C I loca!
lo que perm ite distinguir qué router está conectado a cada interfaz. Es posible
configurar m anualm ente una asignación estática en la tabla de asignaciones del
router para poder describir la relación entre el circuito virtual y la dirección de capa
3 del otro extrem o.
Las direcciones pueden asignarse tam bién de form a dinám ica mediante
A R P inverso que asocia un DLCI con la dirección del siguiente salto. Las LMI son
responsables de la adm inistración y el m antenim iento del estado de enlace de los
dispositivos. Los LM I son configurables, aunque las versiones actuales de IOS las
detectan autom áticam ente.
E x isten tres tip o s de LM I:
2

Cisco, por defecto definidas para equipos Cisco.

• A N S I.

• Q 933a.
Para iniciar el proceso de com unicación se deben producir los siguientes
pasos:
1. C ada router es conectado al sw itch Fram e-Relay por m edio de un
CSU /D SU.
2.

El router indaga el estado del circuito virtual.

3.

C uando el sw itch Fram e-Relay recibe la petición responde infonnando
los D LCI locales de los PVC a los routers remotos.

CAPÍTULO 10. REDES D E ÁREA AMPLIA 27 1

¿ rA-MA

4.

Por cada DLCI activo los routers envían un paquete ARP inverso q u e
contiene la dirección IP correspondiente a cada circuito virtual.

5.

Los routers rem otos crean tablas que incluyen los D LC I locales y las
direcciones IP.

6.

Cada 60 segundos se envían los mensajes ARP inverso.

7.

C ada 10 segundos se intercam bia inform ación LMI.

Dentro de la nube Fram e-Relay el switch crea tablas co n la relación q ue
tienen cada puerto/slot con los DLCI de los routers remotos.

10.6.4 Configuración básica de Frame-Relay
El prim er paso dentro de la configuración de Fram e-R elay es el de la
activación de la interfaz que conecta a dicho router con una C SU /D SU , conectada a
su vez con el switch del proveedor.
A dem ás de la dirección IP correspondiente se debe establecer el tipo de
encapsulación:
® I E T F para equ ip o s no C isco.

*
® C isco para equipos Cisco, en el caso de elegir esta encapsulación n o
hará falta especificarla.
Router(config)Kinterface Serial 1
R o u t e r ( c o n f ig - i f ) # i p a d d re ss [ d i r e c ti o n IP+m áscara]
R o u te r(c o n fig -if) ttencapsulation fram e-relay [ c i s c o / i e t f ]
R o u t e r ( c o n f i g - i f ) # b a n d w i d t h [ v a l o r d e l a n c h o d e b a n d a e n Kbps]

Si fuera necesario, según la versión de IOS, configurar LM I:
R o u ter(c o n fig -if) #fram e-relay

lm i-type

[cisco/anci/q933a]

ARP inverso está activado por defecto, si fuera necesario activarlo:
R o u ter(c o n fig -if)#fram e-relay

inverse-arp

[protocolo]

[dlci]

272

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

D onde:

® p ro to co lo : IP, IPX , appleta.lk, decnet, etc.
«5

d k i : n ú m e ro de dlci de la in terfaz local, v alor en tre el 16 y 1007.

10=6=5 Configuración estática de Fram e-Relay
C uan d o un ro u te r no soporta A R P in v e rs o , o cuando se quiere controlar el
tráfico sobre los circu ito s virtuales, se debe d e fin ir estáticam en te u n a tabla de
d irección rem o ta y su D LCI.
A p artir de la configuración b ásica se ag re g a el m apco estático:
R o u t e r ( c o n f i g - i f ) # f r a m a - r e l a y map [ p r o t o c o l o ] [ d i r e c c i ó n
d e s t i n o ] [DLCI l o c a l ] [ b r o a d c a s t ] [ i e t f / c i s c o ] [ p a y l o a d - c o m p r e s s

paket-

by-paket]

D onde se d e fin e el tipo de protocolo, la direcció n IP del destino y el DLCI
local. C o n d isp o sitiv o s C isco no es necesaria la co n fig u ra ció n de la encapsulación,
m ientras que c o n d isp o sitivos no C isco se deb e utilizar IE T F . L os parám etros
restantes so n o p c io n a le s y habilitan el envío de difusiones y la com presión de
sobrecarga.

10=6=6 Configuración de tas suM nteríaccs Fram e-Relay
Al e sta b le c e r u n a conexión con un C S U /D S U se p u e d e n abastecer varios
PV C en un a so la co n exión física. P ara este fin es n ecesario configurar
subinterfaces q ue a c tú e n com o interfaces lógicas conectadas a los PV C.
U na su b in te rfa z no tiene form a pred eterm in ad a de conexión y puede
co nfigurase com o:
o P u n to a p u n to : cada su b in terfaz e sta b le c e una co nexión PV C directa
p u n to a punto con su co rresp o n d ien te router rem oto. El tráfico de
a c tu a liz a c ió n de enrutam iento N O e stá sujeto a la regla del horizonte
d ividido.
o M ulíipjirat© : una subinterfaz e stab lece m últiples conexiones PVC a
trav és de la nube F ram e-R elay a varias interfaces físicas o subinterfaces
de los ro u ters rem otos. El tráfico de a ctu alizació n de enrutam iento está
sujeto a la reg la del h o rizonte dividido.

CAPÍTULO 10. REDES DE ÁREA AMPLIA 273

,£> r A-MA

P roceso de co n fig u ra c ió n de subinterfaces.
® S clcccione la interfaz e n la que creará las su b in terfaces y verifique la no
existencia d e direccio n am ien to de capa tres (este p aso es fu n dam ental).
Si tiene d u d a s ejecute un no ip a d d re ss sobre la interfaz.
o C onfigure la en cap su lació n Fram e-R elay co rresp o n d ien te en d ic h a
interfaz.
® Seleccione la su b in terfaz y si se u tilizará co m o punto a p u n to o
m ultipunto, rango de 0-4.294.967.295. R ecu erd e que no tien en v a lo r
p redeterm inado.
0

C onfigure el valor de D L C í local en la su b in terfaz, ran g o de 16-1007.

L a siguiente sintaxis d e sc rib e la configuración d e las su b in terfa ce s F ram e -

Relay.
R o u t e r ( c o n f i g ) # i n t e r f a c e S e r i a l [número]
R o u L e r ( c o n f ig - i f ) #no i p a d d re ss
R o u te r(c o n fig -if)#encapsulation fram e-relay
R ou ter(co n fig -if)# ex it
R o u t e r ( c o n f i g ) # i n t e r f a c e s e r i a l [núm ero. número de
subinterfaz] [m ultipoint/point-to-point]
R o u t e r ( c o n f i g - s u b i f ) # f r a m e - r e l a y i n t e r f a c e - d l c i [ DLCI l o c a l ]

10.7 CASO PRÁ CTICO

10.7.1 Configuración estática de Fram e-Relay
La siguiente to p o lo g ía m u e stra una conexión sim p le F ram e-R elay punto a

punto.

274

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© ram a

Fram e-R elay
ORIGEN
DLCI=110
1 0 .1 6 .0 . 1 /2 4

REMOTO
DLCI=100
1 0 . 1 6 .0 . 2 /2 4

ORIGEN(config)#interface Serial 1
O R I G E N (config-if)#ip address 10. 16.0.1 255.255.255.0
ORIGEN(config-if)#encapsulation frame-reiay
ORIGEN(config-if)#bandwidth 64
ORIGEN(config-if)#frame-relay map ip 10.16.0.2 110 broadcast
R E M O T O (config)ttinterface Serial 2
R E M O T O (config-if)#ip address 10.IS.0.2 255.255.255.0
R E M O T O (config-if)#encapsulation frame-relay
R E M O T O (config-if)#bandwidth 64
R E M O T O (config-if)#frame-relay map ip 10.16.0.1 100 broadcast

10.7.2 Configuración de una nube Frame-Relay
La siguiente topología m uestra una nube Fram e-Relay con conexiones
multipunto.B erlín

50.1 192.190.10.2/24 DLCI 31
50.2 200.200,10.2/24 DLCI 40_
V ie n a

P aris

F r a m e - R e la y

S0.1 192.180.10.2/24 DLCI 21~)
50.1 192.170.10.1/24 DLCI 16
50.2 192.180.10.1/24 DLCI 20
SO. 3 1 9 2 .1 90.10.1/24 DLCI 30

CAPÍTULO 10. REDES DE ÁREA AMPLIA 275

,prA-M a
R o u te r

T ipo de interfaz

D irección IP

DLCI

In te r fa z rem ota

Paris

Serial ü. 1

192.170.10.1/24

16

Serial 0.1 Roma

Paris

Serial 0.2

192.180.10.1/24

20

Serial 0.1 Viena

Paris

Serial 0.3

192.190.10.1/24

30

Serial 0.1 Berlin

Berlin

Serial 0.1

192.190.10.2/24

31

Serial 0.3 Paris

Berlin

Serial 0.2

200.200.10.2/24

40

Serial 0.2 Roma

Viena

Serial 0.1

192.180.10.2/24

21

Serial 0.2 Paris

Roma

Serial O.i

192.170.10.2/24

17

Serial 0.1 Paris

Roma

Serial 0.2

200.200.10.3/24

41

Serial 0.2 Berlin

C onfiguración routers rem otos:
Paris#config
P a r i s (config »interface Serial 0
P a r i s (config- if)#no ip address
Paris(config- if)»encapsulation frame-relay
ráriú(conf 2.g~ if ^tfTio shutdown
P a r i s (config- if)»exit
Paris(config) # interface serial 0.1 multipoint
P a r i s (config- subif)#ip address 192.170.10.1 2 5 5.255.255 .0
Paris(config- subif)»description CONEXION A ROMA
Paris(conf ig- subif)»Frame-relay interface-dlci 16
Paris(config- subif)»exit
Paris(config) # interface serial 0.2 multipoint
P a r i s (config- subif)#ip address 192.180.10.1 255.255.255.0
Paris(config- subif)»description CONEXION A VIENA
Paris(config- subif)»Frame-relay interface-dlci 20
Paris(config- subif)»exit
Paris(config) # interface serial 0.3 multipoint
P a r i s (config- subif)»ip address 192.190.10.1 255.255.255.0
Paris(config- subif)»description CONEXION A BERLIN
Paris(config- subif)»Frame-relay interface-dlci 30
Paris(config- subif)»exit
Paris(config) » router rip
P a r i s (config- router)»network 192.17 0.10.0
Paris(config- router)»network 192.180.10.0
P a r i s (config- router)»network 192.190.10.0

•776

RFPES CISCO: GUÍA DH ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

Berlin#con.fig t

Berlin (config) (tinterf ace Serial 0
B e r l i n c o n f i g - i f )# n o ip address
B e r l i n ( c o n f i g - i f )((encapsulation f r a m s - r e l a y
B e r l i n ( c o n f i g - i f )# n o shutdown

Berlin(config-if) ((exit
Berlin (config) ((interface serial 0.1 multipoint
Berlin(config-subif)#ip address 192.190.10.2 255.255.255.0
Berlin(config-subif)#description CONEXION A PARIS
Berlin (config-subif) ((Frame-relay interface-dlci 31
Berlin(config-subif)¡(exit
Berlin(config)#interface serial 0.2 multipoint
Berlin(config-subif)#ip address 220.200.10.2 255.255.255.0
Berlin (conf ig-subif ) ¡(description CONEXION A ROMA
Berlin(config-subif)¡(Frame-relay interface-dlci 40
Berlin(config-subif)#exit
Berlin (config) (frouter rip
Berlin (config-router) ((network 220.200.10.0
Berlin (conf i g-router)¡(network 192 .190 .10.0
Viena#config t
Viena(config)#interface Serial 0
Viena(config-if)#no ip address
Viena(config-if)#encapsulation frame-relay
V i e n a (config-if)#no shutdown
Viena(config-if)#exit
Viena(config)#interface serial 0.1 multipoint
Viena(config-subif)#ip address 192.180.10.2 2 55.255.255.0
Viena (conf ig-subif) ¡(description CONEXION A PARIS
Viena(config-subif)#Frame-relay interface-dlci 21
Viena(config-subif)#exit
Visns'config)irouter rip
Viena (conf ig-router) ((network 192.180.10.0
Roma#config t
Roma(config)# interface Serial 0
Roma(config-if)# no ip address
Roma(config-if)# encapsulation frame-relay
Roma(config-if)# no shutdown
Roma(config-if)#exit
Roma(config)# interface serial 0.1 multipoint
Roma(config-subif)# ip address 192.170.10.2 255.255.255.0
Roma(config-subif)((description CONEXION A PARIS
Roma(config-subif)((Frame-relay interface-dlci 17
Roma(config-subif)#exit
Roma(config)# interface serial 0.2 multipoint
Roma(config-subif)# ip address 220.200.10.3 255.255.255.0
Roma (config-subif) ((description CONEXION A BERLIN
Roma(config-subif)#Frame-relay interface-dlci 41
Roma (config-subif) ¡(exit
R o m a (config)# router rip
Roma(config-router)# network 220.200.10.0
Roma(config-router)# network 192.170.10.0

f, A MA

CAPITULO 10. REDES DE AREA AMPLIA
-----------------------------------------------------------------------------------------

Configuración de switch Frame-Relay:
jraine-relay (confi g) # frame-relay switching

*** C onfigurar Interfaz SO Conectada directam ente con París ***
frame-relay(config)# interface SerialO
frame-relay(config-if)# no ip address
frame-relay(config-if)# encapsulation frame-relay
f r a m e - relay(config-if)#description
CONEXION A PARIS
frame-relay(config-if)# clock rate 56000
frame-relay(config-if)# frame-relay
intf-type dee
frame-relay(config-if)# frame-relay
route 16interface serial 117
f r a m e - r e l a y (config-if)# frame-relay
route 20interface serial 2 2
1
frame-relay(config-if)# frame-relay
route 30interface serial 331
frame-relay(config-if)# no shutdown

*** C onfigurar Interfaz S I Conectada directam ente con Rom a ***
frame-relay(config)# interface Seriali
frame-relay(config-if)# no ip address
frame-relay(config-if)# encapsulation frame-relay
frame-relay(config-i f )idescription CONEXION A ROMA
frame-relay(config-if)# clock rate 56000
frame-relay(config-if)# frame-relay intf-type dee
frame-relay(config-if)# frame-relay route 17 interface serial 0 16
frame-relay (config-if)<# frame-relay route 41 interface serial 3 40
frame-relay(config-if)# no shutdown

*** C onfigurar Interfaz S2 Conectada directam ente con Viena ***
frame-relay(config)# interface Serial2
frame-relay(config-if)# no ip address
frame-relay(config-if)# encapsulation frame-relay
frame-relay(config-if)#description CONEXION A V I E N A
frame-relay(config-if)# clock rate 56000
frame-relay(config-if)# frame-relay intf-type dee
frame-relay(config-i f )# frame-relay route 21 interface serial
frame-relay(config-if)# no shutdown

*** C onfigurar Interfaz S3 Conectada directam ente con Berlin
fram
fram
fram
fram
fram

e -re la y (c o n fig )# in te r f a c e Serial3
e - r e l a y ( c o n f i g - i f )# no ip ad d ress
e - r e l a y ( c o n f i g - i f )# e n c a p s u la tio n f r a m e - r e la y
e - r e l a y ( c o n f i g - i f ) ^ d e s c r i p t i o n CONEXION A B E R L I N
e - r e l a y ( c o n f i g - i f )# c l o c k r a t e 56000

0 20

278

REDES CISCO: GUÍA DË ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

O RA-Ma

frame-relay(config-i f )# frame-relay intf-type dee
frame-relay(config-i f )# frame-relay route 31 interface serial 0 30
frame-relay(config-if)# frame-relay route 40 interface serial 1 41
frame-relay(config-i f )# no shutdown
frame-relay#show frame-relay route

10.7.3 Verificados! F ram e-R elay '
® Show in terfaces. M u estra el estad o de la co n ex ió n F ram e-R elay.
* S h o w f r a m e - r e la y Im i. M uestra las estad ísticas de tráfico LMI.

9 Show fra m e -re la y pvc. M u estra la co n ex ió n y las estadísticas de
tráfico , B E C N , FE C N , D L C I, etc.
® S how f r a m e - r e la y m a p . M u e stra la in fo rm ació n contenida en los
m ap as, co m o p o r ejem plo IP m ap ead as a las D LC I.
» D ebug fra m e -re la y lm i. V erifica si se en v ían y recib en paquetes LM I.
router#

show frame-relay pvc 16

PVC S t a t i s t i c s

for

in terface

POS5/0

( F r a m e R e l a y NNI )

DL CI = 1 6 , D L C I USAGE = SWITCHED, PVC STATUS = I NA C T I V E ,
POS5/0

LOCAL PVC STATUS - I N A C T I V E . N N T PVC STATUS - ACT I VE
input p k ts 0
output p k ts 0
out bytes 0
d ro p p e d p k t s 100
i n BECN p k t s 0
o u t FECN p k t s 0
i n DE p k t s 0
o u t DE p k t s 0
out b east pkts 0
out beast bytes
0
sw itched p k ts 0
D e tailed packet drop counters:
no out i n t f 0
o u t i n t f down 100
i n PVC d o w n 0
o u t PVC d o w n 0
pvc c r e a te tim e 0 0 :2 5 :3 2 , l a s t tim e pvc s t a t u s

in
bytes 0
in
FECN p k t s 0
o u t BECN p k t s 0

n o o u t PVC 0
pkt too b ig 0
changed 00:06:31

Router# show frama-relay map
S e r i a l 1 ( a d m i n i s t r a t i v e l y down):
d l c i 177 ( O x B l , 0 x 2 d 0 ) , s t a t i c ,
broadcast,

ip

131.108.177.177

CISCO
TCP/IP H e a d e r

C om pression

(inherited),

passive

I NTERFACE =

(inherited)

g, r a -MA

CAPÍTULO 10. REDES DE ÁREA AMPLIA 279

10.8 INTRODUCCIÓN A VPN
Una V P N (Red Privada V irtual) se utiliza principalm ente para conectar d o s
redes privadas a través de la red pública de datos. Sin em bargo puede tener varias
aplicaciones m ás. Un túnel es básicam ente un método para encapsular un protocolo
en otro. La existencia de protocolos no enrutables hacen que el uso de las VPN se a
im prescindible para enviar el tráfico que utiliza este tipo de protocolos. Incluso
para otros tipos de protocolos enrutables cuya dificultad de enrutam iento es
elevada, se hace más sencillo cuando este se envía por un túnel.
Otra buena razón para la utilización de túneles es evitar los problem as q u e
suelen dar los protocolos de enrutam iento en redes extrem adam ente grandes debido
a que m uchas veces su arquitectura no coincide en tipos de protocolos o entre
áreas.
Los túneles son sum am ente útiles en laboratorios o am bientes de prueba
donde se intenta em ular las topologías de red más complejas.
Existen muchas variaciones diferentes para la configuración de las V PN ,
aun para las m ás com unes. E n el caso de este.libro se utilizará como ejemplo de
configuración la de túneles G R E (Generic Routing Encapsulatiori) que es u na
norma abierta. Existen varias versiones de GRE, la versión 0 es la común, la
versión 1 tam bién llamada P P T P (Point to Point Tunneling P rotocol) incluye una
capa interm edia PPP, mientras que GRE soporta directam ente protocolos de capa 3
como IP e IPX. GRE no utiliza TCP ni UDP, trabaja directam ente con IP,
identificado con el núm ero 47. Posee características propias de entrega,
verificación e integridad.

10.8,1 Funcionamiento de las VPN
* Los routers encapsulan los paquetes IP con la etiqueta G R E y los envían
por la red al router de destino al final del túnel, el router rem oto desencapsula los
paquetes quitándoles la etiqueta G R E dejándolos listos para enrularlos localmente.
El paquete GRE pudo haber cruzado una gran cantidad de router para alcanzar su
destino, sin em bargo para este, solo ha efecniado un único salto hacia el destino.
Esto significa que en el encabezado IP el tiempo de vida del paquete T T L {Time
To Live) se ha incrementado una vez.
E xisten otros protocolos como IP -in-IP (IP sobre IP) que utiliza el
número 4 de referencia de protocolo. Es un protocolo abierto pero aun así G R E
ofrece m ayor flexibilidad particulannente con los routers Cisco.

280

REOES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802__________

La utilización de las V PN obliga m uchas veces a los routers a segmentar
los paquetes para enviarlos a través del túnel debido a que su tam año excede la
M TU (U nidad de Transm isión M áxim a) que estos pu ed en so p o rtar. En ciertos
casos pueden existir dificultades con las aplicaciones que ven las cabeceras de los
paquetes IP duplicadas, sin em bargo, esto ocurre en raros casos. Cuando el router
no puede segm entar el paquete debe descartarlos, en estos casos envía mensajes
ICM P al dispositivo origen para que regule el tam año de los paquetes. Como
resultado final de este proceso es que para el uso eficaz de las VPN el tamaño de
las M T U debe reducirse.
B ásicam ente las V PN deben proporcionar:
® Confidencialidad.
e Integridad.
© Autenticación.

10,8.2 ¡PSec
IPSec (Protocolo de Internet Seguro) es un conjunto de protocolos y
algoritm os de seguridad diseñados para la protección del tráfico de red para
trabajar con IPv4 e IPv6 de m odo transparente o m odo túnel que soporta una gran
variedad de encriptaciones y autenticaciones. El principio básico de
funcionam iento de IPSec es la independencia algorítm ica que le permite efectuar
cam bios de algoritm os si alguien descubre un fallo crítico o si existe otro más
eficaz.
IPSec está diseñado para proporcionar seguridad sobre la capa de red IP,
por lo tanto, puede ser utilizado eficazm ente sobre protocolos como TCP, UDP,
ICM P y otros. Esto es muy importante porque significa que se puede usar IPSec
con protocolos o aplicaciones inseguras logrando un excelente nivel de seguridad
global.
IPSec se introdujo para proporcionar servicios de seguridad tales como:
o Encriptar el tráfico de manera segura para que no pueda ser leído por
nadie m ás que las partes a las que está dirigido.
o V alidar la integridad de los datos, asegurando que el tráfico no ha sido
m odificado a lo largo de su trayecto.

CAPÍTULO 10. R.EDES DE ÁREA AMPLIA 281

» A u ten ticar a los ex trem o s reconociendo el tráfico que proviene de u n
ex trem o seguro y validado.
* A n ti-rep etició n ev itan d o la repetición de la sesión seg u ra.
L am entablem ente, d e b id o a la gran p ro lifera ció n de protocolos y
a|aoritm os, algu n o s p ro p ietario s, com o IS A K M P (Internet Security Association
fcey M anagement Protocol), IK E (Internet Key Exchange ) o B H (Diffie-Hellmcin ),
pueden p ro d u cir co n fu sio n es a la h o ra de las co n figuraciones. P articu larm en te
desarrollarem os los casos m ás com unes.
IPS ec u tiliza dos p ro to co lo s im portantes de seguridad:
® A H (Authentication H eader) incluye un sistem a de autenticación
criptográfico en el en cab ezad o del paquete IP q u e le p erm ite aseg u rar
que los datos no se h an m anipulado de form a alg u n a , y que realm ente
viene del d ispositivo de la fuente correcta. A H no e n c rip ta d irectam ente
los datos.
• E S P (Encapsulating Security Pcryload) p ro p o rc io n a en c n p tac ió n a la
carga útil del p aq u ete p a ra el envío seguro de los d atos. Se utiliza p a r a
p ro teg er tanto la conex ió n com o los datos. La m a y o r parte de sistem as
utilizan ESP.
L a au ten ticació n y la e n crip tació n se utilizan en fu n c io n es co m p letam en te
diferentes pero abso lu tam en te com plem entarias. Al u sar IP S e c, es su m am ente
recom endable el u so de am bos proto co lo s.

10.83 Modos de operación de IPSec
IP S ec tiene dos m odos p rin cip ales de fu ncionam iento, m o d o tú n e l y m o d o
tr a n s p o r te . En el m odo tún el, to d o el paquete IP (d ato s m ás cabeceras d el
m ensaje) es cifrado y/o autenticado. D ebe ser entonces e n c a p su la d o e n un n u e v o
paquete IP para que fu n cio n e el enrutam iento. El m o d o túnel se utiliza p a r a
co m unicaciones red a red, VPN. E n m odo transporte, solo la c a rg a útil (los d a to s
que se tran sfieren ) del p aq u ete IP es cifrada y/o au ten ticad a. El en ru tam ien to
perm an ece intacto, ya que no se m o d ific a ni se cifra la ca b ec era IP. E ste m étodo s e
usa p a ra co m u n icacio n es de o rd en ad o r a ordenador.
C uan d o se utiliza la cab ecera de autenticación (A H ), las direcciones IP n o
pued en ser traducidas, d eb id o al cifrado que sufren los datos. L as capas d e
tran sp o rte y aplicació n están siem pre aseguradas por un e n crip tad o , de form a q u e

282

R E D E S CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

no pueden ser m odificadas de ninguna m anera (por ejem plo, traduciendo l0s
núm eros de puerto TC P y UDP). Una form a de encapsular m ensajes IPSec para
atrav esar N A T es u tilizan d o N A T -T (N A T Traversai).

10,9 CA SO PR A C TIC O

10,9.1 Configuración de urna VPN de router a router
Se describe a continuación la configuración de un túnel GRE en una VPN
de router a router según la siguiente topología.

I u nn el O
1 9 2 .1 6 8 .1 .1 /3 0
SO/O 1 7 2 .1 6 .1 .1 /2 4

/

/

In te rn e t

Sitio central
Route!
Túnel GRE

T

!
E 0 /0
1 9 2 .1 6 8 .1 5 .1 /2 4

19 2 .1 6 8 .1 5 .0 /2 4
T unnel 1
1 9 2 .1 6 8 .1 .2 /3 0
SO/O 1 7 2 .1 5 .3 .2 /2 4

Router 1:

RouterlSconfigure terminai
Enter configuration commands, one per line.
End with CNTL/Z.
R o u t e r l (config)#crypto isakmp policy 10
R o u t e r l (config-isakmp)lencr aes 256
R o u t e r l (config-isakmp)#authentication pre-share
Ro u t e r l (config-isakmp)#group 2

CAPÍTULO 10. REDES DE ÁREA AMPLIA 283

,0 r A-M^_

Routerl con f ig-isakmp)#exit

Routerl config)#crypto isakmp key TUNEL01 address 172.16.2.1 noxauth
Routerl Conf ig) ttcrypto ipsec; transform-s«t TUNNEL TRANSFORM ali-sha{imac e s p -aes 256
Routerl

cfg-crypto-trans)#mode transport

Routerl cfg-crypto-trans)#exit

Routsrl config)#crypto map TUNELMAPA 10 ipsec-isakmp
Routerl config-crypto-map)#set peer 172.16.2.1
Routerl config-crypto-map)#set transform-set TUNNEL-TRANSFORM
Routerl config-crypto-map)ttmatch address 102
Routerl config-crypto-map)#axit
R o u t e r l config)#access-list 102 permit gre host 172.16.1.1 host
1 7 2 . 1 6 - .1
Routerl config)#interface TunnelO
Routerl config-if)#ip address 192.168.1.1 2 55.255.255.252
Routerl config-if)itunnel source 172.16.1.1
Routerl config-if)#tunnel destination 172.16.2.1
Routerl config-if)#exit
Routerl config)#interface Serial 0/0
Routerl config-if)#ip address 172.16.1.1 255.255.255.0
Routerl config-if)#ip access-group 101 in
Routerl config-if)#crypto map TUNELMAPA
Routerl config-if)#exit
Routerl config)#interface FastEthernet0/0
Routerl config-if)#ip address 192.168.16.1 255.255.255.0
Routerl config-if)#no shutdown
Routerl config-i f )#exit
Routerl config)#accass-list 101 permit gre host 172.16.2.1 host
172.16.

.1

..

......

Routerl config)(access-l i a t 101 permit esp host 172.16.2.1
1 7 2 . 1 6 . .1
Routerl config)#access-list 101 permit udp host 172.16.2.1
1 7 2 . 1 6 . .1 eq isakmp
Routerl config)#access-list 101 permit ahp host 172.16.2.1
1 7 2 . 1 6 . .1
R o u t e r l config)#access-list 101 deny ip any any log
R o u t , e r l config)#interface LoopbackO
R o u t e r l config-if)#ip address 192.168.16.1 2 5 5.255.255.0
R o u t e r l config-if)#exit
R o u t e r l config)#ip route 192.168.15.0 255.255.255.0 Tunnel
R o u t e r l config)#and

host
host
host

0

R outer 2:
Router2#configure terminal
Enter configuration commands, ons per line.
End with CNTL/Z.
Router2(config)#crypto isakmp policy 10
Router2(config-isakmp)iencr aes 256
Router2(config-isakmp)(authentication pre-share
Router2(config-isakmp)#group 2

284

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

Router 2 (config-isakmp)#exit
Router2(config)#crypto isakmp key TUNEL01 address 172.16.1.1
Router2(config)#crypto ipsec transform-sat TUNNEL-TRANSFORM ah-s
hmac esp-aes 256
Router2(cfg-crypto-trans)#mode transport
Router2(cfg-crypto-trans)#exit
Router2(config)#crypto map TUNELMAPA 10 ip s e c -isakmp
Router2(config-crypto-map)#set peer 172.16.1.1
Router2(config-crypto-map)#set transform-set TUNNEL-TRANSFORM
Router2(config-crypto-map)#match address 102
Router2(config-crypto-map)#exit
Router2(config)#access-list 102 permit gre host 172.16.2.1 host
172.16.1.1
Router2(config)#interface Tunnell
Router2(config-if)#ip address 192.168.1.2 2 55.255.255.252
Router2(config-if)#tunnel source 172.16.2.1
Router2(config-if)#tunnel destination 172.16.1.1
Router2(config-if)#exit
Router2(config)#interface Serial 0/0
Router2(config-if)#ip address 172.16.2.1 255.255.255.0
Router2(config-if)#ip access-group 101 in
Router2(config-if)ftcrypto map TUNELMAPA
Router2(config-if)#exit
Router2(config)#interface FastEthernet0/0
Router2(config-if)#ip address 132.168.15.1 255.255.255.0
Router 2 (config-if)#no shutdown
Router2(config-if)#exit
Router2(config)#access-list 101 permit gre host 172.16.1.1 host
172.16.2 .1
Router2(config)#access-list 101 permit esp host 172.16,1.1 host
172.16.2.1
Router2(config)#access-list 101 permit udp host 172.16.1.1 host
172.16.2.1 eg isakmp
Router2(config)#access-list 101 permit ahp host 172.16.1.1 host
172.16.2.1
Router2(config)#access-list 101 deny ip any any log
Router2(config)#interface LoopbackO
Router2(config-if)#ip address 192.168.15.1 255.255.255.0
Router2(config-if)#exit
Router2(config)#ip route 0.0.0.0 0.0.0.0 172.16.2.2
Router2(config)#ip route 192.168.16.0 255.255.255.0 Tunnel 1
Router2 (config) fiend

CAPÍTULO 10. REDES DE ÁREA AMPLIA 285

10.10 ACCESO REMOTO

10.10.1 Acceso p o r cable
Las tecnologías de acceso por cable son actualm ente las más populares y
proporcionan conectividad m ediante redes M AN a com unidades, edificios,
empresas, etcposible efectuar transmisiones de señales de televisión, conexión
a internet y telefonía por el mismo medio.

La transm isión m últiple de señales a través de un cable se realiza p o r
medio de la m odulación de la señal. L a modulación es la adición de inform ación a
una señal portadora electrónica u óptica. La voz utiliza solam ente una pequeña
parte de la frecuencias disponibles en los cables de par trenzado.

10.10.2 Acceso por DCL
Las líneas DSL (Digital Suscriber Line) son soluciones com unes de acceso
que cuentan con la ventaja añadida de que se pueden utilizar sobre la
infraestrucrura telefónica existente, lo que hace innecesario desplegar un nuevo
cable para su implementación.
La im plem entación de esta tecnología es económ ica gracias al uso del
cableado existente pero guarda ciertas limitaciones como: .
® La distancia del proveedor al cliente.
® Interferencias de radiofrecuencia.
9

N o puede ser im plem entada sobre fibra óptica.

» A tenuación y degradación de la señal en largas distancias.
Existen dos variantes de DSL:
o ADSL, DSL A sim étrica. Las velocidades de subida y bajada son
diferentes. Es la más popular para uso domestico o pequeñas oficinas.
® SDSL, ASL Sim étrica. Las velocidades de subida y bajada
idénticas.

son

286

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© Ra j ^

10.11 FUNDAMENTOS PARA EL EXAMEN
® Estudie las term inologías, estándares y conexiones utilizadas en las
redes W AN.
• Recuerde los tipos de encapsulación de capa 2 de las redes WAN. • M em orice los conceptos sobre PPP y los pasos en el establecim iento de
una sesión PPP.
® T enga en cuenta los tipos de autenticaciones PPP y sus diferencias
fundam entales.
a Estudie los fundam entos sobre N A T, los diferentes
configuraciones y para qué se utilizan en cada caso.

tipos

de

® Recuerde las term inologías em pleadas en la tarea de configuración de
NAT.
• Analice el proceso de traslación de una dirección IP a otra.
® Recuerde los fundam entos de Fram e-Relay, sus term inologías y
funcionam iento.
s A nalice el funcionam iento de las diferentes topologías Fram e-Relay y
qué tipo de subinterfaz se utiliza en cada caso.
• R ecuerde exactam ente los tipos de encapsulado, LMI y DLCI que
utiliza Fram e-Relay.
® Estudie los fundam entos y funciones de una VPN.
® A nalice la seguridad que
funcionam iento de IPSec.

debe

proporcionar

una

VPN

y

el

a Estudie, analice y ejercite en dispositivos reales o en sim uladores todos
los com andos necesarios para las configuraciones de PPP, N A T y
Fram e-Relay y todos los com andos para su verificación.
» Recuerde las tecnologías de acceso remoto, analice para qué em plearía
cada una.

A p é n d ic e A

PREPARATIVOS PARA
EL EXAMEN
11.1 VISIÓN GENERAL DEL EXAMEN
A partir de 1998, Cisco System s, Inc. anunció una nueva iniciativa de
desarrollo profesional llam ada Cisco Career Certifications. H asta la fecha estas
certificaciones han satisfecho las exigencias de los m ejores profesionales y
empresas del mercado.
La certificación C C N A (Cisco Certified Nétwórk 'Associate) es una de ias
certificaciones a nivel m undial m ás popular y valorada por las industrias
informáticas y la base fundam ental p ara entrar al m undo de las comunicaciones de
datos. Estar en poder de esta certificación abre las puertas a todos aquellos que
pretenden avanzar hacia certificaciones profesionales tales com o el CCNP, C CD P
o CCSP. Un técnico CCNA está capacitado para realizar tareas tales como:
® Instalar y configurar routers y switches Cisco y otros.
® Llevar a cabo tareas de m antenim iento en redes m ultiprotocolo L A N y
W AN.
o D esanollar tareas de soporte de Nivel 1.
e M ejorar y asegurar el rendimiento de las redes.

288

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

Los conocim ientos de un técnico CCNA incluyen entre otros:
* M an ejar y configurar p rotocolos de en rutam iento.

® C onocer y configurar tecnologías de acceso.
® A dm inistrar y configurar seguridad a través de listas de acceso.
• Crear y dar soporte a redes virtuales, etc.
Un técnico certificado puede desarrollar un abanico de tareas profesionales
que van desde tareas de campo hasta soporte técnico incluyendo tareas de pre o
post venta e instalaciones.

11.1.1 Titulación y certificación
La exigencia laboral en la actualidad ha llevado a que los postulantes a
diferentes puestos de trabajo posean una severa preparación, no solo a nivel
universitario y lingüístico sino tam bién en especializaciones de diversos
fabricantes. Estas especializaciones convalidan conocim ientos, habilidades y
requisitos propios de ese fabricante, que es lo que se llama certificación.
U na certificación es, entonces, una calificación obtenida por una persona a
través de un organism o certificador que ha cum plido con los requisitos mínimos
im puestos por dicha corporación. Las em presas o fabricantes utilizan estos
organism os com o herram ientas para otorgar sus certificaciones a través de
evaluaciones teórico prácticas, no obstante estos ho intervienen en la elaboración
de los tópicos otem arios que son propios de cada fabricante.
En este caso el valor añadido de la certificación CCNA es su valía en el
m ercado laboral.
U na persona en posesión de un título de grado académ ico puede completar
su capacitación a través de una o varias certificaciones acorde a las tareas que
desee desarrollar en su ámbito laboral. Por lo tanto, una certificación como el
CCNA perm ite, por ejem plo, que un Ingeniero en Telecom unicaciones que posee
un abanico muy am plio de conocim ientos pueda especializarse aun más, o que un
Ingeniero Industrial pueda re-orientar su form ación hacia otros aspectos de la vida
laboral. Lo que es aún igual de im portante es la posibilidad que brinda la
certificación a todos aquellos que por diversas circunstancias no poseen títulos
académ icos y quieran especializarse.

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 289

g rA-MA

11.1.2

Requisitos p ara el exam en

C om o se dijo en los p árrafo s anteriores, la o b ten ció n d e una c e rtific a c ió n
se consigue a través de u n org an ism o certificador, com o p u ed e serlo, en el caso d e l
CCNA, la em p resa V U E (h ttp ://w w w .v u e.co m ).

Los requisitos de edad para presentarse al examen de certificación C C N A
deben cum plir las políticas de privacidad de Cisco y son los siguientes:
® Los m enores de 13 años no pueden presentarse al exam en.
® Las personas de entre 13 y 17 años pueden presentarse al exam en de
certificación con e! consentim iento de los padres o tutores.
® Las personas m ayores de 18 años pueden presentase sin ningún tipo de
restricción.
No es necesario poseer ninguna titulación académ ica o certificación previa.
Sin em bargo, el C CN A será un requisito previo para otras certificaciones
profesionales.
Los candidatos deben asum ir el com prom iso de integridad y
confidencialidad de Cisco prohibiendo acciones que describan cualquier
información acerca del examen de certificación.
.
(http://w w w .cisco.com /w eb/leam ing/dow nloads/C isco-C areerC ertifications-and-Confidentiality-Agreem ent_v 13 .pdf)

11.1.3 C aracterísticas del examen
' Actualm ente existen dos formas de obtener la certificación CCNA, a través
de uno o dos exámenes. Siendo la mejor recomendación hacerlo por la vía rápida,
es decir un solo examen. Los tipos y números de exámenes so n los siguientes:
a En un solo examen: 640-802 CCNA.
© En dos exámenes:
O

640-822 IC N D 1
640-816 IC N D 2

290

REDES CISCO'. GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

Las características del examen son las siguientes:
® Duración: 90 minutos. El exam en en inglés en países hispano parlantes
se sum an 20 m inutos más.
® Cantidad de preguntas: aproxim adam ente 55. M ínimo dos simuladores
de routers. Existe una base de datos de donde se seleccionan
aleatoriam ente las preguntas.
® Idiomas: inglés, español, chino, ruso, coreano, francés, portugués y
japonés.
® Aprobación: 849 sobre 1000. El puntaje asignado a cada pregunta puede
variar, incluso cabe la posibilidad de que algunas preguntas no puntúen.
• Fechas y horarios:
examinación.

según

la

disponibilidad

de

los

centros de

Personalm ente recom iendo el examen 802 en el idioma local, quien diga
que le ha ido mal en el examen porque la traducción es errónea es porque no ha
esúidiado lo suficiente.
El exam en c o n sta de diferentes tipos y m o d alid a d es de preguntas:

®
®
®
®
o

Respuesta única a partir de opciones m últiples.
R espuestas m últiples a partir de opciones m últiples.
R espuestas tipo "drag and drop” .
Com pletar los espacios en blanco,
C onfiguración de routers con sim ulador.

Los contenidos del examen CCNA 640-802 pueden resum irse en:
a Principios de networking.
a M odelo OSI y TCP/IP.
e Im plem entación de subredes y VLSM.
s A dm inistración del Cisco IOS.
® Enrutam iento IP.
e A dm inistración de redes Cisco,
a Conm utación LAN, VLAN y trunking.
® Redes w ireless LAN.
® Listas de control de acceso,
a Tecnologías W AN.

©RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 291

P ara m ás información sobre localización de centros de certificación
autorizados, requisitos, horarios, precios u otro tipo de inform ación puede
consultarse la W eb de P earson-V ue en http://www.vue.com.
http://w w w .cisco.com /w eb/learning/dow nloads/C isco-C areerQ ertifications-and-C onfidentiality-Agreem ent_yl3.pdf
Para m ayor inform ación respecto a duración de los exám enes, idiomas
disponibles o cualquier otro tipo de duda sobre la certificación CCNA es posible
consultar la Web de Cisco en:
http://w w w .cisco.com /w eb/learning/le3/le2/le37/lel0/learning_certification
type_home.html.
E s im portante resaltar que una vez iniciado el exam en no se puede
retroceder en la secuencia de las preguntas, ni que se puede avanzar dejando la
respuesta en blanco, es decir, sin responder.
L as certificaciones suelen tener un tiempo de caducidad, en el caso del
CCNA el tiem po de validez de la certificación es de tres años. P uede re-certificarse
con un exam en similar, o antes de la fecha de caducidad co n cualquier examen
superior tipo 642-XXX.

íl-AA Preparativos p ara el examen
A probar el examen de certificación no es una tarea fácil pero tam poco
imposible. Existen diferentes m aneras de preparación, que van desde cursos bajo la
plataform a de Cisco (C N A P), cursos intensivos (ICND) o libre a través de
diferentes bibliografías y prácticas. Lo único y fundamental aunque parezca u n a
obviedad, es estudiar.
En lo personal y después de varios años de experiencia docente y
recabando inform ación de los propios alumnos debo decir q ue ningún método es
perfecto y que hacer recom endaciones es una tarea delicada. Si se es alumno de
una academ ia una vez finalizado el curso completo se debe centrar la atención en el
examen, no es 1o mismo prepararse para el examen de certificación que para un
curso. Si la intención es presentarse p o r cuenta propia se deben estudiar a fondo
todos los conceptos contenidos en el examen incluso los m ás insignificantes, no
sirve de nada la experiencia laboral, son ideas diferentes. Com o ejemplo, son
típicos los casos de alumnos avanzados, con amplia experiencia laboral con routers
y sw itches pero que no sabían crear subredes (una de las cuestiones mínimas
indispensables de las que hablaba), el fracaso es rotundo.

292

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

ÎL^A-M a

11,1.5 Recomendaciones p ara la presentación al examen
N o hay truco ni magia. Realizar test de preguntas, estudiar en grupo
consultar toda la bibliografía disponible, Internet es lo m ás obvio. M uchas veces un
aluvión de nuevos conocim ientos puede ser contraproducente. Cuando un alum no
desaprueba reiteradas veces, seguram ente no será porque le falten conocimientos
sino porque le falte exactitud, rapidez y confianza.
Previo a com enzar el examen se podrán hacer las anotaciones necesarias
como ayuda m em oria. C ontrolar el tiem po cada cierto periodo. Si estando en la
pregunta 30, por ejem plo quedan 20 minutos es un mal pronóstico.
Tener siem pre en cuenta que no es posible volver atrás, y que no se puede
avanzar sin responder. Probar el correcto funcionam iento de las topologías de los
sim uladores y guardar las configuraciones con el com ando respectivo. Los
com andos ayuda no funcionan, estudiar los com andos completos.
Las preguntas que siguen a continuación son una base de ayuda para el
exam en, de ninguna m anera son garantía de aprobación sin el conocimiento
adecuado. Se han realizado cuidadosam ente intentando que se parezcan lo más
posible al examen.

11.2 C U E ST IO N A R IO TEM A TIC O
1.

¿Que tipo de conm utación LAN espera a que la ventana de colisión pase
antes de m irar la dirección de hardware de destino en la tabla de filtro MAC
y enviar la tram a?
A.
B.
C.
D.

M étodo de corte.
A lm acenam iento y envío.
V erificación de fragmentos.
Libre de fragm entos.
R espuesta: D
Página: 219

2.

¿Cuál de los com andos que se proponen a continuación deberá seguir a esta
línea de com andos?
a ccess-list

A.
B.

110

deny

tep

any any eq

access-list

110

deny

ip

access-list

110

deny

tep

ftp

any any
any any

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 293

-MA
C.

access-list

110 p e r m i t

ip

any

D.

access-list

110

ip

any any

perm it

Respuesta: l)
Página: 207

¿Cuántos tipos de LM I están disponibles en los routers C isco?
A.
B.
C.
D.

Dos.
Tres.
Cuatro.
Cinco.
Respuesta: B
Página: 270

Considerando una m áscara de subred 255.255.255.224, ¿cuál de las
siguientes direcciones puede ser asignada a un nodo de red? (elija 3)
A.
B.
C.
D.
E.
F.

15.234.118.63
92.11.178.93
134.178.18.56
192.168.16.87
201.45.116.159
217.63.12.192 *
Respuesta: B, C, D
Página: 71

Se ha asignado a su cargo a un técnico novato que n ecesita saber cuál de los
siguientes modos son válidos cuando un puerto del sw itch se utiliza como un
Ironcal de VLAN. ¿Qué podría decirle? (elija 3 opciones).
A.
B.
C.
D.
E.
F.

B loquing.
Auto.
Desirable.
On.
Transparent.
Learning.
Respuesta: B, C, D
Página:243

294
6.

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-MA

¿Cuáles son los tres com andos que se pueden utilizar para verificar listas de
acceso IP?
A. show
B. show
C. show
D. show

interfaces
ip interfaces
running-config
access-lists
Respuesta: B, C, D
Página: 213

7.

Se ha adquirido un router que estaba operativo en otra empresa, y lo ha
configuiado en su laboratorio de acuerdo a las necesidades de su red. Luego
de com pletar las tareas de configuración ha ejecutado el com ando copy
ru n n in g co n fig sta rtu p -c o n flg para guardar su configuración en la NVRAM.
A caba de apagar el dispositivo y lo ha instalado en el rack de producción.
D espués de conectar nuevam ente el router, ha encendido el dispositivo y este
arrancó en m odo setu p . H a entrado en el modo privilegiado y al ejecutar un
show s ta rtu p -c o n fig puede com probar que su configuración se encuentra
allí.
¿Cuál de las siguientes podría ser la causa del problem a?
A. Un fallo en el hardware del router que determ ina que este no lea la
■configuración alm acenada en la N V R A M .
B. La configuración de respaldo guardada en la flash se ha corrompido
y no puede ser analizada.
C. El registro de configuración está configurado para saltear la lectura
del archivo de configuración.
D. La configuración de respaldo en la N V R A M se ha corrom pido y no
puede ser analizada.
Respuesta: D
Página: 109

8.

¿Cuál de las siguientes es una métrica por defecto utilizada por RIP? (elija

2).
A.
B.
C.
D.
E.

16 ms.
C antidad de routers en la red.
N úm ero de saltos.
16 saltos = inalcanzable.
U ltim o salto disponible.

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 295

Q RA-MA

Respuesta: C, D
Página: 150
9.

¿Cuál de las siguientes listas de acceso perm itirá solo tráfico H TTP a la red
196.15.7.0?
A.

access-list

100

perm it

tcp

any

1 9 6 . 1 5 . 7 .0

0.0 .0 .2 5 5

eq

WWW

B.
C.
I).
E.

access -lis t

10

access-list

100 p e r m i t

deny

tcp

196.15.7.0

any

1 9 6.15.7.0

access-list

110

perm it

ip

access-list

110

perm it

www 1 9 6 . 1 5 . 7 . 0

any

e q www

0 . 0 . 0 . 2 55 e q

www

196.15.7. 0 0.0 .0. 255
0 .0.0.255

Respuesta: A
Página: 202

10. ¿Cuál de las siguientes afirm aciones es verdadera respecto de la secuencia de
com andos que se m uestra m ás abajo? (elija todas las que se apliquen).
Router(config)#interface loopback 0
Router(config-if)#ip address 192.168.16.24 255.255.255.255

A. Crea una interfaz virtual, solo a nivel de softw are.
B. Provee una vía para verificar la convergencia de las actualizaciones
de enrutam iento OSPF.’
C. La m ascara de subred 255.255.255.255 se denom ina m áscara de
nodo.
D. U tiliza una m áscara de wildcard de 25 5 .2 5 5 .2 5 5 .2 5 5
E. A segura que la interfaz está siempre activa para los procesos O SPF.
F . Este com ando puede ser utilizado exclusivam ente para configurar
interfaces seriales.
Respuesta: A, C
Página: 120, 73

11. Se ha dispuesto realizar una actualización de la docum entación de la red .
U na de las tareas que se consideran es la docum entación del nombre d e la
im agen del IOS de cada router de la red. ¿Qué com ando deberá utilizar p a ra
encontrar esta inform ación?
A.

Router#show p ro to c o ls

B.

Router#show v e r s ió n

C.

Routerishow imagen

D.

Router#show

I OS

296

RE DES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

E.

Router#show

©RA-M a

flash

Respuesta: B
Página: 121

12.

¿C uál de los siguientes com andos m ostrará la lista de acceso extendida 187?
(elija 2).
A.
B.
C.
D.

show

ip

in terfaces

show

ip

access-lists

show

access-lists

187

show

access-lists

187
Respuesta: B, C
Página: 213

13. ¿Cuál de las siguientes opciones es proporcionada por el comando show cdp
e n try *? (elija todas las que se apliquen).
A.
B.
C.
D.
E.
F.
G.
H.
I.
J.
K.

D irección IP del router colindante.
Inform ación del protocolo.
Plataform a.
Capacidad.
Tiem po.
ID del pnerto.
Tiem po de espera.
La m ism a inform ación que show versión.
La ID del dispositivo colindante.
La interfaz local.
La velocidad del enlace.
Respuesta: A, B, C,

D, F, G, I, J
Página: 136

14. ¿Para qué se utiliza la distancia administrativa en el enrutam iento?
A. D eterm inar al adm inistrador de red para entrar en esa ruta.
B. C rear una base de datos.
C. Calificar la confiabilidad del origen, expresada como un valor
num érico de 0 a 255.
D. Calificar la confiabilidad del origen, expresada como un valor
num érico de 0 a 1023.

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 297

RA-MA

R esp u esta: C
P ágina: 91, 92

15. ¿Cuáles de los siguientes protocolos incluye la suite PPP? (elija 3).
A.
B.
C.
D.
E.

HDLC
LCP
SDLC
NCP
LAPB
R espuesta: A, B, D
P ágina: 257

16. ¿Cómo se denom inan las unidades de datos de protocolo en la capa de enlace
de datos?
A. Tramas.
B. Paquetes.
C. D iag ram as.
D. Transportes.
E. Segmentos.
F. Bits.
R espuesta: A
P ág in a: 43, 49

17. ¿Cuál es el protocolo y cuál es el propósito de la siguiente dirección?
238.255.255.255
A. IPX, un broadcast SAP.
B. IP, una dirección de multicast.
C. IP, una dirección reservada.
D. IP, una dirección de broadcast.
E. IPX, un broadcast inundado.
F. IP, una dirección de unicast.
R espuesta: B
P ágina: 68

18.

¿Cuáles son los cuatro estados que atraviesa un puerto de un switch que
im plem enta el Protocolo de Árbol de Expansión (STP)?

298

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

A.
B.
C.
D.
E.
F.
G.
H.
I.

©RA -M a

Aprendiendo.
Aprendido.
E scu ch ad o .

Oído.
Escuchando.
Enviando.
Enviado.
Bloqueando.
Reuniendo.
Respuesta: A, E, F, H
Página: 224

19. ¿Cuál de los siguientes elem entos es utilizado por las listas de acceso IP
extendidas com o base para perm itir o denegar paquetes?
A.
B.
C.
D.
E.

Dirección de origen.
Dirección de destino.
Protocolo.
Puerto.
Todas las anteriores.
Respuesta: E
Página: 196

20. ¿Qué protocolo se utiliza con' PPP para establecer, configurar y autenticar
una conexión de enlace de datos?
A.
B.
C.
D.

LCP.
NCP.
HDLC.
X.25.
Respuesta: A
Página: 257

21. Si estuviera diseñando una red y necesitara dividir los dom inios de colisión,
¿en qué capa del m odelo Cisco proporcionaría esta función?
A.
B.
C.
D.
E.

Física.
De acceso.
Principal.
De red.
De distribución.

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 299

0 RA-MA

F.

De enlace de datos.
R esp u esta: B
P á g i n a : 52

22. Fram e-Relay im plem enta un recurso que le permite prevenir la caída del
PVC por falta de actividad. ¿Cuál es el nombre de este recurso?
.4.
B.
C.
D.
E.
F.

DLCI.
BECN.
FECN.
LM I.
CIR.
De.
R esp u esta: D
P ágina: 269

23. ¿Qué es horizonte dividido?
A. C uando un router reconoce a qué interfaz ha llegado una
actualización y no publica esa inform ación a través de la misma
interfaz.
B. C uando se tiene una red física de bus grande y este divide el tráfico.
C Impide nue las actualizaciones regulares hagan difusión a través de
un enlace inactivo.
D. Evita que los m ensajes de actualización regulares vuelvan a
anunciar que una ruta está inactiva.
R espuesta: A
P ág in a: 96

24. ¿Cuáles de los siguientes son dos tipos de PDU que pertenecen a la capa de
red?
A.
B.
C.
D.
E.
F.

Datos.
Rutas.
Estáticos.
D inám icos.
Principal.
Segm entos.
Respuesta: A , B
P ágin a: 48, 49

300

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

25. ¿C uáles de los siguientes son protocolos de la capa de aplicación que forman
parte de la suite T C P/IP? (elija 3).
A.
B.
C.
D.
E.

ARP.
HTTP.
SM TP.
FTP.
ICM P.
Respuesta: B, C, D
Página: 55

26. ¿C uál es el com ando correcto para configurar com o identificación del router
el nom bre S p a in , que un adm inistrador vería al conectarse por Telnet o a
través de la consola?
»
A.
B.
C.
D.
¥?

JCLi.

description
banner

m otd

hostnam e
host
.

s e i

Spain

R outer

$ Spain

$

Spain

name
. . ..

Spain
j_ /-1

p x u u ip tl

_

.

ÍDjJcULiJ.

Respuesta: C
Página: 112

27. A! iniciar un router por prim era vez, ¿desde dónde se carga por defecto el
Cisco IO S?
A.
B.
C.
D.

B oot ROM .
NVRAM .
Flash.
ROM.
Respuesta: C
Página: 104,108

28. H aga coincidir los núm eros decim ales y hexadécim ales de la izquierda con
sus correspondientes expresiones en formato binario en la colum na de la
derecha. N o todas las opciones de la izquierda tienen correspondencia en la
derecha.

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 301

© RA-VIA
O x fl
O x lf

10101010

19 2
96

l i OOOOOO

0x9f
0xf9

11 110 001

85
17 0

imoooi

Respuesta:
10101010
11000000
11110001
10011111

es 170 en notación decimal,
es 192 en notación decimal,
es f l en notación hexadecimal o 241 en decimal,
es 9 f en notación hexadecimal o 159 en decimal.

Página: 63

29. ¿Para qué se utiliza IARP?
A.
B.
C.
D.

M apear direcciones X.21 a direcciones X.25.
M apear DLCI a direcciones de protocolo de red.
D ireccionam iento SM DS.
M apear direcciones A TM a direcciones virtuales.
Respuesta: B
Página: 269, 270

30. ¿Qué dirección de difusión utilizará el host 192.168.210.5 255.255.255.252?
A.
B.
C.
D.

192.168.210.255
192.168.210.254
192.168.210.7
192.168.210.15
Respuesta: C
Página: 71

31. ¿En qué capa del modelo OS1 se convierte la inform ación codificada en Is y
Os en una señal digital?

A. Física.
B. Transporte.

302

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

C. E n lace de datos.
D. R ed.
R espuesta: A
P ágina: 23, 24

32. Si n e c e sita te n e r una dirección de red C lase B d iv id id a en 510 subredes, ¿qué
m á sc a ra de sub red d eb e asignar?
A.
B.
C.
D.

2 5 5 .2 5 5 .2 5 5.252
2 5 5 .2 5 5 .2 5 5.128
2 5 5 .2 5 5 .0 .0
2 5 5 .2 5 5 .2 5 5 .1 9 2
R espuesta: B
Página: 71

3 3. ¿ P a ra qué n ecesita un D L C I de F ram e-R elay el R o u ter^A al m om ento de
e n c a p su la r u n a tram a?
A.
B.
C.
D.
E.

D efin ir la señ alizació n está n d ar entre el R o u ter_ A y el sw itch.
Id en tificar el circuito entre el R outer_A y el sw itch.
Id en tificar el circuito entre el R outer B y el sw itch.
Id en tificar la en cap su lació n u tilizada en tre R outer_A y R outer_B .
D efin ir la señalizació n está n d a r entre R o u ter_ R y el sw itch.
R espuesta: C
Página: 268, 270

34. E x iste u n a línea d e d ic ad a co n fig u rad a en una p eq u eñ a o ficin a que se conecta
co n las oficinas corp orativas. La co m pañía desea te n e r u n a línea de respaldo
e co n ó m ica en caso de que la línea dedicada salga de servicio.
¿Q u é tipo de servicio W A N eleg iría p ara respaldar la línea dedicada?
A. F ram e-R elay con SV C.
B. L ínea dedicada.

C. ADSL.
D. ATM .
Respuesta: C
Página: 285

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN

© RA -M A

35.

3 03

0En qué capa del m o d elo C isco se definirían los dom inios de d ifu sió n ?
A.
B.
C.
D.
E.
F.

Principal.
De red.
Física.
D istrib u ció n .
A cceso.
T ran sp o rte.
R espuesta: D
P ág in a: 52

36.

D os sw itch es, lla m a d o s M adrid y C órdoba, han sido con fig u rad o s p a ra
u tilizar V TP, p ero no están com partiendo los m ensajes V T P . D e acuerdo a la
inform ación que se m u estra en las siguientes sintaxis, ¿a qué se debe?
M adrid#show v t p s t a t u s
VTP v e r s i ó n : 2
C o n fig u ratio n R evision: 0
Ma x i mu m VLANs s u p p o r t e d l o c a l l y :
N u m b e r o f e x i s t i n g VLANs : 5
VTP O p e r a t i n g M o d e : S e r v e r
VTP D o m a i n N a m e : S a l t a
VTP P r u n n i n g M o d e : D i s a b l e d
VTP V2 M o d e : D i s a b l e d
VTP T r a p s G e n e r a t i o n D i s a b l e d

Cordobatfshow v t p s t a t u s
VTP v e r s i ó n : 2
C onfig u ratio n R evision: 0
M a x i m u m VLANs s u p p o r t e d l o c a l l y :
N u m b e r o f e x i s t i n g VLANs : 5
VTP O p e r a t i n g M o d e : S e r v e r
VTP D o m a i n N a m e : C o r d o b a
VTP P r u n n i n g M o d e : D i s a b l e d
VTP V2 M o d e : D i s a b l e d
VTP T r a p s G e n e r a t i o n D i s a b l e d

A.
B.
C.
D.
E.

64

64

El m o d o V T P V2 n o está en o peración.
El m o d o de reco rte V T P está deshabilitado.
El n o m b re de d om inio V TP está configurado incorrectam ente.
N o se h a co n fig u rad o para que o p ere en m o d o V T P.
La v ersió n de V T P está m al co n figurada.
Respuesta: C
P ágina: 229, 248

304

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© Ra _m a

37. ¿ C u áles son los dos co m andos que m u e stra n la tabla de direcciones M A C ?
A.

show mac a d d r e s s - t a b l e

B.
C.
D.

show t a b l e

show m a c - a d d r e s s - t a b l e

show i p

mac a d d r e s s

routé

mac

table

Respuesta: A, B
Página: 238
38. ¿C uál d e los sig u ien tes com andos g lo b a le s con fig u rará de m o d o estático el
n ú m e ro m áx im o de direcciones M A C que pu ed en ser asignadas a una
in te rfa z del sw itch?

A.

interface

vían

B.

interface

v l a n l -maximum

C.
D.
E.

shitch

port

1 maximum

security

[value]
[value]

maximaum

[value]

shitchport

p o rt-secu rity

maximaum

[value]

shitchport

port

maximaum

[value]

security

R espuesta: D
Página: 238

39. ¿Qué co m an d o se utiliza para im p ed ir que las actualizacio n es
e n ru ta m ie n to se p u b liq u en a través de u n a in terfaz en particular?

A.

R o u t e r ( c o n f i g - i f ) #no r o u t e r

B.

R o u te r(c o n fig -if) K passive-in te rfa c e

rip

C.

R o u ter(co n fig -ro u ter)# p assiv e-in terface

D.
E.

R o u te r(c o n fig -if)ttp assiv e-in terface
R outer(config-router)#no

routing

sO

sO

updates

R espuesta: C
Página: 152

40. ¿E n qu é capa del m o d elo O SI se deben u b icar los puentes?
A.
B.
C.
D.

Física.
T ransporte.
E nlace de datos.
Red.
Respuesta: C
Página: 31

de

APÉNDICE A. PREPARATIVOS PARA. EL EXAMEN 305

© rA-MA

41. Tomando en consideración el diagrama de red que se presenta, asum a que los

puertos 1 a 3 están asignados a la VLAN1 y los puertos 4 a 6 están asignados
a la V LAN 2 en cada svvitch. Los svvitches están interconectados a través de
un enlace troncal. ¿Cuál de las siguientes condiciones verificará la propiedad
de las VLAN y la operación del troncal? (elija 3).

SW1

P C 1-1

PC 4-1

Troncal

A.
B.
C.
D.
E.

El
El
El
El
El

nodo
nodo
nodo
nodo
nodo

1-1
1-1
1-1
4-1
4-1

puede hacer ping al nodo 1-2.
puede hacer ping al nodo 4-2.
no puede hacer ping al nodo 1-2.
no puede hacer ping al nodo 1-2.
puede hacer ping al nodo 4-2.
R espuesta: A, D, E
P ágina: 225

42.

Su gerente está interesado en las diferencias entre los sistem as Ethernet halfduplex y full-duplex. ¿Cuáles de las siguientes afirm aciones son verdaderas
/esp ec io de Ethernet half-duplex? (elija 2).
A. Ethernet half-duplex opera en dom inios de colisión compartidos.
B. Ethernet half-duplex opera en dom inios de colisión privados.

C. Ethernet half- duplex tiene un ancho de banda efectivo mayor.
D. Ethernet half-duplex tiene un ancho de banda efectivo menor.
E. Ethernet half-duplex opera en un dom inio de difusión privado.
R e s p u e s ta : A , D
P á g in a : 43

306

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA -M a

43. ¿Qué capa del m odelo OSI proporciona la traducción de los datos?
A. A plicación.
B. Presentación.
C . S esión.

D. Transporte.
E. Enlace de datos.
R espuesta: B
P ágina: 42

44. ¿Cuál es el rango de números que determ ina una lista de acceso IPX

extendida?
A . 100-199
B . 900-999
C . 1000-1999
D . 700-799
R espuesta: B
P ágina: 201

45. ¿Cuáles de las siguientes funciones pueden proporcionar los routers? (elija
todas las que se apliquen).
A. D ivisión de dom inios de colisión.
B. D ivisión de dominios de broadcasL
C. D ireccionam iento lógico de redes.
D. Filtrado de direcciones físicas de la red local.
R espuesta: A, B, C, D
Página: 103

46. ¿C uáles de las siguientes afirm aciones describen adecuadamente el protocolo
de enrutam iento O SPF? (elija 2).
A.
B.
C.
D.
E.

Soporta V LSM .
Se utiliza para enrutar entre sistem as autónomos.
A cota la inestabilidad de la red a una única área de la red.
Increm enta el tráfico de enrutam iento que circula en la red.
Perm ite un control amplio de las actualizaciones de enrutam iento.

F.

Es m ás sim p le de co n fig u rar que R IP v2.
Respuesta: A , C, E
Página: 168

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 307

© r a -m a

47.

¿En qué capa del modelo de tres capas de Cisco se utilizan típicam ente los
routers?
A.
B.
C.
D.
E.

Acceso.
Principal.
Red.
Enlace de datos.
Distribución.
R esp u esta: E
P ág in a: 52

48.

¿Cuántos bits definen una dirección de hardware?
A . 6 bits.
B. 16 bits.
C . 46 bits.
D. 48 bits.
R esp u esta: D
P á g in a : 32

49.

De las tecnologías enunciadas a continuación, ¿cuáles son las tres opciones
que utilizan cable de cobre de par trenzado?
A.
B.
C.
D.
E.

100B aseFX
100BaseTX
lO O V G -A nyLA N
lO BaseT
lOOBaseSX
R espuesta: B, C, D
P á g in a : 25

lOOVG-AnyLAN es un medio de cobre muy antiguo casi en total desuso.

50.

¿C uál es el resultado de segm entar una red con un puente?
A. Se aum enta el núm ero de dominios de colisión.
B. Se reduce el núm ero de dominios de colisión.
C . Se increm enta el núm ero de dominios de broadcast.
D. Se reduce el núm ero de dominios de broadcast.
Respuesta: A
P ág in a : 218

308

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

51. ¿C uáles de los sigu ien tes son efectos de un p o rcen taje excesivo d e colisiones
en un a L A N C S M A /C D ? (elija 3).
A. A u m en to del tráfico de broadcast.
B. A u m en ta la latencia.
C. B aja el a n c h o de banda.
D. A u m en ta el ancho de banda.
E. A u m en ta la congestión.
F. A u m en ta el ancho de b an d a disponible.
R espuesta: B, C, E
P ágina: 45

52. E n u n esfu erzo por in crem en tar la seguridad de su red W L A N , u n técnico ha
im p lem en tad o W PA . ¿Q ué dos d efiniciones p u e d e n d e sc rib ir m ejor el
fu n cio n am ien to de W P A ?.
A. U tiliza un m étodo de au ten ticación abierta.
B. E sp ecifica el uso de u n a en criptación pobre.
C . In clu y e au ten ticacio n es PSK
D. U tiliza u n a en criptación dinám ica cu an d o el clien te establece
conexión.
E. R equiere q ue todos los A P utilicen la m ism a encrip tació n .
F. W P A fu n cio n a solo con A P C isco.
R espuesta: C, D
Página: 188

53. ¿C uál es la d irecció n de su b red de la dirección IP 192.168.100.30 /
2 5 5 .2 5 5 .2 5 5 .2 4 8 ?
A. 192.168.100.32
B. 9 2 .1 6 8 .1 0 0 .2 4
C . 192.168.100.0
D. 192.168.100.16
R espuesta: B
Página: 71

54. ¿C uáles de estas a firm acio n es contienen com p aracio n es v álid as entre Fast
E thernet (lO O B aseTx) y E th ern et lO B aseT? (elija 4).

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 309

<g r a -MA

A. F a stE th e m e t u tiliza la m ism a U nidad M áxim a d e T ran sm isió n
(M T U ) que E th ern et.
B. F a stE th e m e t se basa en u n a extensión de la esp ecificac ió n IEEE
8 02.3.
C . F a stE th e m e t fu n c io n a solam ente en entornos full duplex, m ientras
que E thernet p u ed e operar tanto en h a lf com o fu ll duplex.,
D. F a stE th e m e t u tiliz a el m ism o m étodo de control de acceso al m e d io
(m ecan ism o M A C ).
E. F a stE th e m e t m an tien e el form ato de tram a que u tiliz a E thernet
lO BaseT.
F. F astE th em et in tro d u ce m odificaciones en el form ato de la tram a
p a ra lograr un m e jo r control del flujo de datos.
G. F ast E thernet o frece un a velocidad 100 veces m a y o r q u e la de
E th ern et lO BaseT.
R espuesta: A, SI. D
Página: 43

55. Si el tam añ o de la v e n ta n a de transm isión cam bia de 3 0 0 0 a 40 0 0 durante la
tra n sfe re n cia de datos de un a sesió n TCP, ¿qué puede h ace r la term inal q u e
e stá en v ian d o ?
A. T ran sm itir 3 0 0 0 bytes antes de e sp e ra r por un ack n o w led g em en t.
B. T ran sm itir 4 0 0 0 paquetes antes de esperar por u n
ack n o w led g em en t.
C. T ran sm itir 4 0 0 0 bvtes am es de e sp erar por un ack n o w led g em en t.
D. T ran sm itir 4 0 0 0 segm entos antes de esperar p o r un
ack n o w led g em en t.
E . T ran sm itir 3 0 0 0 tram as antes de esperar por un ack n o w led g em en t.
F . T ran sm itir 3 0 0 0 paquetes antes de esperar por u n
ackn o w led g em en t.
R espuesta: C
P ágina: 41

56. ¿C u ál de las siguientes es un a lista de acceso IP ex ten d id a válida?
A.

a c c e s s - l i s t 110 p e r m i t

B.

a c c e s s - l i s t 10 p e r m i t

tcp

ip

C.

a c c e s s - l i s t 99 p e r m i t

udp

any

D.

a c c e s s - l i s t 199 p e r m i t
e q 21

ip

tcp

any

host

1 .1 .1 .1 eq

any any eq

any

host

21

2 .2 .2 .2 eq

0 .0 .0 .0

ftp

ip

255.255.255.255
Respuesta: D
Página: 202

310

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-M a

57. ¿C u ál de los sig u ien tes com andos m o strarán las interfaces que tien en
ap licad as A C L IP ?(elija2 ).
A.

show

ip

port

B. s h o w a c c e s s - l i s t s
C. s h o w i p i n t e r f a c e
D. s h o w a c c e s s - l i s t s i n t e r f a c e
E. show running-config
R espuesta: C, E
P ág in a: 213

58. C o n v ierta el n ú m e ro binario
h ex ad ecim al.

10011101

en sus equivalentes decim al y

¿C uáles so n los dos n ú m eros co rrectos?
A. 159
B. 157
C . 185
D. 0x 9 d
E . 0xd9
F. 0 x159
R espuesta: B,D
P ág in a: 63

59. ¿C u ál es u n a d e sv e n ta ja de u tiliz ar un p ro to co lo orien tad o a la conexión
co m o T C P ?
A. La p re se n c ia de p aq u etes de ack n o w led g em en t puede ag reg ar
tráfico excedente.
B. P aq u etes que no están m arcados con el núm ero de secuencia.
C . La p é rd id a o d u plicación de paq u etes de datos es m ás pro b ab le que
ocurra.
D. La cap a de ap licación debe asu m ir la resp o n sab ilid ad de co rreg ir la
se c u e n c ia de los paquetes de datos.
Respuesta: A
Página: 41

APÉNDICE A. PREPARATIVOS PARA. EL EXAMEN 3 1 1

Ö R A ^IA

60.

¿Qu¿ caPa

del m odelo Cisco de tres capas es la responsable de dividir los
dom inios de colisión?
A . Física.
B. Acceso.

C.
D.
E.
F.

Principal.
Red.
D istribución.
Enlace de datos.
R espuesta: B
P ágina: 52

61. De las siguientes opciones, ¿cuál le permite conectar directam ente un PC a
un router?
A. Conecte el puerto COM del PC al puerto consola del router
utilizando un cable derecho.
B. C onecte el puerto COM del PC al puerto consola del router
utilizando un cable cruzado.
C. C onecte el puerto COM del PC al puerto Ethernet del router
utilizando un cable cruzado.
D. Conecte el puerto Ethernet del PC al puerto Ethernet del router
utilizando un cable cruzado.
E. Conecte el puerto Ethernet del PC al puerto E thernet del router
utilizando un cable consola.
F. Conecte el puerto Ethernet del PC al puerto Ethernet del router
utilizando un cable derecho.
R espuesta: D
P ágina: 28

62. ¿Cuál es la descripción adecuada de la capa de enlace de datos?

A. Esta capa segm enta y reensam bla datos de una cadena de datos.
¡B. Esta capa adm inistra direcciones de dispositivos, conoce la
localización de los dispositivos en la red, y determ ina el mejor
camino para m over los datos.
C. Esta capa transm ite datos y maneja notificaciones de error,
topología de la red y control de flujo.
Respuesta: C
P ágina: 30

312

R E D E S CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

63. L a com pañía A C M E ha adquirido un nuevo sw itch para agregar a su red
existente. D esean conectar este nuevo switch Ethernet a uno de los sw itches
E thernet ya existentes. ¿Qué cable debe ser utilizado para conectar los 2
sw itches entre sí?
A.
B.
C.
D.

Cable
Cable
Cable
Cable

cruzado.
directo.
consola.
de fibra.
R espuesta: A
P ág in a: 28

64. C onsidere un circuito estándar Ethernet half-duplex. ¿Qué es verdadero
respecto de este circuito?
A. Es una com unicación alternativa a través de una única vía.
B. El par receptor está conectado directam ente al par transm isor de la
estación remota.
C . El par transm isor está conectado directam ente al par receptor de la
estación remota.
D. No son posibles colisiones.
E. Am bas estaciones pueden transm itir sim ultáneam ente.
Respuesta: A
Página: 43

65. ¿Cuál de las siguientes afirm aciones es verdadera respecto a una conexión
confiable orientada a la transferencia de datos? (elija 2).
A. Se recibe una notificación de la recepción de los datos.
B. Cuando los buffers de m em oria com pletan su capacidad, los
datagram as son descartados y no se retransm iten.
C . Se utilizan “ventanas” para controlar la cantidad de inform ación que
se envía antes de recibir una confirm ación de recepción.
B. Si expira el tem porizador del segmento entre recepciones de
confirm aciones, el nodo origen interrum pe la conexión.
E. El dispositivo destino espera por la confirm ación desde el
dispositivo origen antes de aceptar más datos.

R esp u esta: A, C
P ág in a : 41

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 3 ¡3

Q rA -M A
66.

Juan se h a co n ectad o a u n PC e n un a subred rem ota via te ln et, ¿qué dirección
M A C estará p resen te en la tab la A R P cuando ejecute en su term inal el
c o m a n d o a r p —a ?

A.
B.
C.
D.

D irección
D irección
D irección
D irección

MAC
MAC
MAC
MAC

del
del
del
del

puerto
puerto
puerto
puerto

E thernet
E thernet
serie del
serie del

del nodo d estino.
del ro u te r local.
ro u ter de destino.
router local.
Respuesta: B
Página: 59, 60

67. T en ien d o en cu en ta la to p o lo g ía que se m uestra en el g ráfico . C ada nodo (se
trata de 1 0 estacio n es de trab ajo ) está conectado al sw itch a través de su
p ropio p u erto 10M bps h alf-d u p lex , y a través de él a la in te rfa z E 0 del router.
¿C uál es el ancho de b an d a d isp o n ib le para cada nodo?

A . 1 M bps
B. 10 M bps
C . 20 M bps
IX 100 M bps
R espuesta:
A l tratarse de una red conm utada, el ancho de banda se m a n tien e com pleto para cada
conexión establecida (la interfaz del router es Ethernet, es decir, de 10 Mbps). S i se
tratara de una red compartida (con un hub en lugar de un sw itch), el ancho de banda se
distribuiría entre todos los nodos. E l hecho de que sea h a lf-d u p lex no cambia el ancho de
banda disponible.

314

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

68.

O RA-tvlA

¿Q u é m éto d o de co n m u ta c ió n L A N ejecuta un C R C e n cada tram a?
A.
B.
C.
D.

M éto d o de corte.
A lm a c e n a m ien to y envío.
V e rific a ció n d e fragm entos.
L ib re de frag m en to s.
R espuesta: B
Página: 219

69. ¿Q ué tipo de c o n m u ta c ió n L A N solo verifica la d irecció n de h ard w a re de
d estino antes de en v iar u n a tram a?
A.
B.
C.
D.

M éto d o de corte.
A lm a c e n a m ien to y envío.
V erificació n de F ragm entos.
L ib re de F rag m en tos.
Respuesta: A
Página: 219

70. ¿Q ué sig n ifica el sig u ien te com ando?
a ccess-list

110 p e r m i t

ip

any

0 .0 .0 .0

255.255.255.255

A . E s u n a lista d e acceso IP estándar que p erm ite solo la red 0.0.0.0
B. Es u n a lista de acceso IP ex tendida que p e rm ite solo la red 0.0.0.0
C . E s u n a lista de aceesu I r ex tendida que p e rm ite a cualquier n o d o o
red.
D. Es inválido.
R espuesta: C
Página: 202

71. ¿Q ué es v erd ad ero re sp e c to al estado de bloq u ean d o de un puerto que está
op erando c o n el P ro to co lo de Á rbol de E xpansión (S T P ) 9 (elija 2).
A . N o se tra n sm ite n o reciben tram as en un p u e rto que está
bloqueando.
B. Se env ían y re c ib e n B P D U en un puerto que está bloqueando.
C . A ún se reciben B P D U en un p u erto que está blo q u ean d o .
D. Se envían o re c ib e n tram as en un puerto que está bloqueando.
R espuesta: A, C
Página: 224

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 315

RA-M A

72. ¿Q ué se u tiliza p a ra d eterm in ar el p u e n te raíz en una re d que corre el
P ro to co lo de Á rbol de E x p a n sió n (S T P )? (elija 2 opciones).
A.
B.
C.
D.

Prioridad.
C oste de los en laces co n e c ta d o s al switch.
D irección M A C .
D irecció n IP.
Respuesta: A, C
Página: 223

73. U nir c ad a estado del P ro to c o lo d e A rb o l de E xpansión c o n su definición
co rresp o n d ien te (STP).

Inicial

l

A p re n d ie n d o

Completa !a tabla de direcciones M AC
pero rio envia tramas ele ciatos

E scu ch a n d o

Envia y recibe tramas de datos.

E n v ia n d o

Prepara para enviar tramas de datos,
sin aprender direcciones M AC

Activo

Previere el uso de rutas con bucles

Bloqueando

____
Respuesta:
í.ps estados inicial y activo no existen. E l estado bloqueando previene el uso rutas con
bucles. E n el estado de escuchando, el dispositivo se prepara para enviar datos
verificando que no existan bucles, p ero aún no ha comenzado a aprender direcciones
M AC. E n el estado de aprendiendo, com ienza a poblar las tablas de direcciones MAC,
pero aún no envía tram as de datos. P or últim o, en el estado de enviando, el puerto envía y
recibe datos.

Página: 224
74. ¿C u áles son las tres diferentes funciones que cum ple u n dispositivo de
co n m u tació n de cap a 2 ?
A . A p ren d izaje de direccio n es.
B . E n ru tam ien to .

3 i6

R E D E S CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©

r a -m a

C. Envío y filtrado de tramas.
D. C rear bucles de red.
E.

E v ita r bucles de icd.

F.

Direccionam iento IP.
Respuesta: A, C, E
Página: 218

75. ¿Q ué es verdadero respecto a las B PD U ?
A. Se utilizan para
paquetes IP.
B. Se utilizan para
m ulticast.
C. Se utilizan para
D. Se utilizan para

enviar m ensajes de configuración utilizando
enviar m ensajes de configuración utilizando tramas
determ inar el coste de los enlaces STP.
determ inar la ID de puente de un switch.
Respuesta: B
Página: 222

76. Un nuevo sw itch ha sido comprado para actualizar la red. El objetivo del
diseño de la red se centra en la eficiencia, y en privilegiar un transporte libre
de errores por encim a de la velocidad. ¿Qué modo del switch deberá
configurar en el nuevo sw itch para proveer un transporte libre de errores a la
red?
A.
B.
C.
D.
E.
F.

M étodo de corte
Libre de fragm entos
Filtrado de tram as
A lm acenam iento y envío
Reenvío 802.1 q
M odo VTP transparente
R espuesta: B
P ágina: 219

77. Si un switch determ ina que un puerto bloqueado debería ser ahora el puerto
designado, ¿a qué estado pasará inm ediatam ente ese puerto?
A.
B.
C.
D.

D esbloqueado
Enviando
Escuchando
Escuchado

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 317

RA-MA

E. A p ren d ien d o

F. A prendido
R e sp u e s ta : C

P ág in a: 224

78. De las siguientes, ¿cuáles son dos afirmaciones verdaderas respecto del
método de conm utación de alm acenam iento y envío?

A. La latencia perm anece constante, independientem ente del tamaño
de la tram a.
B. La latencia al atravesar el switch varía de acuerdo al largo de la
trama.
C . El sw itch recibe la tram a completa antes de com enzar a reenviarlo.
D. El switch verifica la dirección de destino tan pronto como recibe el
encabezado de la tram a, y comienza a reenviarla inm ediatam ente.
Respuesta: B, C
Página: 219

79. ¿Cuál es la diferencia entre un puente y un switch de capa 2 o switch LAN?
(elija 2).
A. Los puentes solo pueden tener una instancia de spanning-tree por
puente.
B. Los sw itches pueden tener muchas instancias de spanning-tree por
switch.
C. Los puentes pueden tener muchas instancias de spanning-tree por
puente.
D. Los switches solo pueden tener una instancia de spanning-tree por
switch.
Respuesta: A, B
Página: 223

80. ¿Cóm o se denom inan las U nidades de Datos de Protocolo en la capa de red
del m odelo OSI?
A.
B.
C.
D.
E.

Principal.
Tramas.
Paquetes.
Segmentos.
Acceso.

318

RF.DES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

®_RA-ma

F . D istrib u ció n .
G . T ran sp o rte.
Respuesta: C
Página: 49
81. Su g eren te le preg u n ta sobre las características básicas de sw itc h e s y hubs
p a ra b rin d ar co n ectiv id ad de red. ¿Q ué le p o d ría decir?
A. L o s sw itches re q u ieren m enos tiem p o que los h u b s p a ra procesar la
tram a.
B. L o s sw itch es no reenvían p aq u etes de difusión.
C . L o s hubs p u ed en filtrar tram as.
D. El u so de hubs p u e d e in crem en tar la cantidad de ancho de banda
d isp o n ib le para cada nodo.
E. L o s sw itches in crem en tan el núm ero de d o m in io s de c o lisió n en la
red.
Respuesta: E
Página: 3 1

82. ¿C uál es la diferen cia en tre un p u en te y u n sw itch d e capa
resp u estas).

2

? (elija

2

A. L os sw itches se b asa n en softw are.
B. L os p u en tes se basan en hardw are.
C. L o s sw itches se b a sa n en hardw are.
D. L os p u entes se b a sa n en softw are.
Respuesta: C , D
Página: 32

83. ¿Q u é h ace u n sw itch c u an d o recib e una tram a en una in terfaz y la dirección
de h a rd w a re de destino es d e sco n o cid a o no figura en la tab la de filtrado de
d ireccio n es M A C ?
A.
B.
C.
D.

E n v ía la tram a al p rim e r enlace disponible.
D e riv a la tram a a otro sw itch.
In u n d a la red con la tra m a en b usca del disp o sitiv o de destin o .
E n v ía un m ensaje a la estación de origen p id ie n d o u n a reso lu ció n de
no m b re.
Respuesta: C
Página: 32

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 3 19

ma

¿C óm o se c o m u n ic a el ID de un sw itch a los sw itches co lin d an tes?
A.
B.
C.
D.
E.

E nrutam iento IP.
STP.
D urante los cuatro estados STP de un sw itch.
U tiliz a n d o U n id ad es de D atos de P rotocolo del P u en te.
D ifusión durante lo s tiem pos de convergencia.
Respuesta: D
P ágin a: 222

¿Q ué utiliza F ram e-R elay p a ra d efin ir la tasa, en bits p o r seg u n d o , a la que el
sw itch F ram e-R elay acu erd a tran sferir datos?

A. C lo ck R ate (C R ).
B . C o m m itted Info rm atio n R ate (CIR).
C . L ocal M a n a g e m e n t Interface (LM I).
D. D a ta -L in k C onnection Identifier (D L C I).
E . C o m m itted Rate M easu rem en t Interval (C R M I).
Respuesta: B
Página: 268
¿C uántos p u e n te s raíz se p erm iten en un dom inio de d ifu sió n ?
A.

10

B. 1
C. U no p o r cada sw itch
D. 20
Respuesta: B
Página: 223

¿Q u é podría o cu rrir en una re d si no se im p lem e n tan tecnologías p a ra
p rev en ir los b u cles en c ap a 2 ? (elija 2 respuestas).
A.
B.
C.
D.

T ie m p o s de co n v erg en cia m ás rápidos.
T o rm en tas de difusión.
M ú ltip les cop ias de u n a tram a.
El en ru tam ien to IP o casionará flapping (caídas variables) en un
e n la c e serial.
Respuesta: B, C
Página: 222

370

r f p ES

CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

88. ¿Cuál es la prioridad por defecto de un switch Cisco para el Protocolo de
Árbol de Expansión?
A. 32.768
B. 3.276
C . 100
D. 10
E. 1
Respuesta: A
Página: 223

89. De las siguientes afirmaciones, ¿cuáles dos son verdaderas respecto de los
puentes?
A. Un
B. Un
C . Un
D. Un

puente
puente
puente
puente

inunda tráfico m ulticast.
inunda tráfico de difusión.
no inunda tráfico m ulticast.
no inunda tráfico de difusión
R esp u esta: A, B
P ág in a: 31

90. ¿Cuál de las siguientes afirm aciones es verdadera respecto de puentes y
sw itches? (elija 3).
A . Los switches están prim ariam ente basados en softw are mientras que
los puentes están basados en hardware.
B . Tanto puentes como sw itches reenvían el tráfico de difusión de capa
2.
C . Frecuentem ente los puentes son más rápidos que los switches.
D. Los sw itches tienen un núm ero de puertos m ayor que la m ayoría de
los puentes.
E. Los puentes definen dom inios de difusión m ientras que los switches
definen dominios de colisión.
F. Puentes y switches tom an decisiones de reenvío basados en el
direccionam iento de capa 2.
R esp u esta: B, D, F
P ág in a: 31

91. ¿Cuál de las siguientes opciones es verdadera? (elija todas las que se
apliquen).

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 321

o r a -m a

A.
B.
C.
D.

PPP puede utilizarse con Token Ring.
PPP
puede utilizarse con enlaces en serie síncronos.
PPP
puede utilizarse con enlaces en serie asincronos.
PPP
es propiedad del equipamiento de cada vendedor.
R esp u esta: B, C
P ág in a: 257

92. ¿Qué m étodos de conm utación LAN tienen un tiem po de latencia fijo? (elija
todos los que se apliquen).
A.
B.
C.
D.

M étodo de corte.
Alm acenam iento y envío.
V erificación de fragmentos.
Libre de fragm entos.
R esp u esta: A, D
P ág in a : 219

93. ¿Qué indica el térm ino “B ase” en “ lOBaseT”?
A. Cableado de backbone que utiliza m uchas señales digitales al
m ism o tiem po en un único cable.
B. Cableado de banda base que utiliza m uchas señales digitales al
mismo tiem po en un único cable.
C . Cableado de backbone que utiliza solo una señal digital a la vez en
el cable.
D. Cableado de banda base que utiliza solo una señal digital a la vez en
el cable.
R espuesta: D
P ág in a: 24

*

94. ¿Qué es verdadero respecto a Frame-Relay D L C I?
A.
B.
C.
D.

DLCI es opcional en una red Fram e-Relay.
DLCI representa a un único circuito físico.
DLCI identifica una conexión lógica entre dispositivos DTE.
DLCI se utiliza para etiquetar el principio de una tram a cuando se
utiliza la conm utación LAN.
R e s p u e s ta : C
P á g in a : 268

322

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

95. Durante la encapsulación, ¿en qué orden es em paquetada la inform ación?
A . D a to s, paqu ete, segm ento, tra m a

B. Segm ento, datos, paquete, tram a
C. D atos, segm ento, paquete, tram a
D. Paquete, datos, segm ento, tram a
R espuesta: C
P ágina: 50

96. ¿En qué punto de la tram a que se m uestra en el diagram a se toma la decisión
de conm utación en la m odalidad alm acenam iento y envío?
A

Preám bulo Dirección
destino

A.
B.
C.
D.

B

C

Dirección Tamaño Control
origen

D

Datos

FCS

A
B
C
D
„ . . . . i. ,

.AJI
rv

l\C3pUcSia.

Página: 219

97.

El Protocolo de Arbol de Expansión fue originalm ente desarrollado por
DEC. ¿Por qué razón se utiliza STP en las redes LAN conm utadas?
A. P ara proveer un m ecanism o para el m onitoreo de la red en entornos
conm utados.
B. Para preveer los bucles de enrutam iento en redes conm utadas con
cam inos redundantes.
C . P ara adm inistrar el agregado, elim inación y nom brado de V LA N a
través de m últiples switches.
D. P ara segm entar una red en m últiples dominios de colisión.
Respuesta: B
Página: 222

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 323

© RA-MA
98.

¿Cuál de las siguientes afirm aciones es verdadera acerca de las V LA N ?
A. Se deben tener al menos dos VLAN definidas en cada red
conm utada.
B. Todas las VLA N se configuran en el switch más rápido y, por
defecto, se propaga esta información a los dem ás switches.
C. No deberían tenerse más que 10 switches en el m ism o dominio
VTP.
D. VTP se utiliza para enviar información de las VLA N a todos los
switches en un dominio
E. VTP configurado.
R esp u esta: D
P ág in a: 229

99. ¿Cuáles de las siguientes son características únicas de Ethernet half-duplex

com parada con Ethernet full-duplex? (elija 2).
A.
B.
C.
D.
E.

Com parte el dom inio de colisión.
G enera dom inios de colisión únicos.
A um enta el throughput efectivo.
Reduce el throughput efectivo.
G enera dom inios de difusión únicos.
Respuesta: A. C
Página: 43

100. ¿Qué wildcard utilizaría para filtrar el siguiente conjunto de redes?
172.16.32.0 a 172.16.63.0
' A.
B.
C.
ü.
E.
F.
G.
H.

172.16.0.0 0.0.0.255
172.16.255.255 0.0.0.0
0.0.0.0 255.255.255.255
172.16.32.0 0.0.0.255
172.16.32.0 0.0.0.31
172.16.32.0 0.0.31.255
172.16.32.0 0.31.255.255
172.16.32.0 0.0.63.255
R e s p u e s ta : F
P á g i n a : 199

324

R£DES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

101. ¿C u áles so n las dos form as en las cuales u n adm in istrad o r puede co n fig u rar
las V L A N ?
A.
B.
C.
D.

A través de un se rv id o r D H C P.
E státicam en te.
D in ám icam ente.
A través de una base de datos V T P.
R espuesta: B, C
Página: 225

102. ¿Q ué tam a ñ o de tram a m áx im o es p o sib le sobre un enlace tro n cal que
en cap su la E th ern et con IS L ?
A. 1518
B. 1548
C. 4202
D. 8190
Respuesta: B
P ágina: 228
Una trama IS L encapsulando tráfico E thernet p u ed e tener u n a longitud de hasta 1548
bytes. Una trama E thernet p uede transm itir hasta 1500 bytes de datos; si se consideran
los encabezados Ethernet, la longitud total es de 1518 bytes. S i se trata de una trama
E thernet encuysuladu sobre IS L , ¡a iongitua m axim a total p u ed e ser de hasta 1548 bytes
y a que IS L agrega 30 bytes a la tram a original.

103. ¿C óm o se co n fig u ran las V L A N dinám icas?
A.
B.
C.
D.

E státicam en te
A trav és de u n o p e ra d o r on-line
A trav és de u n se rv id o r D H C P
A trav és de un se rv id o r de p erte n ec ía de V L A N (V M PS)
R esp u esta: D
P ágina: 240

104, ¿C uáles de los sig u ien tes pro to co lo s se u tilizan cu an d o se co n fig u ra el
p u erto tro n cal de un sw itch ? (elija 2 ).
A. P roto co lo T roncal V irtu al (V T P)
B. V L A N

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 325

© r a -m a

C.
B.

802. lq
ISL
Respuesta: C, D
P ág in a: 217

105. ¿C uál de las sigu ien tes afirm aciones es v erd ad era re sp e c to a V T P? (e lija

2 ).
A. El reco rte VTP se h ab ilita por defecto en todos los sw itches.
B. El reco rte V TP está inhabilitado p o r defecto en to d o s los sw itches.
C . Solo se puede ejecu tar el recorte V T P en sw itch es 5 0 0 0 o
superiores.
D. El re c o rte V TP se co n fig u ra en to d os los sw itch es p o r defecto si se
activ a en solo el sw itch q u e es serv idor V T P.
R espuesta: B, D
P ágina: 232

106. U sted tra b a ja com o técnico d e la red de u n a c o m p a ñ ía y se le ha
en c o m en d ad o agreg ar u n nuevo ro u ter en u n a red O S P F y a establecida. La
re d directam ente conectada al ro u te r que se agregó c o n el nuevo router no
ap arece en las tablas de enrutam iento de los dem ás ro u te rs O S P F . C ontando
c o n la info rm ació n parcial de la co n fig u ració n que se m u e stra abajo, ¿cuál es
el error de co n fig u ració n que está causando p ro blem as?
íxu u. v_.ti i.' ( O G Il £ i-CJ' Tt^TGuLv^C^T O S p f

1

R o u ter(config-router)#netw ork

A.
B.
C.
D.
E.

10.1 0 .1 0 .0

25 5 .0 .0 .0

area

0

E l sistem a autónom o no está co rrectam ente co n fig u rad o .
L a m áscara de subred de la red está in co rrectam en te configurada.
L a m áscara de w ildcard de la red está c o n fig u rad a in co rrectam ente.
E l n ú m ero de red no e stá correctam ente co n fig u rad o .
E l id en tificad o r de pro ceso está co n figurado in co rrectam en te.
R espuesta: C
P ágina: 172, 175

107.

¿Cuál de los sigu ien tes en cap su la una tram a y le a g reg a un nuevo c a m p o
FC S?
A. IS L
B. 8 0 2 .lq
C. 8 0 2 .l x

326

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

D.

© RA-Ma

8 0 2 .3u
R espuesta: A

Página: 227

108. Si su red Frame-Relay se encuentra congestionada, ¿qué mecanismo utiliza
para indicarle al dispositivo de origen que reduzca la velocidad de envío?
A. HDLC.
B. D L C I.

C. FE C N .
D. B E C N .
Respuesta: D
Página: 269

109. ¿Qué se logra al configurar en un switch el modo VTP transparente?

A. El switch en modo transparente solo enviará mensajes y
publicaciones sin agregarlos a su propia base de datos,
B. El switch en modo transparente enviará mensajes y publicaciones y
además los agregará a su propia base de datos.
C. El switch en modo transparente no enviará mensajes y
publicaciones.
D. El modo transparente hace a un switch dinámicamente seguro.
Respuesta: A
Página: 231

110. ¿Cuál de los siguientes enunciados representa beneficios que proporciona
VTP a una red conmutada? (elija 6).
A. Dominios de difusión múltiples en VLAN 1.
B. Administración de todos los switches y routers de una red.
C. Consistencia de la configuración VLAN a través de todos los
switches de la red.
D. Permitir que las VLAN puedan ser convertidas en troncales a través
de redes mezcladas, tales como Ethernet a ATM LAÑE o FDDI.
E. Rastreo y monitoreo precisos de las VLAN.
F. Informes dinámicos de VLAN agregadas a todos los switches.
G. Agregar VLAN de modo plug-and-play.
H. Configuración automática de VLAN.
Respuesta: A , C , D , E , F , G
Página: 229

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 327

© R A -M A

X ll. Se adquirió u n ro u ter u sad o y no logra in gresar al m o d o p riv ile g ia d o
porq u e el ro u ter tien e co n fig u rad a u n a contraseña. N e c e sita realizar en to n c es
u n p ro ced im ien to de re c u p e rac ió n de contraseña. El p rim e r paso en e ste
p ro ced im ien to es rev isar los v alo res actuales del re g istro de c o n fig u rac ió n
desde el m odo usuario. ¿C uál es el com ando que le p e rm itirá ver el reg istro
de co n fig u ració n desde el m odo usuario?
A. s h o w r e g i s t e r
B. s h o w f l a s h
C. show b o o t
I).

show v e r s i ó n

Respuesta: D
Página: 129
112.

¿C u ál de las siguientes afirm acio n es es v erd ad era re sp e c to a V TP?
A . T o d o s los sw itches son servidores V T P p o r defecto .
B . T o d o s los sw itches son V T P transparente p o r d efec to .
C . V T P está activo po r d efecto con un nom bre de d o m in io
p reestab lecid o en to d o s los switches.
D . T odos los sw itches son clientes V TP p o r d efecto.
Respuesta: A
Página: 229

113. ¿Q u é u tiliza el p rotocolo 1SL p a ra identificar la m e m b re sía de V L A N de
u n a tra m a sobre un enlace tro n c a l?
A.
B.
C.
D.
E.

F iltrad o de tram as co n V L A N ID.
M arcad o de tram as con V L A N ID.
F iltrad o de tram as co n ID de troncal.
M arcad o de tram as con ID de troncal.
F iltrad o de tram as c o n ID de puerto V TP.
Respuesta: B
Página: 227

114. ¿Q ué es u n puerto tro n c a l?
A. U n puerto que es parte de solo u n a V L A N y a la que se d e n o m in a
V L A N n ativ a del puerto.
B. U n puerto qu e p u ed e transportar m ú ltip les V L A N .

328

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-MA

C . U n puerto de sw itch conectad o a Internet.
D. C ap acid ad p a ra datos y v o z en la m ism a interfaz.
R espuesta: B
Página: 226

115. ¿Q ué es u n p u erto de acceso?
A. U n p u erto que es parte de solo una V L A N , que se denom ina VLAN
n ativ a del puerto.
B . U n puerto que p u ed e tran sp o rta r m ú ltip les V L A N .
C . U n p u erto de sw itch co n ectad o a Internet.
D. C ap acid ad p ara datos y voz en la m ism a interfaz.
R espuesta: E
Página: 226

116. ¿Q ué h ace u n a V L A N ?
A. D iv id e d o m inios de co lisió n
B. D ivide d o m inios de enrutam iento
C . D iv id e d o m in io s de difu sió n (broadcast)
I). P ro p o rc io n a se g m en ta ció n de la frag m en tació n
R espuesta: C
Fagina: 225, 226

117. ¿C uál de las sig u ien tes afirm a cio n es es v erd ad era resp ecto a los enlaces
tro n cales?
A.
B.

E stán co n fig u rad o s p o r d efecto en todos los p u e rto s delsw itch.
Solo fu n cio n an con un tipo de red E thernet y n o con T ok en Ring,
F D D I, o A T M .
C . Se p u ed en c o n fig u ra r enlaces troncales en cu alq u ier puerto de 10,
100 y 1000 M bps.
D. D eb e re tira r m an u alm en te aquellas V L A N que no quiere que
circu len p o r el troncal.
Respuesta: R
Página: 226, 232

118. ¿C uándo a ctu alizará u n sw itch su base de datos V T P?
A.

C ad a 60 seg undos.

e

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 329

ra-m a

B . C uan d o un sw itch recib e u n a publicación que tiene u n núm ero de
rev isió n m ás alto, el sw itch sobrescribirá la base de dato s que
guarda en la N V R A M con la nueva base de datos q u e está siendo
p ublicad a.
C . C uando un sw itch hace d ifu sió n de una p u b lic ac ió n que tenga un
nú m ero de rev isió n m ás b ajo , el sw itch so b re sc rib irá la base de
datos que g uarda en la N V R A M co n la n ueva b ase de datos que está
siendo publicada.
D . C u an d o un sw itch recibe u n a p u blicación que tien e el m ism o
n ú m ero de revisión, el sw itch sobrescribirá la b ase de datos que
g u ard a en la N V R A M co n la nueva base de dato s q u e está siendo
pu b licad a.
Respuesta: B
Página: 231
119. ¿C u ál de los que se enu n cia a continuación es un e stá n d a r IE E E p ara el
etiq u etad o de tram as?
A.
B.
C.
D.

IS I.
8 0 2 .3 z
8 0 2 .l q
8 0 2 .3 u
R e s p u e s ta : C

P ágina: 227

120. ¿C uál de los siguientes enunciados d escribe c o rre ctam e n te un enlace
tro n cal? (e lija 2 respuestas).
A. P u e d e n tran sp o rtar sim u ltán eam en te m ú ltip les V L A N .
B. L os sw itches b o rran cualquier info rm ación a c e rc a de la V LA N
co n ten id a en la tram a an tes de ser enviada a u n disp o sitiv o a través
de u n puerto de acceso.
C . L os disp o sitiv o s co n ectad o s a p u ertos de acceso no pueden
co m u n icarse co n dispositivos friera de su V L A N a m enos que el
p aq u ete se enrute a trav és de u n router.
D. L o s puertos troncales se u tilizan p a ra tran sp o rta r tráfico de una o
v arias V L A N entre dispo sitiv o s que pueden co n fig u ra rse para
tran sp o rtar a todas las V L A N o solo a algunas.
R e s p u e s ta : A, D
P á g in a : 2 2 6

330

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-Ma

121. ¿Cuál de las siguientes afirm aciones es verdadera respecto a un puerto de
acceso? (elija 2).
A . Pueden transportar sim ultáneam ente m últiples V L A N .

B. Los sw itches borran cualquier inform ación de la V LA N contenida
en la tram a antes de que esta sea enviada a un dispositivo a través
de un puerto de acceso.
C. Los dispositivos conectados a puertos de acceso no pueden
com unicarse con dispositivos fuera de su VLA N a m enos que el
paquete se enrute a través de un router.
D. Los puertos de acceso se utilizan para transportar las VLAN entre
dispositivos y pueden configurarse para transportar a todas las
VLAN o solo a algunas.
Respuesta: B, C
P ág in a : 227, 243

122. ¿Cuál de los siguientes enunciados describe correctam ente los enlaces de
acceso?
A. Pueden transportar m últiples VLAN.
B. Se utilizan para transportar VLAN entre dispositivos y pueden
configurarse para transportar a todas las V LA N o solo algunas.
C. Solo se pueden utilizar con FastEthem et o Gigabit Ethernet.
B . Son parte de solo una VLAN y se la denom ina V L A N nativa del
puerto.
R esp u esta: D
P ág in a: 226

123. ¿Cuál es el m étodo IEEE de etiquetado de tram as?
A.
B.
C.
O.

ISL
LAÑE
Campo SA ID
802.1Q
Respuesta: D

e

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 33 1

r a -m a

124.

U sted trabaja co m o té c n ic o de red. H a co m p letad o el proceso d e
recu p eració n de clav es en un ro u te r Cisco. El p ro ced im ie n to h a sido ex ito so
y el ro u te r re to m a a su o p eració n norm al. ¿C uál es el v a lo r d e l registro d e
config u ració n en e ste m o m e n to ?
A. 0x2100
B. 0x2101
C . 0x2102
D. 0x2124
E. 0x2142
Respuesta: C
P á g in a: 132

125. ¿Q ué m odo V T P no p a rtic ip a en el dom inio V T P pero aú n así enviará
p u b licacio n es V T P a través de los enlaces troncales c o n fig u rad o s?
A . ISL.
B. C liente.
C . T ran sp aren te.
D. Servidor.
Respuesta: C
Página: 231
126. ¿C uál es el tam añ o de un en cabezado ISL?
A.
B.
C.
D.

4 bytes.
6 bytes.
26 bytes.
1522 bytes.
Respuesta: C
Página: 227, 228

127. ¿E n qué m o m en to el sw itch utiliza la técnica de etiq u etad o d e tram as?
A.
B.
C.
D.

C uando las V L A N están atravesando un p u erto de acceso.
C uando las V L A N están atravesando u n p u erto troncal.
C uando se utiliza ISL en un puerto de acceso.
C uando se u tiliza 8 0 2 .1Q en un puerto de acceso.
Respuesta: B
Página: 227

332

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

128. L a co m p añ ía A B C acaba de c o n v o carlo com o co n su lto r p ara a g reg ar una
n u e v a V L A N d en o m in ad a “v e n ta s” a la re d co n m utada existente.
¿C uales de las sig u ien tes afirm aciones so n verd ad eras resp ecto al p ro ceso de
c o n fig u ració n d e esta n u ev a V L A N ? (elija 3).
A.
B.
C.
D.
E.

L a V L A N debe ser creada.
L a V L A N debe ser nom brada.
U n a d irecció n IP debe ser co n fig u rad a p ara la V L A N .
L os p u erto s se leccio n ad o s d eb en ser agregados a la n u ev a V LA N .
La V L A N debe ser agreg ad a al d o m inio STP.
Respuesta: A , B, D
Página: 241

129. Su com p añ ía u tiliz a u n sw itch p a ra d a r acceso a la red de su D epartam ento
de C ap acitació n . N ec e sita rea liz a r cam bios en ese sw itch de m odo rem o to , de
m a n e ra tal que p u ed a h a b ilita r a d iferen tes aulas a tener acceso a Internet
se g ú n scci ncccsa.no.
¿Q u é deberá co n fig u rar en este sw itch p ara que p u ed a h a c e r estos cam bios
rem o tam en te? (seleccio n e 2 ).
A. Ei n o m b re del sw itch deb erá coin cid ir con el no m b re del gru p o de
trab ajo de la red local.
B. Se d eb erá co n fig u rar una direcció n IP y un default g atew ay en el
sw itch.
C. L a estació n de trab ajo rem o ta desde la que se configure d eb erá tener
acceso a través de la V L A N de ad m in istració n del sw itch.
D. C D P debe estar h ab ilitad o en el sw itch de m odo tal que otros
d isp o sitiv o s p resentes en la red p u ed an localizarlo.
R espuesta: B, C
P ágina: 236

130. ¿C u ál de los sig u ien tes co m an d o s c o n fig u rará u n a interfaz de u n sw itch
p a ra tran sp o rtar tráfico de to d as las V L A N hacia otro sw itch directam ente
co n ectad o ?
A. S w ( c o n f i g - i f ) # v l a n a l l
B. S w ( c o n f i g - i f ) # s w i t c h p o r t t r u n k e n c a p s u l a t i o n d o t l q
C.

S w (co n fig -if) #sw itchport

access

vían

full

APENDICE A. PREPARATIVOS PARA EL EXAMEN 333

© r a -m a

D. S w ( c o n f i g - i f ) t t s w i t c h p o r t m o d e t r u n k
E . S w ( c o n f i g - i f ) # s w i t c h p o r t a c c e s s v í a n 30
Respuesta: D
Página: 243

131. ¿E n cuál de los sigu ien tes m odos de la interfaz de lín ea de co m andos d e b e
u bicarse p ara e jecu tar el co m an d o que perm ite b o rrar la c o n fig u rac ió n in icial
del sw itch?
A.
B.
C.
D.
E.

M odo
M odo
M odo
M odo
M odo

usuario.
priv ileg iad o .
inicial.
co n fig u ració n global.
co n fig u ració n de la interfaz.
Respuesta: B
Página: 124

132. ¿E n qué m odo p uede u sted configurar la opción d e fu il-d u p iex para la
interfaz fastethem etO /5?
A.
B.
C.
D.
E.

M odo
M odo
M odo
M odo
M odo

usuario.
privilegiado.
inicial.
co n fig u ració n global.
co n fig u ració n de la interfaz.

.. .

-

Respuesta: E
Página: 238

133. E l com ando s h o w in íe rfa c e v ía n 1 m uestra:
A.
B.
C.
D.

L a v e rsió n de softw are de la V L A N 1.
La co n fig u ració n de la dirección IP.
Los p u erto s del sw itch actualm ente m iem bros d e to d a s la V L A N .
Las o p cio n es de seg u rid ad de la V LAN.
R espuesta: B
P ág in a: 237

334

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

134. U n sw itch tien e un PC conectado a la in terfaz fasteth em et 0/1 y un router a
la interfaz fa ste th e m e t 0/2. E l PC n ecesita u tiliz ar T C P /IP p a ra com unicarse
a través del ro u te r con otros n odos T C P /IP . ¿En qué m odo d e configuración
p o d rá u ste d co n fig u rar la dirección IP del sw itch?
A.
B.
C.
D.
E.
F.

M odo usu ario .
M odo p riv ileg iado.
M odo in icial.
M odo co n fig u ració n global.
M odo co n fig u ració n de la interfaz p a ra cada una de las interfaces
m en cio n ad as.
N in g u n a de las anteriores.
Respuesta: F
Página: 236

135. E sta es la sa lid a de co n so la de un sw itch. ¿C uál es la función de este
sw itch?
Sw itchttshow v t p
VTP v e r s i ó n : 2

statu s

Configuration Revision: 0
M a x i m u m VLANs s u p p o r t e d l o c a l l y :
N u m b e r o f e x i s t i n g VL ANs : 5
VTP O p e r a t i n g M o d e : C l i e n t
VTP D o m a i n N a m e : S a l t a
VTP P r u n n i n g M o d e : D i s a b l e d
VTP V2 M o d e : D i s a b l e d
VTP T r a p s G e n e r a t i o n D i s a b l e d

64

A . A p ren d er y g uardar configuraciones V T P en su co n fig u ració n
activa.
B . C rear y m o d ificar V L A N .
C . R e c ib ir in fo rm ació n sobre configuraciones VTP.
D. V T P está desh abilitado en este dispositivo.
E . V TP no está g u ardado en la N V R A M .
Respuesta: C
Página: 231, 249
136. En el siguiente com ando, ¿qué sig nifica el núm ero 175?
ip

route

A.

1 5 0 .150.0.0

255.255.0.0

D efine el siguiente salto

150.150.150.150

175

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 335

0RA-MA

B. D efin e la d istan cia adm in istrativ a
C. S ignifica que la actu a liz ac ió n se ha enviado com o b ro a d ca st
D. N ad a, es un com an d o in v álid o
Respuesta: B
Página: 89
13 7

. ¿Q ué co m an d o se p u ed e e je c u ta r en la interfaz para in d icarle al sw itch que
ponga la in terfaz n u ev am en te en servicio?
A.

up

B. a d r a i n u p
C. no s h u td o w n
D.

no admin shutdow n

E.

enable

Respuesta: C
Página: 238, 245
138. ¿Q ué com ando m u estra in fo rm ació n acerca de la v e rsió n de softw are en u n
sw itch?
A.

display versión

B.
C.

show v e r s i ó n
show i o s
^ ^ y /a xs

-io n

R espuesta: B
P ág in a: 129,130

139. ¿C uál de los sig u ien tes co m an d o s perm ite configurar la d irecció n IP del
d efault g atew ay del sw itch?
A.
B.
C.

sw itch (co n f)# ip

default

sw itc h (c o n f)#ip

d e fa u lt-g a te w a y [address]

sw itc h (c o n f) #ip

gatew ay d e fa u lt [address]

D.

sw itc h (c o n f) # ip -d e fa u lt-g a te w a y [address]

gatew ay [a d d re ss]

Respuesta: B
Página: 236, 237
140. ¿C uál de los sigu ien tes co m an d o s se requiere p ara c re a r un enlace 8 0 2 .1Q
en un sw itch b a sad o en IO S cuando se d esea e stab lec er un enlace tro n cal
entre 2 sw itch es? (elija 2 )

336

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCN A 640-802

© RA-Ma

A. S w i t c h ( v í a n ) # m o d e t r u n k
B. S w i t c h ( c o n f i g ) # s w i t c h p o r t a c c e s s m o d e t r u n k
C. S w i t c h ( c o n f i g - i f ) # s w i t c h p o r t mode t r u n k
D.

S w itch (co n fig -if)ttsw itch p o rt

E.

Sw itch (co n fig )# sw itch p o rt

F.

Switch( v l a n ) # t r u n k

trunk

access

encapsulation

encapsulation

mode

d otlq

1

do tlq

R espuesta: C, D
P ág in a: 243

141. U n técn ico ha in sta la d o un nuevo A P IE E E 802.11b en su red wireless.
¿C uál es el m áx im o de v elo cid ad de tran sm isió n del A P?
A.
B.
C.
D.
E.
F.
G.

11 m bps
100 m bps
54 m bps
10 m bps
1000 m b p s
16 m bps
N in g u n a d e las anteriores
Respuesta: A
Página: 180

142. ¿Q u é com ando se u tiliz a en un sw itch para configurar la dirección IP del
sw itch para p o d e r realizar ad m inistración p o r red a la d irecció n 1 0 . 1 . 1 . 1 ,
/“l o jf lUl UKirVovr il O > ^ O ^> ^ O w^ — '.A
9
v_/ .

-

liiLiOWtilCi U v

A.
B.
C.
D.
E.

ip

addess

1 0.1 .1.1

255.255.255.0

ip 10.1.1.1 255.255.255.0
address
set
ip

ip

1 0 .1 .1 .1
address

address

255.2 5 5 .2 5 5 .0

1 0.1.1.1

1 0 .1.1 .1

255.255.255.0

mask 2 5 5 . 2 5 5 .2 5 5 . 0

Respuesta: A
Página: 236
143. ¿Q u é hace u n sw itc h co n u n a tram a m u lticast recibida en u n a interfaz?
A.
B.
C.
D.

E n v ía la tram a al prim er puerto disponible.
D e sc a rta la tram a.
Inu n d a la red co n la tram a b u scando el dispositivo.
D ev u e lv e u n m en saje a la estación origen pidiendo u n a resolución
de no m b re.
Respuesta: C
Página: 219

.

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 337

© R A -M A

144. ¿Q ué com an d o IO S copia la configuración de la R A M a la N V R A M ?
A. c o p y r u n n i n g - c o n f i g
B.

copy

tftp

ftp

running-config

C. c o p y r u n n i n g - c o n f i g S t a r a - u p - c o n f i g
!).

copy

s t a r t -up-config

E.
F.

copy

startu p -con fig

running-config

running-config

copy ru n n in g -c o n fig

startup-config

R e sp u esta: F
P ág in a: 124

145. ¿C uál de los siguientes co m an d o s del m odo co n fig u rac ió n de interfaz
establece la velo cid ad de una interfaz?
A . p o r t s p e e d 10
B.

speed 10

C. o u t b o u n d s p e e d 100 a u t o
D. i n b o u n d s p e e d 100 a u t o
E. d u p le x f u l l
R esp u esta: B
P ág in a: 238

146. ¿C uál d e los sig u ien tes co m an d o s reinicia todo el so ftw a re y hardw are d e
un sw itch ?
A.

reboot

B.

reload

C. r e c o n f i g
D. c o n f i g u r e

term inal

R espuesta: B
P ág in a: 126

147. ¿C u áles son los dos co m a n d o s que puede u tiliz a r p a ra verificar la
co n fig u ració n qu e será u tilizad a cuando reinicia n u e v a m e n te el sw itch?
A.
B.
C.
D.

show c o n f i g
show s t a r t u p - c o n f i g
show r u n n i n g - c o n f i g
show v e r s i o n

338

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-80?

— -_JEL!ì ^M a

148. ¿Q ué p ro to c o lo que funciona en la capa de tran sp o rte proporciona
servicio no o rien tad o a la conexión entre nodos?
A.
B.
C.
D.

IP.
A R P.
T C P.
U D P.
Respuesta: D
Página: 42

149. ¿Q ué p ro to co lo fu n cio n a en la cap a de transporte y pro p o rcio n a circuitos
v irtu ales entre n o d o s?
A.
B.
C.
D.

IP.
A RP.
T C P.
U D P.
Respuesta: C
Página: 42

150. ¿Q ué p ro to c o lo fu n cio n a en la capa de Internet y p ro p o rcio n a un servicio
no o rientado a la c o n ex ió n entre n odos?
A.
B.
C.
D.

IP.
A R P.
T C P.
U D P.
Respuesta: A
Página: 58

151. Si un no d o hace difusión de u n a tram a que incluye una dirección de
hardw are de orig en y destino, y su p ropósito es o b tener u n a direcció n IP para
sí m ism o, ¿q u é p ro to c o lo de la capa de red utiliza el nodo?
A.
B.
C.
D.
E.

RARP.
ARPA.
IC M P.
T C P.
IPX .
Respuesta: A
Página: 58

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 339

a RA-MA.

j 5 2 . Si u n a interfaz de ro u ter está congestionada, ¿qué p ro to c o lo de la suite IP
se u tiliza p a ra com u n icar esta situ ació n a los ro u ters co lin d a n te s?
A.
B.
C.
D.
E.

RARP
A RP.
IC M P.
IP.
TCP.
Respuesta: C
Página: 58

153. ¿D e cuántos bytes es una d irecció n E thernet?
A.
B.
C.
D.
E.
F.
G.

->

4
5
6

7
8

48
R espuesta: D
P ág in a: 32

154. ¿C u ál d e las siguiem es a fu m a c io n c s co rresponde a ca rac terístic as típ ic as
de la im p lem en tació n de V L A N ? (elija 3)
A. Las V L A N dividen lógicam ente un sw itch de m o d o que
o p erativam ente, a n iv e l de capa 2 , se obtienen m ú ltip le s sw itches
independientes en tre sí.
B. U na V L A N p u ed e a tra v e sa r m últiples sw itches.
C. Las V L A N típ icam en te dism inuyen el núm ero de dom inios de
difusión.
D. Un enlace troncal p u e d e conducir tráfico de m ú ltip le s V LAN.
E. La im p lem en tació n d e V LA N in crem enta sig n ificativ am en te el
tráfico en una red p o rq u e la inform ación del tro n c a l debe ser
agregada en cada p aq u ete.
F. L as V L A N e x tie n d e n los dom inios de co lisió n p a ra incluir
m últiples sw itches.
Respuesta: A, B , I)
Página: 225,226

340

REDES CISCO GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

155. ¿Q u é p ro to c o lo se u tiliza en un entorno IP p ara o b ten er la dirección de
h a rd w a re de un d isp o sitiv o local destino?
A.
B.
C.
D.
E.

R A R P.
A R P.
IP.
IC M P.
B ootP.
Respuesta: B
Página: 58

156. ¿C u ál es el tie m p o típico que requiere u n p u erto de sw itch p ara pasar del
estad o de b lo q u e a n d o al de enviando?
A. 5 seg u n d o s.
B. 50 seg u n d o s.
C . 10 se g u n d o s.
D. 100 seg u n d o s.
Respuesta: B
Página: 225
157.

¿Q u é clase de d irecció n IP p ro porciona u n m áx im o de so lo 254 direcciones
de n o d o d isp o n ib les p o r ID de red?
A.
B.
C.
D.
E.

C lase
C lase
C lase
C lase
C lase

A.
B.
C.
D.
E.
Respuesta: C
Página: 68

158. ¿C u áles de los sig u ien tes rangos se co n sid eran n ú m eros de puerto b ie n
co n o cid o s?
A.
B.
C.
D.

1-1023.
1024 y su p eriores.
1-256.
1-65534.

159- ¿Q ué pro to co lo u tiliza un a red E thernet para v erificar u n a dirección IP a
partir de un a d irecció n E th ern et conocida?
A.
B.
C.
D.

IP.
A RP.
R A R P.
TCP.
Respuesta: C
Página: 58

160. ¿Q ué dos co m andos le p erm ite n verificar la c o n fig u ra ció n de direcciones
IP en su red?
A. ping
B.

traceroute

C . verify
D . test IP
E . echo IP
F . config IP
Respuesta: A, B
Página: 140
161. ¿C uáles de las sigu ien tes son dos características del p ro to co lo R A R P?
A. G en era m en sajes con indicaciones de p roblem as.
B. M apea direccio n es IP a direcciones E thernet.
C . M ap ea d ireccio n es E th ern et a direcciones IP.
IV Está im p iem em au o d irectam ente p o r en cim a de la capa d e enlace d e
datos.
Respuesta: C, D
Página: 58
162. U sted q uiere agregar a su W L A N u n nuevo p u n to de acceso. ¿ Q u é
co n fig u ració n ad icional es n e c e sa ria si y a tiene c o n fig u ra d o el SSID en el
AP?
A.
B.
C.
D.
E.

C o n fig u rar un a au ten ticació n abierta en el A P y en elcliente.
C o n fig u rar el
S S ID co n los valores p red eterm in ad o s.
C o n fig u rar el
S S ID en el con los p arám etros del SSID del AP.
C o n fig u rar la
M A C p erm itiendo al cliente c o n ecta rse al AP.
T odas las an terio res son correctas.
R e s p u e s t a : C , D, E
P á g in a : 190

342

REDES CISCO: GUIA DE ESTUDIO PARA LA CERTIFICACION CCNA 640-802

163.

©RA-M a

¿Q ué tip o de d ire c c ió n es la sig u ien te?:
1 7 2 .1 6 .0 .2 5 4 m á s c a ra 2 5 5 .2 5 5 .0 .0

A.
B.
C.
D.
E.

IP X , d ire c c ió n M AC.
IP, d ire c c ió n de difusión clase C.
D ire c c ió n IP privada, d irec ció n de un nodo.
D ire c c ió n IP pública, d irec ció n de difusión.
D irecció n IP privada, d irec ció n de difusión.
R espuesta: C
P ágina: 71

164. ¿Q ué co m an d o s p u e d e n ser u tilizad o s en la interfaz de línea de com andos
para d iag n o sticar problem as de conectiv id ad a nivel de capa de red en un
ro u ter? (seleccio n e 3).
A . p in g

B. t r a c e r o u t e
C . ipconfig
D. s h o w i p r o u t e
E.

winipcfg

F.

show c o n t r o l l e r s
R espuesta: A, B, D
Página: 140, 143

165, E n el esq u em a je rá rq u ico d e d ireccio n am ien to IP, ¿qué establece que
p o rció n de u n a d ire c c ió n IP iden tifica el núm ero de re d y cuál el nodo?
A.
B.
C.
D.
E.

M áscara de subred.
P untos e n tre los octetos.
N u m e ra c ió n del p rim er octeto.
A sig n a c ió n de DHCP.
A R P.
R espuesta: A
P ág in a: 71

166. L a direcció n IP 131.107.0.0 es una dirección clase B. ¿C uál es el ra n g o de
v alo res b inarios p a ra el prim er octeto de las direcciones de esta clase?

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 343

0 RA-MA

A.
B.
C.
D.
E.

10000000a
a
10000000a
10000000a
110 0 0 0 0 0 a

00000000

11111111
10111111

10111111
11011111
11101111
Respuesta: C
Página: 73, 77

167. Los usuario s de la re d 192.168.69.0/28 no pu ed en a c c e d er al servidor de la
Intranet corporativa e n la d ire c c ió n w w w .in h o u se.co m . Al d iagnosticar este
p ro b lem a, encuentra qu e p u ed e conectarse p o r teln e t d e sd e ten n in a les de su
red al W ebserver v ía su direcció n IP. ¿Cuál es p ro b a b lem e n te la causa de este
p ro b lem a?
A.
B.
C.
D.

Fallo
F allo
F allo
Fallo

de
de
de
de

T C P /IP .
D N S.
FTP.
SN M P.
Respuesta: B
Página: 56

168. U n adm in istrad o r está diag n o stican d o p o sib les p ro b lem as en su red, para lo
cual ha ejecutado el co m an d o p in g 1 0 .0 .0 . 2 p ara p ro b a r la conectividad físic a
entre 2 dispositivos. ¿Q ué tip o de m ensaje IC M P h a sid o transportarlo en el
datagram a IP?
A.
B.
C.
D.
E.

IC M P echo.
In fo rm atio n request.
T im estam p reply.
IC M P R edirect.
Source quench.
Respuesta: A
Página: 141

169. N o se logra co n ectar al serv id o r T FT P local de la com pañía u tilizan d o la
d irección IP 10.0.0.20 d esd e sil term inal. D esea p ro b a r su term inal para e s ta r
seguro de que T C P /IP e stá correctam ente instalado.
¿C uál de las sig u ien tes accio n es le p erm ite probar la suite de p ro to co lo s en
su PC ?

A.
B.
C.
D.
E.

p in g 127.0.0.0
p in g 203.125.12.1
teln et 127.0.0.1
pin g 127.0.0.1
tra c e rt 203.125.12.1
R e s p u e sta : D

Página: 69
170. ¿C uál de la s
d istrib u ció n ?
A.
B.
C.
!).
E.
F.
G.

sigu ien tes

opciones no

im p iem en taría en la capa de

L istas de acceso.
F iltra d o de paquetes.
C ola.
D iv isió n de dom inios de colisión.
T ra d u c c ió n de la dirección.
, F irew alls.
D iv isió n de dom inios de difusión.
Respuesta: D
Página: 52

171. ¿C u ál es la lo n g itu d m áxim a adm itida p a ra u n cable de par tren zad o en una
re d F a stE th e m e t lOOBaseTX estándar?
A. 1 0 m .
B. 50 m .
C. 1 0 0 m .
D. 1000 m.
Respuesta: C
Página: 25
172. ¿C uál es la d irecció n de b ro ad cast de la dirección de subred 192.168.99.20
2 5 5 .2 5 5 .2 5 5 .2 5 2 ?
A.
B.
C.
D.

192.16 8 .9 9 .1 2 7
192.168.99.63
192.168.99.23
192.168.99.31
Respuesta: C
Página: 71

173. ¿C ó m o se d eterm in a el puerto raíz de u n sw itch que está corriendo el
P ro to c o lo de A rb o l de E xpansión?

A. El sw itch d eterm in a el coste más alto de un enlace al puen te raíz.
B. El sw itch d eterm in a el coste m ás bajo de un en lace al puen te raíz.
C. La tasa de tra n sfe re n cia B P D U más rápida se d eterm in a en viando y
recib ien d o B PD U entre sw itches, y e sa interfaz se co n v ierte en el
p u erto raíz.
D. El p u en te raíz efe c tu a rá un a difusión del ID del pu en te, y el puente
recep to r d eterm in ará en qué interfaz fue recib id o esta d ifu sió n y
co n v ertirá a d ic h a interfaz en el puerto raíz.
R espuesta: B
P ágina: 223

174. ¿C uál es el rango de no d o válido del cual es p a rte la direcció n IP
172.16.10.22 2 5 5 .2 5 5 .2 5 5 .2 4 0 ?
A.
B.
C.
D.
E.

172.16.10.20 a 172.16.10.22
172.16.10.1 a 1 7 2 .1 6 .1 0-.255
172.16.1.16 a 172.16.10.23
172.16.10.17 a 172.16.10.31
172.16.10.17 a 172.16.10.30
R espuesta: E
P ágina: 71

175. ¿C uál es el ra n g o de n ú m e ro s de puerto que un c lien te p uede u tilizar p a ra
configurar u n a sesión c o n otro nodo o un servidor?
A.
B.
C.
D.

1-1023.
1024 y su p erio res
1-256.
1-65534.

Respuesta: B
Página: 40
176. U n u su ario ejecuta el com ando p in g 204.211.38.52 d u ran te u n a sesión d e
co n so la en un router. ¿Q u é está utilizando este c o m a n d o para verificar la
co n ectiv id ad entre los d o s dispositivos?

A. IC M P echo req u est.
B. In fo rm atio n req u est.
C. T im estam p rep ly .

346

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

D. R edirect.
E. S ource quen ch .
Respuesta: A
Página: 140
177. ¿C uál de las sig u ien tes es la d irecció n de difusión p a ra u n a ID de red Clase
B que u tiliz a la m á sc a ra de su b red p o r defecto?
A . 1 7 2.16.10.255
B . 172.16.2 5 5 .2 5 5
C . 1 7 2 .2 5 5 .2 5 5 .2 5 4
O. 2 5 5 .2 5 5 .2 5 5 .2 5 5
Respuesta: B
Página: 71
178. D esde el p ro m p t D O S de u n a estació n de trabajo p u ed e h acer ping a un
ro u te r p ero no p u e d e h acer te ln e t al m ism o. ¿Cuál es la cau sa m ás probable
del p ro b lem a?
A.
B.
C.
O.
E.

E l PC tien e una placa de red defectuosa.
L a d ire c c ió n IP del ro u te r está en u n a subred diferente.
N o se h a co n fig u rado la passw o rd de term inal v irtual en el router.
N n se ha co n fig u rado el d efau lt gatew ay en el PC.
L a d ire c c ió n 1P del term in al es incorrecta.
Respuesta: C
Página: 113

179. ¿C uál es la d ire c c ió n de difusión que corresponde a la IP 10.254.255.19
2 5 5 .2 5 5 .2 5 5 .2 4 8 ?
A.
B.
C.
D.

10.254.255.23
10.2 5 4 .2 5 5 .2 4
10.254.255.255
10.255.255.255
Respuesta: A
P ág in a: 71

180. ¿Q u é es v e rd a d e ro respecto al estado de bloqueando de u n p u erto de sw itch
que u tiliza el P ro to c o lo de A rb o l de E xpansión? (elija to d as las respuestas
que se apliq u en ).

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 347

<0 RA-lvtA.

A. L os
B. Los
C . Los
D. Los

puertos
puertos
puertos
p uertos

b lo q u e a d o s
b lo q u e a d o s
b lo q u ead o s
b lo q u ead o s

no envían n in guna tram a.
escuchan BPD U .
env ían todas las tram as.
no escuchan B PD U .
Respuesta: A, B
Página: 224

181. ¿C u ál es la d irección de d ifu sió n de la dirección de su b re d 172.16.99.99 /
2 5 5 .2 5 5 .1 9 2 .0 ?
A . 172.16.99.255
B. 172.16.127.255
C . 172.16.255.255
D . 172.16.64.127
Respuesta: B
Página: 71
182. Si u ste d deseara ten er 12 su b red es con un ID de red C la se C, ¿qué m áscara
de su b red d ebería u tilizar?
A.
B.
C.
D.

255.2 5 5 .2 5 5 .2 5 2
255.255.255.248
255.2 5 5 .2 5 5 .2 4 0
2 5 5 .255.255.255

:
Respuesta: C
Página: 71

183. ¿C u ál es la d irección de d ifu sió n de la su b red a la que p erte n ec e el p u e rto
10.10.10.10 2 5 5 .2 5 5 .2 5 4 .0 ?
A.
B.
C.
D.

10.10.10.255
10.10.11.255
10.10.255.255
10.255.255.255
Respuesta: B
Página: 71

184. A p artir de la red 199.141.27.0 con una m á sc a ra de su b red
2 5 5 .2 5 5 .2 5 5 .2 4 0 , id en tifiq u e las direcciones de nodo v á lid a s (elija 3).
A.
B.

199.141.27.33
199.141.27.112

C . 199.141 .2 7 .1 1 9
D. 199.141.27.126
E . 199.141.27.175
F . 199.141.27.208
R e s p u e s ta : B, D , fc]

Página: 71
185. L a red 172.12.0.0 n ecesita ser d iv id id a en subredes, cada una d e las cuales
debe ten er u n a capacidad de 458 d ireccio n es IP. ¿C uál es la m áscara de
su b red co rrecta para lograr esta d ivisión, m an ten ien d o el núm ero de subredes
en su m áx im o posib le? E scriba el v alo r correcto:

Respuesta:
255.255.254.0

Página: 71
186. U ste d se en cu en tra co nfigurando u n a su b re d en la oficina de la sucursal
que la em p resa p o see en M adrid. N e c e sita asig n ar u n a d irecció n IP a los
n o d o s en esa subred. Se le h a in d icado u tiliz ar la m áscara de subred
25 5 .2 5 5 .2 5 5 .2 2 4 . ¿Q ué direcciones IP de las siguientes serán direcciones
válid as? (elija 3)
A.
B.
C.
D.
E.
F.

15.234.118.63
92.11.1 7 8 .9 3
1 34.178.18.56
1 92.168.16.87
2 0 1 .4 5 .1 1 6 .1 5 9
2 1 7 .6 3 .1 2 .1 9 2
R e s p u e s ta : B, C , D
P á g in a : 71

187. ¿C uál es el n úm ero m áxim o d e subredes que pu ed en se r asig n ad as a una
red , cuando se u tiliza la d irecció n 172.16.0.0 y la m áscara de subred
2 5 5 .2 5 5 .2 4 0 .0 ?
A.

16

q

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 349

rA-MA

B.
C.
D.
E.

32
30
14
L a m áscara de su b re d es inválida para esa d ire cció n de red.
Respuesta: D
Página: 71

188. U ste d ha d iv id id o en su b red es la red 213.105.72.0 u tilizan d o utia m áscara
de subred /2 8 . ¿C uántas subredes utilizables y d irecciones de no d o utilizables
p o r sub red se o btienen d e esta m an era? (elija la m ás ad e c u a d a)
A. 62 red es y 2 nodos.
B. 6 red es y 30 nodos.
C . 8 red es y 32 nodos.
D. 16 re d e s y 16 nodos.
E. 14 re d e s y 14 no d o s.
Respuesta: E
Página: 71
189. E stá tra b a ja n d o co m o co n su lto r y esta p lan ifican d o la instalación de u n a
red p a ra u n a gran o rganización. E l diseño req u iere de 100 su b red es
separad as, p a ra lo cual se ha obtenido una d irección clase B.
¿Q ué m áscara d e subred la p erm itirá arm ar las 100 su b red e s requeridas, si s e
req u ieren 500 nodos u tilizab les p o r subred?
*

A.
B.
C.
I).
E.
F.

2 5 5 .2 5 5 .2 4 0 .0
2 5 5 .2 5 5 .2 4 8 .0
2 5 5 .2 5 5 .2 5 2 .0
2 5 5 .2 5 5 .2 5 4 .0
2 5 5 .2 5 5 .2 5 5 .0
2 5 5 .2 5 5 .2 5 5 .1 9 2
Respuesta: I)
Página: 71

190.

¿C uál es la dirección
12 3 .2 0 0 .8 .6 8 /2 8 ?
a

imonrvQn

de red

para un

nodo

con

la dirección

IP

350

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

D.
E.
F.

©RA-M a

123.200.8.65
123.200.8.31
123.200.8.1
R espuesta: C
P ágina: 71

191. ¿Q ué co m an d o de edición desp laza su cursor h ac ia atrás u n a palab ra?
A. Ctrl+E
B.

Ctrl+F

C. E s c + B
D. Ctrl+A
R esp u esta: C
P ágina: 128

192. H a d iv id id o la red 2 0 1 .1 0 5 .1 3 .0 u tilizan d o una m áscara de su b red de 26
bits. ¿C u án tas su b red es utilizables y cuántas direccio n es de noto utilizables
p o r su b red d isp o n d rá d e esta m anera?
A . 64 redes y 4
B. 4 red es y 64
C . 4 red es y 62
D . 62 red es y 2

nodos.
nodos.
nodos.
nodos.
R esp u esta: C
P ágina: 71

193. D e los que se en u m eran a co n tin u ació n , ¿qué d isp ositivo o p e ra en las siete
capas del m o d elo O S I? (e lija 3).
A.
B.
C.
D.
E.
F.

T erm in al
T erm in al de ad m in istració n de red
T ran sceiv er
Puente
W eb S erver
Sw itch
R espuesta: A, B, E
P ágina: 20, 21

194. L os clientes p erten ecien tes al D ep artam en to T écn ico rep ortan problem as
de acceso. N o tienen p o sibilidad de con ectarse con el nuevo serv id o r de una
su cu rsal rem ota.
¿C u ál es p o sib lem en te la causa del p ro b lem a?

A PÉN D IC E A. PREPARATIVOS PA RA EL EXAM EN 3 5 1

© r a -m a

■0
205.113.20.49/2:

S1
90S 11 3

50/28

E0

205.113.20

205.113.20.97

Depto Técnico
205.113.20.18
255.255.255.240
Gateway 205.113.20.17

Servidor
205.113.20.96
255.255.255.240
Gateway 205.113.20.97

A . El defau lt g atew ay de las estaciones de trabajo del D ep artam en to
T écn ico es incorrecto.
B. L a m áscara de subred de las estaciones de trabajo en el
D ep artam en to T écn ico es incorrecta.
C . El defau lt g atew ay del se rv id o r de la S ucursal es in co rrecto .
D. L a d irecció n IP del nu ev o servidor es inválida.
E . La in terfaz S erial 0 del ro u te r Central y la in terfaz S eria l 1 del
ro u te r Sucursal no se en cu en tran en la m ism a su bred.

Respuesta: D
Página: 71
195. T e n ie n d o en cuenta los sig u ien tes criterios para p erm itir el acceso desde
sitio s rem o to s a su L A N :



R estrin g ir el acceso en la in te rfa z Ethernet 1.
E th ern et 1 = 2 0 7 .8 7 .8 1 .1 7 3 .
D enegar el acceso a telnet, ftp, snm p.
P erm itir to d o tipo de operacio n es.

¿C u ál de las sig u ien tes d eb iera se r la últim a se n ten c ia en ingresar en su
lista de acceso?
A.

a c c e s s - l i s t 101

B.
C.

a c c e s s - l i s t 101 d e n y

D.

a c c e s s - l i s t 101 p e r m i t

eO t e l n e t

a c c e s s - l i s t 101 a l l o w

ftp

a ll except
ip 0 .0 .0 .0

ftp

telnet

2 55.255.255.255

any

352

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

E.

© RA-MA

access-list 101 deny ip 207.87.81.173 tcp eq 20 21 23

Respuesta: D
Página: 193
196. U sted tien e un enlace serial directo a u n ro u ter adyacente. N o tiene
co n ectiv id ad , y c u an d o ejecuta show ru n n in g -co n fig , la consola le informa
qu e la interfaz serial está shutdow n. A h o ra ejecuta sh o w interfaces serialO
¿Q ué in fo rm ació n d ebería enco n trar reflejad a en la consola?
A. serial
0 is up, line protocol is dow n
B. serial
0 is dow n, line p rotocol is dow n
C . serial
0 is dow n, line protocol is up
D. serial
0 is ad m in istrativ ely dow n, line p rotocol is
E. serial
0 is ad m in istrativ ely dow n, line p rotocol is
F . serial 0 is ad m in istrativ ely up, line pro to co l is dow n

do w n
up

Respuesta: D
Página: 255, 256
197. Se ha c o m en zad o a diseñar u n a n u ev a red p a ra su em presa. U tilizan d o una
re d IP clase C , ¿q u é m áscara de subred la p ro v ee d e 1 subred u tilizab le para
c ad a d ep artam en to a la v ez que perm ite suficien te cantidad de d irecciones de
n o d o para c a d a d ep artam en to esp ecificad o en la siguiente tabla?

G erencia

17 usu ario s

S oporte

15 usu ario s

F inanzas

13 u su ario s

V entas

07 u su ario s

D esarrollo

16 usu ario s

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 353

© R A -M A

E. 2 5 5 .25 5 .2 5 5 .2 4 8
F. 2 5 5 .25 5 .2 5 5 .2 5 2
R esp u esta: C

Página: 71
19 8 .

C om o ad m in istra d o r se le h a solicitado que repare la re d que se m uestra
m ás abajo. La term in al d e trab ajo está conectada a la red p ero no logra
co nectarse a los recu rso s dispo n ib les en otras redes a trav é s d e una nube
R D S I. A su m ien d o que la L A N está configurada de la sig u ien te m anera:

IP: 192.168.5.45
Mascara: 255.255.255.240
Gateway: 192.168.5.32

¿C uál de las sig u ien tes es la cau sa de este p roblem a?
A. E l d e fa u lt g ate w a y es un a dirección de subred.
B. E l d e fa u lt g atew ay está en una subred d iferente q u e la term inal.
C . L a m áscara de su b red de la term inal no c o in cid e con la m áscara de
su b red de la in terfaz del ro u ter a la que e stá co nectada.
D. L a d irecció n IP de la term in al está en una su b re d diferente que el
d efau lt gatew ay.
Respuesta: A
Página: 72

199.

E n u n co n tex to Jrram e-R elay, ¿qué identifica al P V C ?
A . N C P.
B. LM I.
C . IA R P.

354

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

® RA-M/\

D. D L C I.
R espuesta: D
Página: 268

200. U n ad m in istrad o r n e c e sita asig n ar u n a d ire cc ió n IP estática al servidor de
la red. D e la re d 19 2 .1 6 8 .2 0.24/29 se h a asig n a d o al p u erto del router la
prim era d irecció n de n o d o utilizable, m ien tras q u e al serv id o r de ven tas se le
deb e asignar la ú ltim a d irecció n de no d o u tilizab le.
¿C u ál de las sig u ie n te s o p ciones m u estra la inform ación que se debe
in tro d u cir en la ca ja de p ro p ied ad es IP del se rv id o r de ventas?
A. D i r e c c i ó n I P 1 9 2 . 1 6 8 . 2 0 . 1 4
M á s c a r a d e s u b r e d 25 5 . 2 5 5 . 2 5 5 . 2 4 8
D e fa u lt gatew ay 1 9 2 .1 6 8 .2 0 .9

B. D i r e c c i ó n I P 1 9 2 . 1 6 8 . 2 0 . 2 5 4
M áscara de s u b r e d 2 5 5 .2 5 5 .2 5 5 .0
D e fa u lt gatew ay 1 9 2 .1 6 8 .2 0 .1

C. D i r e c c i ó n

IP 1 9 2 .168.20.30
M áscara de su b re d 2 5 5 .2 5 5 .2 5 5 .2 4 8
D e fa u lt gatew ay 1 9 2 .1 6 8 .2 0 .2 5

I).

D ire c c ió n IP 192.1 6 8 .2 0 .3 0
M áscara de su b re d 2 5 5 .2 5 5 .2 5 5 .2 4 0
D e fa u lt gatew ay 1 9 2 .1 6 8 .2 0 .1 '/

E. D i r e c c i ó n I P 1 9 2 . 1 6 8 . 2 0 . 3 0
M áscara de su b re d 2 5 5 .2 5 5 .2 5 5 .2 4 0
D e fa u lt gatew ay 1 9 2 .1 6 8 .2 0 .2 5

Respuesta: C
Página: 71
201. Se le h a sido a sig n ad a u n a d ire cc ió n de red clase C. Su d ire cto r le ha
solicitado crear 30 su b red es con al m enos 5 nodos p o r subred p ara los
diferentes d e p artam en to s en su org an izació n . ¿C uál es la m áscara de subred
que le perm itirá c re a r esas 30 su b red es?

..
Respuesta:

255.255.255.248
P ágina: 71

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 355

0 RA-M A

202. D ad a la dirección IP 1 9 5.106.14.0/24, ¿ c u á le s el nú m ero to ta l de redes y ei
nú m ero to tal de n odos por red que se obtiene?
A . 1 red con 254 nodos.
B. 2 red es con 128 nodos.
C . 4 redes con 64 no d o s.
D. 6 redes con 30 nodos.
Respuesta: A
Página: 7]

203. ¿Q u é co m an d o le m o strará la v e rsió n del IOS a c tu a lm e n te e n ejecución en
su ro u te r?
A.

show flash

B.

show flash file

C . show ip flash
D.

show versión
Respuesta: D
Página: 129, 130

204. P a rtie n d o de la red 1 9 2 .1 4 1 .2 7 .0 /2 8 , identifique las d ire c c io n e s de nodo
v á lid a s (elija 3).
A.
B.
C.
D.
E.
F.

192.141.27.33
192.141.27.112
192.141.27.119
192.141.27.126
192.141.27.175
192.141.27.208
R esp u esta: A, C, D
P ág in a: 71

205. S u co m p añ ía utiliza un a d irecció n d e red clase C. N e c e sita crear 5 subredes
co n al m enos 18 nodos p o r subred.
¿C u á l debe ser la m áscara de su b re d para esta red?

356

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© Ra - ma

Respuesta:
255.255.255.224
Página: 71
206. U tilizan d o la d ire c c ió n 192.64.10.0/28, ¿cuántas subredes y cuántos nodos
po r su b red están d isp o n ib les?
A . 62 su b red es y 2 nodos.
B . 6 su b red es y 30 nodos.
C . 8 su b red es y 32 nodos.
D. 16 su b red es y 16 nodos.
E . 14 su b re d e s y 14 nodos.
R espuesta: E
Página: 71

2 0 7 . ¿C uál es un a d ire c c ió n de difusión p erteneciente a la red 192.57.78.0/27?
A . 1 92.157.78.33
B. 192.57 .7 8 .6 4
C . 192.57.78.87
D. 192.57.78.97
E . 1 9 2.57.78.159
F . 192.5 7 .7 8 .2 5 4
R espuesta: E
P ágina: 71

208. ¿C u ál es el tipo de L M I p o r defecto?
A.
B.
C.
D.

q.933a
ansi
ie tf
cisco
R espuesta: D
P ágina: 270

20 9 . ¿C u ál es el p a tró n de bits p ara el p rim er o cteto de una dirección d e red
clase B com o 129.1 0 7 .0 .0?
A.

Oxxxxxxx

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 357

o RA-MA.

B. 1Oxxxxxx
C. llO x x x x x
Tí. lllO x x x x
E. 1111Oxxx
Respuesta: B
Página: 68
210. Se e stá c o n fig u ran d o u n a im presora de red. D esea u tiliz ar la ú ltim a
d irecció n IP de su su b red p a ra es:a im presora. H a ejecu tad o u n ipconfig en s u
term inal de tra b a jo y h a recibido la in fo rm ació n que tie n e m ás arrib a.
B asán d o se en la d irecció n IP y la m áscara de subred de su term inal d e
trabajo, ¿cuál es l a últim a d irección IP disponible en su su bred?
Dirección IP: 172.20.7.160
Máscara de subred: 2 55.255.255.192

A.
B.
C.
D.
E.

172.20.7.255
172.20.7.197
172.20.7.190
172.20.7.129
172.20.255.255
Respuesta: C
Página: 71

211. A sum iendo q u e n u estra re d esta u tilizando u n a v ersió n antigua de U N IX ,
¿cuál e s el n ú m e ro m áx im o de subredes qu e p u ed en se r asignadas a la re d
cu an d o utiliza l a dirección 131.107.0.0 con u n a m á sc a ra de subred de
2 5 5 .2 5 5 .2 4 0 .0 ?
A . 16.
B . 32.
C . 30.
D . 14.
E . Es u n a m á scara de subred inválida p ara esta red.
Respuesta: D
Página: 71
212. ¿C uáles son la s dos fo rm as en las que se p uede en tra r al m odo setup e n un
ro u te r?
A . T e c le a n d o el com ando clear ñ a sh .
B . T e c le a n d o el com ando erase startu p -co n fig y rein ician d o el ro u te r.
C . U tiliz a n d o el com ando setup.

358

R E D E S CISCO: GUÍA D E E S T U D IO PARA LA CERTIFICACIÓN CCNA 640-802

D.

© RA-MA

T eclean d o el com ando setup m o d e.
Respuesta: B, C
Página: 109

213. Si quisiera h a lla r to d o s los co m andos q u e com enzaran con “ e l” a partir de
un d eterm in ad o p ro m p t, ¿qué tip earía en dicho p ro in p t en p articular?
A. Show commands el
B.

el ?

C. el?
D. el ? more
Respuesta: C
Página: 110

214. Si está en m o d o p riv ileg iad o y q uiere regresar al m odo u su ario , ¿qué
com ando d eb erá u tilizar?
A. exit

B. quit
C . disable
D. C o n t r o l+ Z
Respuesta: C
Página: 11.0

215. ¿Q ué co m an d o de ed ición desplaza su cursor hasta el principio de la línea?
A.
B.
C.
D.

Ctrl+E
Ctrl+F
Ctrl+B
Ctrl+A
Respuesta: D
Página: 128

216.

S e en cu en tra tra b a ja n d o en las sig u ien tes redes:
172.16,32.0/20
172.16.64.0/20
1 7 2.16.82.90/20

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 359

©RA-MA

¿C uál de las direcciones que se m u estran a co n tin u ac ió n es u n a dirección de
d ifu sió n de las subredes de n u estra red?
A.
B.
C.
D.
E.
F.

172.16.32.255
172.16.47.255
172.16.34.255
172.16.82.255
172.16.79.255
172.16.95.255
Respuesta: B, E, F
P ág in a : 71

217. ¿Q ué com ando le m o strará los co ntenidos de la E E P R O M en su router?
A. show f l a s h
B.

show f l a s h

file

C. show i p f l a s h
D. show v e r s i ó n
Respuesta: A
Página: 121
218. ¿Q u é com an d o le m o strará si el cable que se e n c u e n tra conectado a la
in terfaz serial 0 es D T E o D C E ?
A.

show interfaces serialO

B. show i n t e r f a c e s s e r i a l 0
C. show c o n t r o l l e r s s e r i a l 0
D. sh ow c o n t r o l l e r s s e r i a l O

Respuesta: C
Página: 256
2 Í 9 . ¿Q u é com an d o im p ed irá que los m ensajes del siste m a operativo, que p o r
d efecto están dirigidos a la consola, se escriban so b re e l com ando que e s tá
in ten tan d o ingresar en el p ro m p t?
A. n o l o g g i n g
B. l o g g i n g
C. l o g g in g a s y n c h ro n o u s

D.

logging

synchronous
Respuesta: D
Página: 113

360

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802______

© RA-Ma^

220. ¿Q ué co m an d o p e rm itirá a los usuarios con ectarse p o r telnet a un router sin
q u e ap arezca el p ro m p t p id iéndoles una c o n tra se ñ a del m odo usuario?
A. l o g i n
B. n o l o g i n
C . Se p u e d e h a c e r teln et por defecto, de m o d o tal que no se necesita un
co m an d o .
D. n o p a s s w o r d
R espuesta: B
Página: 114

221. E x iste alg ú n p ro b le m a sobre la seguridad de su red. Posee u n router que
e stá co n ectado a In te rn e t y no desea que p u b liq u e actu alizacio n es RIP a
través de la in te rfa z q u e está conectada a Internet. ¿Q ué com ando le permite
prev en ir que estas a ctu alizacio n es salgan a trav és de la interíaz, sin recurrir
al uso de listas de acc e so ?
A.
B.
C.
D.

passive

route

default routes
passiv e-in terface
route

update

filterin g

R espuesta: C

Pagina: 152

222. ¿C óm o c o n fig u ra s u lín ea de term inal virtual 1 so lam en te con la contraseña
“p e p e ”?
A. l i n e v t y 0 X
login
passw ord pepe

B.

lin e vty 0 4
lo g in
passw ord pepe

C. L i n e v t y 1
lo g in
passw ord pepe

D. l i n e v t y 1
passw ord pepe
login
Respuesta: C
Página: 113

f , RA-MA

A P É N D IC E A. P R E P A R A T IV O S P A R A E L E X A M E N

361

223.

¿C u ál de las sig u ien tes o p cio n es es v erdadera a c e rc a d e las enable
passw o rd s? (e lija todas las qu e se apliquen).
A. La enable p a ssw o rd se en c rip ta por defecto.

B.
C.
D.
E.
F.

L a enable secret se en crip ta por defecto.
L a passw o rd e n a b le -e n crip ta d a debe configurarse prim ero .
La enable p a ssw o rd está p o r encim a de la enable secret.
L a enable secret está p o r encim a de la enable p assw o rd .
La passw o rd e n a b le -e n crip ta d a está p o r encim a d e todas las otras
passw ords.
R esp u esta: B, E
P ág in a : 112

224. ¿Q u é com ando c o n fig u ra rá su consola para q u e se desconecte
au to m áticam en te por tie m p o v e n c id o después de solo un seg u n d o ?
A. tim e o u t 1 0
B. t i m e o u t 0 1
C . exec-timeout 1 0
D. exec-timeout 0 1
R e sp u esta: D
P ág in a: 113

225. ¿Q u é com ando le m o stra rá el n o m b re de nodo resu elto a la dirección IP en
un ro u ter?
A.
B.
C.
D.

show r o u t e r
show h o s t s
show

ip

hosts

s h o w ñame

reso lu tio n

R esp u esta: B
P ág in a : 123

226. ¿C ó m o se entra d esde el m o d o de configuración p a ra p o d e r configurar la
c o n tra se ñ a del puerto au x iliar?
A.

line aux 1

IB. line aux 0

C. l i n e aux 0 4
D. l i n e aux p o r t
Respuesta: B
Página: 114

362

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

227. ¿Q ué co m an d o se debe in tro d u cir p ara efectu ar una copia de seguridad de
la co n fig u ració n q u e se ejecu ta actualm ente (co n fig u ració n activa) y hacer
que se v u elv a a c a rg a r si el ro u ter es rein icia d o ?

A.
R o u te r (cor.fig) #copy c u r r e n t t o
B. R o u t e r # c o p y s t a r t i n g t o r u n n i n g

C.
D.

R outer (config)#copy
R outer#copy

startin g

running-config

running-config

startu p -co n fig

startup-config

R espuesta: D

Página: 124
228. Al u tiliz a r el m o d o setup, ¿cuáles son las dos opciones de configuración
d iferen tes que o fre c e este m odo?
A.
B.
C.
D.

B ásica.
A vanzada.
E xten d id a.
E x p an d id a.
R espuesta: A, C
P ágina: 109

229. ¿E n qué m o d o s de un ro u ter C isco se p uede u tilizar el p in g de IC M P para
d iag n o sticar u na red? (elija 2).
A.
B.
C.
D.

U suario.
Privileg iad o .
C o n fig u ració n global.
C o n fig u ració n de la interfaz.
R espuesta: A, B

Página: 141
230. ¿Q ué com ando borra los contenidos de la N V R A M en un router?

A.

delete

NVRAM

B.

delete

startup-config

C. e r a s e NVRAM
D.

erase

startup -con fig

Respuesta: D
Página: 126

0 rA

- M

A

_______________________ APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 363

231- ¿Q u é com an d o le m uestra to d o s los p rotocolos e n ru ta d o s y las interfaces
en las cuales cada p ro to co lo se encuentra habilitado?

A.

show p r o t o c o l s

B.

show p r o t o c o l

C.

show i n t e r f a c e s

D.

show i n t e r f a c e s

E.
F.

show r o u t e d

brief
protocol

show r o u t e d
interfaces

R esp u e sta : A
P á g in a : 167

232. ¿C uál de las secu en cias de com andos que se e n u n cian a co n tin u ac ió n
perm ite co n fig u rar un a su b in terfaz en su interfaz F a stE th e m e t?
A. c o n f i g u r e t e r m i n a l
in terface

F astethernst

0.24010

B.

configure
in terface

term inal
F asteth ern et

100.0

C.

configure term inal
24000 F a s t e t h e r n e t

0

D. c o n f i g u r e t e r m i n a l
24000

F asteth ern et

100

R esp u esta: A
P ág in a: 24-1

233.

¿C u ál es el p ro b le m a de u n a interfaz si usted eje cu ta el com ando sh o w
interfaces serial 0 y recibe el siguiente m ensaje?
SerialO is administratively down,line protocol is down

A.
B.
C.
1).

Los tem p o rizad o res de actividad son diferentes.
El ad m in istrad o r tien e d eshabilitada la interfaz.
El ad m in istrad o r está haciendo p in g desde la in terfaz.
N o hay ningún cable conectado.
Respuesta: B
P ágin a: 120

364

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

234. ¿Q ué co m an d o p erm ite v er la co n fig u ració n del registro de configuración?

A.

show r e g i s t e r

B.

show f l a s h

C.

show b o o t

D.

show v e r s i ó n

R espuesta: D
P ág in a: 121

235. Si tip e a sh o w in te r f a c e s e ria l 0 y recib e la sig u ien te respuesta,
RouterA#sh int sO
SerialO is up, line protocol is down

¿C uál p o d ría ser el p ro b lem a?

A. L os k e e p a liv e s p u ed en estar m al con fig u rad o s entre los enlaces
p u n to a pu n to .
B. N o h ay u n cab le co n ectad o a la interfaz.

C . El ad m in istrad o r n e ce sita em itir una so licitud de n o sh u td o w n a la
interfaz.
D. L a in terfaz es defectuosa.
R ?SpU 6SÍil! A

fa g in a : 257

236. B asad o en la sa lid a del co m an d o sh o w in te r a c e serialO in tro d u cid o en un
router DTE, ¿q u é capa del m odelo O S I es m ás pro b ab lem en te el origen del
p ro b lem a?
Router#show interfaces serialO
SerialO is down, line protocol is down

A.
B.
C.
D.

C ap a
C ap a
C apa
C apa

física.
de D atos.
de red.
de transp o rte.
R esp u esta: A
P ág in a: 119, 255

237. P ara p ro c e d e r a co n fig u rar u n a p assw ord de acceso p a ra la consola,
co m ien za po r e je c u ta r el co m ando R o u te r(c o n fig )# lin e c o n so lé 0

QRA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 365

¿C u ál es la o p eració n de d e b ie ra realizar a continuación?
A.
B.
C.
D.
E.

C o n fig u rar el tipo d e term in al.
In g resar los p arám etro s de p rotocolo para una lín e a serial.
C re a r u n a passw o rd s o b re la línea de term inal de co n so la.
E stab lecer un a c o n e x ió n term inal tipo 4 a un n o d o rem oto.
C am b iar del m odo d e c o n fig u ració n al m odo p riv ile g ia d o de
consola.
R esp u esta: C
P ág in a: 113

238. U sted es el ad m in istrad o r de re d de una com pañía y a c a b a de recibir u n a
llam ada de u n u su a rio que n o p u e d e acceder a un serv id o r e n un sitio rem oto.
D espués de realizar una re v isió n , se recoge la siguiente infonrtación:
P C Socal - 10.0.3.35/24
D e fa u lt G a te w a y - 1 0 .0 .3 .1
S e r v id o r R e m o to - 1 0 .0 .5 .2 5 0 /2 4
H a realizad o los siguientes te sts desde la term inal que n o logra el acceso:
p in g
p in g
p in g
p in g

127.0.0.1 - fu n c io n a
10.0.3.35 - fu n c io n a
10.0.3.1 — fu n c io n a
1 0.0.5.250 - n o r e s p o n d e

¿A cuál de los sigu ien tes p ro b lem as puede deberse el resultado del te s t
realizad o ?
A.
B.
C.
D.

T C P /IP no
Pro b lem as
L a N IC de
P ro b lem as

está co rre c tam e n te instalado.
en la c ap a física loca!.
la term in al no funciona.
en la c ap a física rem ota.
R espuesta: D
P ágina: 59

239. H a sido co n v o cad o com o co n su lto r para resolver in co n v en ien tes en la re d
de un a co m p añ ía. E jecu ta el co m an d o debug ip rip a fin de diagnosticar e l
fu n cio n am ien to de la red R IP . Le inform an que su in te rfa z E thernet 10.1.0.1
ha caído.
¿Q u é m ensaje de actu a liz ac ió n se visualizará en la sa lid a del debug ip rip e n
su ro u ter resp ecto de esa red ?

366

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

A.

subnet 10.1.0.0 metric 0

B.

subnet 10.1.0.0 metric 1

C.

subnet 10.1.0.0 metric 15

D.

subnet 10.1.0.0 metric 16

© RA-MA

R esp u esta: 15
P ág in a: 150

240.

E l ancho de b a n d a po r defecto p a ra u n enlace serial de alta velocidad es
1,544 M b p s, es d ecir el de u n a línea T I . ¿C uál es el co m an d o co rrecto para
cam b iar el ancho de b an d a de la interfaz a 64 K ?

A. bandwidth 64
B. band width 64
C. bandwidth 64000
D.

bandwidth 64000

E . bandwidth 64K
R espuesta: A
Página: 162

2 4 ! . A l m ira r una ta b la de enrutam iento, ¿qué significa la letra “ S” ?
A . C o n ectad a d inám icam ente.
B . C o n ectad a directam ente.
C . C o n ectad a estáticam ente.
D . E n v ian d o p aquetes.
R espuesta: C
Router_A #show ip r o u te
C o d e s : C - c o n n e c t e d , S - s t a t i c , I - I G R P , R - R I P , M - m o b i l e , B - BGP
D - E I G R P , EX - E I G R P e x t e r n a l , O - O S P F , I A - OS P F i n t e r a r e a
N I - OS PF NSSA e x t e r n a l t y p e 1 , N 2 - OS P F NSSA e x t e r n a l t y p e 2
E l - OS PF e x t e r n a l t y p e 1 , E2 - OSPF e x t e r n a l t y p e 2 , E - EGP
i - IS-IS, L1 - IS-IS level-1, L 2 - IS-IS levei-2, * -

242.

R o u t e r A está d irectam ente co n ectado al R o u te r B. E n R outer_A se acaba
de caer la in terfaz que está co n e cta d a al R o u terJB utilizando el com ando
sh u td o w n (la ha d esh ab ilitado ad m in istrativam ente). Si introduce el com ando
sh o w in te r f a c e en R ® iater_B , ¿qué reporte de estado d e la in te rfa z espera
v er p a ra aqu ella que está conectada al R outer_A ?
A.

serialO is down,

B.

serialO is

C.

serialO is down,

line

protocol is down

adm inistratively

line

down,

lin e

protocol is up

protocol

is

d own

Q

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 367

RA-MA
D.

serialO is up,

line protocol is down

E.

serialO

lin e

is

up,

protocol

is

up

R esp u esta: A
P ág in a: 225

243. R o u t e r l no p u ed e e stab lecer conexión con R o u ter_ 2 . U tilizan d o el
com an d o sh o w in te r f a c e s s e ria l 0/1) en Router__l, ¿cuál es p ro b ab le m en te la
capa del m o d elo O SI en la cual está el problem a?
R o u t e r l# s h o w i n t e r f a c e s s e r i a l 0/0
S e r i a l 0 / 0 i s d o w n, l i n e p r o t o c o l i s down
H a r d w a r e i s HD6457 0
I n te rn e t address is 1 72.22.5.1/30
MTU 1 5 0 0 b y t e s , BW 1 5 4 4 K b i t , DLY 2 0 0 0 0 u s e e , r e l y
255/255, lo a d 1/255
E n c a p s u l a t i o n HDLC, l o o p b a c k n o t s e t , k e e p a l i v e s e t ( l O s e c )
L a st in p u t n e v e r, o u tp u t 00:03:11, o u tp u t hang n e v e r
L a s t c l e a r i n g o f "show i n t e r f a c e " c o u n t e r s n e v e r
In pu t queue: 0/75/0 (siz e/m ax (d ro p s): T o ta l o u tp u t drops: 0
Q ueuing s t r a t e g y : w e ig h te d f a i r
O u tp u t q u e u e : 0/10Q 0/64./0 (siz e /m a x a c t i v e / t h r e s h o l d / d r o p s )
C o nversations 0/2/256 (active/m ax a ctiv e/m ax t o ta l)
R eserved C o n v e rsa tio n s 0/0 (a llo c a te d /m a x a ll o c a t e d )
5 m inute in p u t r a te 0 b i t s / s e c , 0 p a c k e ts /s e c
5 m inute o u tp u t r a t e 0 b i t s / s e c , 0 p a c k e ts /s e c
0 packets in p u t, 0 b y tes, 0 no b uffer
R eceived 0 b r o a d c a s t s , 0 r u n ts , 0 g i a n t s , 0 t h r o t t l e s
0 i n p u t e r r o r s , 0 CRC, u t r a m e , 0 o v e r r u n , 0 i g n o r e d , 0 a b o r t
11 p a c k e t s o u t p u t , 476 b y t e s , 0 u n d e r r u n s
0 o u t p u t e r r o r s , 0 c o l l i s i o n s , 27 i n t e r f a c e r e s e t s
0 o u tp u t b u f f e r f a i l u r e s , 0 o u tp u t b u f f e r s swapped o u t
11 c a r r i e r t r a n s i t i o n s
DCD=do wn D S R = d o w n D T R = d o w n R T S = d o w n C T S = d o w n

A.
B.
C.
D.

C apa
C apa
C ap a
C ap a

física.
de enlace de datos.
de red.
de transporte.
R esp u esta: A
P ágina: 225

244. Se req u iere co n fig u rar ráp id am en te 5 nuevos routers p a ra ser c h e q u e ad o s.
E stando co n ectad o al ro u ter po r la consola, el a d m in istra d o r copia y p e g a u n a
co n fig u ració n a p artir de u n archivo de texto e n la v e n tan a d e
H y p e rT e n n in a l, parte de la cual se m uestra abajo.

368

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802
hostnam e

© RA-M a

Router_A

I
i n t e r f a c e E thernetO
ip ad d ress 1 92.168.10.9
in te r f a c e SerialO
ip add ress 17 2 .1 6 .2 5 .1
c l o c k r a t e 56000
in terface S e riali
ip ad d ress 1 0 .1 .1 .1

255.2 55.255.248

255.255.255.0

2 55.255.255.0

I
router rip
netw ork 1 9 2 .1 6 8 .1 0 .0
l i n e con
passw ord
lo g in
lin e aux
lin e vty
passw ord
lo g in

0
testk in g
0
0 4
cisco

i
end

El n o d o 192 .1 6 8 .1 0 .1 0 /2 9 no logra e jecu tar con éxito un p in g a la interfaz
E th ern et del ro u ter. ¿C uál es la ca u sa de este fallo?
A . La n u e v a co n fig u ració n n e c e sita ser g rab ad a en la N V R A M antes
de que los cam bios tengan efecto.
B . El ro u te r n ecesita ser rein iciad o para que los cam bios se h agan
efectivos.
C . La re d E th ern et no es in co rp o ra d a en la ta b la de en ru tam ien to
porq u e está in co m p leta la c o n fig u rac ió n de RIP.

D . La co n fig u ració n que se h a co p iad o no sobrescribe el c o m a n d o
sh u td o w n en la in terfaz E thernet.
E . La m áscara de su b red en el ro u te r im pide que el nodo se com unique
con él.
R espuesta: D
P á g in a: 118

245. C o m o ad m in istra d o r de la red le h a n solicitado que p e rm ita que se
esta b le z c an sesio n es teln et con un ro u te r C isco. ¿Q ué secuencia de com andos
d eb erá u tilizar?

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 369

© RA-MA

A.

R outer(config)#line

consolé

0

Router(config-if)#enable password cisco
B.

R o u te r(c o n fig )# lin e consolé 0
R uuL er(config lin e )ttlo g in
R outer(config-line)#enable secret

cisco

C.

R o u te r(c o n fig )# lin e consolé 0
R o u t e r ( c o n f i g - l i n e ) # login.
R outer(config-line)ftpassw ord cisco

D.

R outer(config)#line vty 0 4
R o u te r(c o n fig -lin e )# e n a b le passw ord

E.

R o u ter(co n fig )# lin e vty 0 4
R outer(config-line)#login
R outer(config-line)#enable secret

F.

R outer(config)#line vty 0 4
R outer(config-line)#login
R outer(config-line)#passw ord

cisco

cisco

cisco

R esp u esta: F
P á g in a : 113

2 4 6 . ¿C uál e s el alg o ritm o d e en rutam iento utilizado p o r RIP?
A . In fo rm ació n enrutada.
B. E nlazar.
C. E stado del enlace.

D. Vector distancia.
Rcsp.uesia: D
P á g iiia : 150

2 47. ¿C uál es el alg o ritm o d e en ru tam ien to utilizado p o r E IG R P?
A.
B.
C.
D.

In fo rm ació n enrutada.
Enlazar.
E stado del enlace.
V ector de d istancia.
R esp u esta: D
P á g in a : 159

248. ¿Q ué com an d o p u ed e ingresar en el pro m pt del router p a ra v erificar la
frecu en cia de en v ío de d ifu sió n p ara E IG R P?

A.
B.

show i p

route

show i p

protocols

C.

show i p

broadcast

D.

debug

ip

eigrp

370

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

R espuesta: B
P ágina: 167

249. ¿C uál es la m é tric a de en rutam iento p o r d efe cto u tilizada por EIGRP'>
(elija todas las qu e se ap liquen).
A.
8.
C.
D.
E.

C u e n ta al in fin ito.
N ú m e ro d e saltos.
TTL.
A n c h o de banda.
R etraso .
R espuesta: D , E
Página: 161

250. ¿P ara qué se u tiliz a n los tem p o rizad o res de espera?
A . P a ra im p e d ir m o m en tán eam en te que el protocolo se d irija al
sig u ien te salto.
B. P a ra e v ita r que los m en sajes de actu alizació n regulares vu elv an a
an u n ciar qu e u n a ruta está inactiva.
C . P a ra e v ita r que los m en sajes de actu a lizac ió n regulares v u elv an a
an u n c ia r que u n a ruta acaba de activarse.
D. P a ra e v ita r que los m ensajes de actu alizació n irregular vuelvan a
a n u n c ia r que u n a ruta está inactiva.
R espuesta: B
Página: 97

251. R esp ecto
verd ad era?

a

F ram e-R elay ,

¿cuál

A. D eb e u tilizarse en cap sulación
eq u ip am ien to n o C isco.
B. D ebe u tilizarse en cap sulación
eq u ip am ien to n o C isco.
C . D ebe u tiliz a rse encapsulación
no C isco.
D. D eb e u tiliz a rse encapsulación
eq u ip am ien to no C isco.

de

las

siguientes

afirm aciones

es

C isco si se conecta a u n
A N SI si se conecta a u n
1ETF si se conecta a u n equipam iento
Q .933A si se conecta a un
Respuesta: B
Página: 270

APÉNDICE A. PREPARATIVOS FARA EL EXAMUN

©RA-MA

252. ¿C u ál es la d ista n c ia ad m in istrativ a por defecto p ara E IG R P ?
A . 90
B . 100
C. 120
D . 220
R espuesta: A
P ágina: 9!

253. ¿C u ál de las sig u ie n te s afirm acio n es es v e rd a d e ra respecto de la regla d e
h o rizonte divid id o ?

A. S olam en te un ro u te r p u ed e dividir la fro n tera (h o rizo n te) entre re:.: \
co n cén tricas.

B. T odos los p ro to c o lo s de vector d istan cia req u ieren enviar hacia
atrás las ru ta s q u e p u ed en causar m o m e n tán e am en te bucles antees
cam b io de topolo g ía.
C. Las re d e s so lo p u ed en m antener con v erg en cia co m p leta si toda la
in fo rm ació n re fe rid a a rutas es enviada a través de todas las
interfaces activ as.
D. La in fo rm a c ió n re fe rid a a u ra ruta no p u e d e ser en v iad a
n u ev am en te en la m ism a dirección d esde la cual se recibió la
in fo rm ació n original.
E. C ada sistem a au tó n o m o m antiene tab la s de enrutarnlento
c o n v erg en tes p a ra p re v e n ir el d escarte de rutas deb id o a
a c tu alizacio n es que se reciben desde fu era de los lím ites (horizonte)
del siste m a au tónom o.
-;sia: D
H

%

254. ¿C uál de las sig u ie n te s opciones es una ruta p o r defecto correcta?

A.

route ip 172.0.0.0 255.0.0.0 serial O/O

B.

ip route 0.0.0.0 0.0.0.0 172.16.20.1

C.

ip

D.

route ip 0.0.0.0 0.0. 0.0 172.16.10.1150

route

0 .0 .0 .0

255.255.255.255

172.16.20.1

Respuesta: B
Página: 90

372

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-MA

255. ¿Q u é co m andos e stán d isp o n ib les p ara so p o rtar redes R1P? (elija 2).

A. chow ip ro u te
B.

show

C.
D.

show rip network

ip

rip

debug ip rip
R espuesta: A, D
P ág in a: 155

256. ¿Q u é com ando C isco IO S p uede utilizar p a ra ver la ta b la de enrutam iento
IP ?
A.
B.
C.
D.

show ip
show ip
show ip
show ip

conf ig
arp
route
table
R espuesta: C
P ág in a: 39, 154

257. U n técn ico se e n c u e n tra con fig u ran d o un ro u ter den o m in ad o Router__2.
¿P a ra qué u tiliz a ría el com ando p assiv e-in terfa ce ?
A . P e rm itir a los p ro to c o lo s de en ru tam ien to en v iar actu alizacio n es a
través de un a in terfaz que no tiene d irecció n IP.
B. P e rm itir a un ro u te r en v iar actualizaciones de en ru tam ien to a través
de u n a in terfaz p e ro no rec ib ir actualizaciones a través de esa
interfaz.
C . P erm itir a u n a in terfaz p erm an ecer a c tiv a au nque no reciba
keepalives.
D. P erm itir que un grupo de interfaces co m partan u n a m ism a dirección
IP.
E . P erm itir a u n ro u te r recibir actu alizacio n es de en ru tam ien to a través
de una in terfaz p ero no en v iar actu alizacio n es a través de esa m ism a
interfaz.
R espuesta: E
Página: 152, 164

258. ¿C u ál de las sig u ien tes o p ciones es v e rd a d era resp ecto del procedim iento
p a ra crear ru tas está tic a s? (elija 2).

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 373

0 RA-MA

A . El p arám etro de la m áscara es opcional.
B. Se re q u ie re el p ará m e tro del gatew ay.
C.

S e r e q u i e r e la d is ta n c i a a d m in is tr a tiv a .

D. La d istan cia ad m in istrativ a es opcional.
E . N in g u n a de las o p c io n e s anteriores.
R espuesta: B, D
P ág in a: 89

259.

¿C u ál de las siguientes opcio n es es verdadera acerca del en ru tam ien to IP?
A.
B.
C.
D.

La
La
La
La

d irecció n IP de destino cam bia en cada salto.
d irección IP de origen cam b ia en cada salto.
tram a no c a m b ia en cad a salto.
tra m a cam b ia en cada salto.
R esp u esta: C
P ág in a: 100

260. ¿C uál de los sig u ien tes elem en to s enco n trará en una ta b la de enrutam iento?
(elija tod as las que se apliquen).
A.
B.
C.
D.

D irecció n de re d destino.
M étrica de enrutam iento.
In terfaz de salid a para paquetes.
In te rfa z de entrada.
R espuesta: A, B, C
P ágina: 88

261. ¿C u ál es la d istancia a d m in istra tiv a por d efecto de R IP?
A. 1
B. 100
C . 120
D . 150
Respuesta: C
Página: 91

•DES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

7

© r a -m a

.-.Qué sig n ifica u n a d istan cia ad m in istrativ a de 0?
A.

0
la d ista n c ia ad m in istrativ a p o r defecto p a ra el enrutam iento
dinám ico.
E . 0 es la d ista n c ia ad m in istrativ a por defecto p a ra las rutas
d ire c ta m e n te con ectadas.
C . N o hay un en ru tam ien to perm itido en este router.
D, H ay 0 saltos al siguiente destino.
R espuesta: B
P ág in a: 91

2 53. ,.C óm o se crea un a ru ta por defecto?
A. U tilizan d o 1 en el lugar de la red y la m áscara.
B. D efin ien d o u n a ruta estática y utilizando 0 en el lugar de la red y la
m áscara.
C . U tilizan d o 255 en el lugar de la red y la m áscara.
D. L ogin [nom bre, contraseña].
R espuesta: B
P ágina: 90, 148

264. ¿Q ué p arám etro d eb e ser su m in istrad o cu an d o se in icializa el proceso de
e n ru ta m ie n to con F.IG RP?
A.
B.
C.
13,
E.

N ú m ero de red es conectadas.
M áscara de d ireccio n am ien to IP.
Peso de las m étricas.
N ú m ero d e sistem a autónom o.
ID ad m in istrativ o registrado.
R espuesta: D
P ágina: 162

265. Una tab la de en ru ta m ie n to contiene rutas estáticas y rutas aprendidas por
R IP y EIG P.P p ara la m ism a red de destino. ¿Q ué ruta se rá norm alm ente
u tilizad a para re e n v ia r ios dato s?
A.
B.
C.
D.

La ruta de E IG R P .
La ruta estática.
L a ruta d e R'iP.
H ará b ala n c e o de tráfico entre las 3 rutas.
Respuesta: B
Página: 145, 147

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 375

© r a -m a

266. Se e n cu en tra co n fig u ran d o u n a re d en la o ficin a cen tral de u n a em presa en
B urg o s, para lo qu e u tiliz a p ro to co lo s de v e c to r distancia.
¿Q ué h e rra m ie n tas se im p lem en tan para p re v e n ir b u cles de enrutam iento
en la red?
A.
B.
C.
!).
E.

A visos de e stad o de e n lace (LSA).
P ro to co lo d e árbol de expansión.
Á rbol de p rim ero la ru ta m ás corta.
H orizo n te dividido.
T em p o riz a d o res de espera.
R espuesta: D, E
P ág in a : 96

267. E stá ob serv an d o u n a tabla d e en rutam iento IP en un ro u te r Cisco. ¿Q u é
en u nciados de los sig u ien tes d escrib en co rrectam ente los có digos utilizados
en la tab la de en rutam iento? (e lija 2).
A.
B.
C.
D.
E.

IS
R SC -

In dica u n a ruta a p ren d id a a trav és de u n p ro to co lo interno.
Indica u n a ruta in g resad a m anualm ente.
Indica u n a ruta ap ren d id a a trav és de RIP.
In d ica un a ruta ap ren d id a a trav és de un p u erto serie.
Indica u n a ruta ap ren d id a a trav és de u n p u erto confiable.
R espuesta: B. C
P ág in a : 154

Router_A#show ip r o u t e
C o d e s : C - c o n n e c t e d , S - s t a t i c , ! - I G R P , R - R I P , M - mobile, B - BGP
D - EI GR P, EX - EIGRP e x t e r n a l , 0 - OSPF, IA - OSPF Í n t e r a r e a
N I - OS PF NSSA e x t e r n a l t y p e 1 , N 2 - OSPF NSSA e x t e r n a l t y p e 2
E l - OS PF e x t e r n a l t y p e 1 , E2 - O S P F e x t e r n a l t y p e 2 , E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * -

268. Si R IP utiliza la cu en ta de salto s para d eterm in ar la m e jo r ruta, ¿qué es lo
que u tiliza E IG R P ?
A.
B.
C.
I).
E.

El m ay o r v a lo r de m étrica.
El m en o r v alo r de u n a m étrica com puesta.
La m en o r cu en ta de sa lto s y retraso.
El m ay o r an ch o de b a n d a y confiabilidad.
La m en o r d istancia adm inistrativa.
Respuesta: B
Página: 161

376

REDES C IS C O : GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

O RA-MA

269. P ara p o d er re a liz a r el en rutam iento de m odo adecuado y eficiente, ¿qu¿
debe te n e r un ro u ter?
A . A p licació n de destino del p aq u ete que e stá recibiendo.
B . N ú m e ro de otros p aq u etes que c o m p o n e n un m ism o flujo de datos.
C . D ire c c ió n de red de destino del p aq uete que está recibiendo.
B.
N ú m ero de ro uters que co nocen u n a ru ta hasta el destino.
R espuesta: C
Página: 88

270. Se n ecesita in g resar el com ando sh o w sta rtia p -c o n fig desde el m odo
p riv ileg iad o . ¿Q ue sím bolo le indica que se encu en tra en el modo
p riv ileg iad o ?
A. >
B. !
C. #
D. :
R espuesta: C
P ágina: 109, 125

271. ¿Q ué co m an d o co p iará la im agen del IO S alm acenada en la m em o ria flash
de su ro u te r a u n serv id o r T F T P de respaldo de su red?
A . transfer IOS to 172.16.10.1
B . copy running-config startup-config
C. copy tftp flash

D . copy startup-config tftp
E.

copy flash tftp
R espuesta: E
P ág in a: 126

272. El ad m in istra d o r de la re d h a en co n trad o el sig u ien te problem a. L as redes
rem o tas 172.16.10.0, 172.16.20.0 y 172.16.30.0 so n accesib les a través de la
in terfaz serial 0 del
R o uter_A . L os usu ario s no p u eden acceder a
172.16.20.0. D esp u és de rev isar el resultado de los siguientes com andos,
R outer_A #debug ip
ldOOh:
IdOOh:
ldOOh:
ldOOh:

rip

R IP :re c e iv e d v l update
1 7 2 .1 6 .1 0 .0 in 1 hops
1 7 2 .1 6 .2 0 .0 in 1 hops
1 7 2 . 1 6 . 3 0 . 0 i n 1 hoDS

from

172.16.100.2

on S e r i a l

0/0

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 377

© RA-MA

Router_A #show i p r o u t e
Gateway of l a s t r e s o r t i s n o t s e t
17 2 . 1 6 . 0 . 0 / 2 4 i s s u b n e t t e d , 8 s u b n e t s
C
1 7 2 . 1 C .150.0
i o directly
connect.sd,
F a s t E th e r n e t 0/0
C
172.16.220.0 i s
d i r e c t l y connected, Loopback2
C
172.16.210.0
isd ire c tly
connected,
Loopbackl
C
172.16.200.0
isd ire c tly
connected,
LoopbackO
R 1 7 2 .1 6 .3 0 .0 [120/1] v i a 1 7 2 .1 6 .1 0 0 .2 , 0 0 :0 0 :0 7 , S e r i a l 0/0
S 1 7 2 .1 6 .2 0 .0 [1/0] v i a 1 7 2 .1 6 .1 5 0 .1 5
R 1 7 2 . 1 6 . 1 0 . 0 [ 1 2 0 / 1 ] v i a 17 2 . 1 6 . 1 0 0 . 2 , 0 0 : 0 0 : 0 7 , S e r i a l 0 / 0
C
172.16.100.0 is
d i r e c t l y connected, S e r i a l 0/0

¿cuál es m ás p ro b ab lem en te la causa del p roblem a?
A. N o hay co n fig u rad a u n a ruta por d efecto en R o u t e r A .
B. El R outer_A no está recibiendo ac tu alizac io n es de la red
172.16.20.0.
C . Es inco rrecta la ru ta estática para 172.16.20.0.
D. 172.16.20.0 no se en cu en tra en la tabla de en ru tam ien to de
R o u te r A .
R espuesta: C

La recepción de las actualizaciones de R1P llegan por la interfaz SeriatO/O desde
172.16.100.2, es decir el próximo salto. La ruta estática debería apuntar hacia dirección
IP pero no lo hace:
S 172 . 1 6 . 2 0 . 0

r i . / O]

vía

1 7 2 :1 6 .1 5 0 .15

273. ¿Q ué com ando m o strará las interfaces h ab ilitad as p a ra trab ajar con C D P en
u n router?
A. show c d p
B. s h o w c d p i n t e r f a c e s

C.

show i n t e r f a c e s

I).

show c d p

traffic

R espuesta: B
Página: 137

274. ¿C u áles son los tem p o rizad o res de actu alización y tiem p o de espera p o r
d efecto para C D P ?
A.
B.
C.
D.

240, 90
9 0 ,2 4 0
1 8 0 ,6 0
60, 180
Respuesta: I)
Página: 136

378

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

275. C om o a d m in istra d o r de la red se en cu en tra configurando listas de acceso
sobre u n a in terfaz de u n ro u te r C isco. U tiliza m últiples listas de acceso
¿C u ál de las sig u ien tes afirm aciones es v álid a ?
A . N o hay lím ite p ara el núm ero de lista s de acceso que p u ed e n ser
ap licad as a u n a interfaz, con la co n d ició n de que sean aplicadas
d esde las m á s específicas a las m ás generales.
B. C isco IO S p erm ite aplicar so la m en te una lista de acceso a una
interfaz.
C . U n a lista de acceso p uede ser co n fig u rad a p o r dirección para cada
p ro to co lo de capa configurado en u n a interfaz.
D. H a sta 3 listas de acceso por p ro to c o lo pu ed en ser aplicadas a una
in terfaz individual.
E . N o m ás de 2 listas de acceso p u e d e n ser aplicadas sobre una
in terfaz ind iv id u al.
F. E l n ú m ero m áxim o p erm itido v a ría dependiendo de la cantidad de
R A M in sta la d a en el router.
R espuesta: C
Página: 214

276, B asad o s en la in fo rm ació n del co m an d o show ip route, ¿ q u é ruta de las
sig u ien tes no será in g resad a en el router v ecin o que utiliza R IP?
R cutcr_A #show i p r c u t a
C o d e s : C - c o n n e c t e d , s - s t a t i c , I - I G R P , R - R I P , M - M o b i l e , B - BG P
D - E I G R P , E I G R P e x t e r n a l , O - O S P F , I A - OS PF í n t e r a r e a ,
E I-O SPF e x t e r n a l t y p e l ,E 2 - O S P F e x t e r n a l t y p e 2 , E-EGP,
i-IS -IS ,L l-IS -IS
level-1,L 2-IS -IS
le v e l-2 ,* -candidate
d efau lt, U -per-user
s ta tic route
Gateway o f
R
C
R
R
C
C
R
R
R
R
R

last

resort

is

not

set

1 9 2 .1 6 8 .8 . 0 /2 4 [120/1] v i a 1 9 2 .1 6 8 .2 .2 , 0 0 :0 0 :1 0 , S e ria lO
192.16 8 .9 .0 / 2 4 i s d i r e c t l y c o n n e c te d , S e r i a l 1
1 9 2 .1 6 8 .1 0 .0 /2 4 [120/7]
v ia 192.1 6 8 .9 .1 ,
00:00:02, S e r i a l l
1 9 2 .1 6 8 .1 1 .0 /2 4 [120/7]
v ia 192.1 6 8 .9 .1 ,
00:00:03, S e r i a l l
192.16 8 . 1 .0 / 2 4 i s d i r e c t l y c o n n e c te d , E thernetO
192 .1 6 8 .2 .0 /2 4 is d i r e c tly connected, SerialO
1 9 2 .1 6 8 .3 .0 /2 4 [120/1] v i a 1 9 2 .1 6 8 .2 .2 , 0 0 :0 0 :1 0 , S e ria lO
192.1 6 8 .4 .0 /2 4
[120/15]
v ia 1 92.168.2.2,
00:00:10, SerialO
192.1 6 8 .5 .0 /2 4
[120/15]
v ia 192.1 6 8 .2 .2 ,
00:00:10, SerialO
1 9 2 .1 6 8 .6 .0 /2 4 [120/15]
v ia 192.1 6 8 .2 .2 ,
00:00:10, SerialO
1 9 2 .1 6 8 .7 .0 /2 4 [120/1] v i a 1 9 2 .1 6 8 .2 .2 , 0 0 :0 0 :1 0 , S e ria lO

y ra -MA

APÉNDICE a . PREPARATIVOS PARA EL EXAMEN 379

A.

R 192.1 6 8 .3 .0 /2 4
SerialO

B.

R 192.168.11.0/24
seriall

[120/1]
[120/7]

C. C 1 9 2 . 1 6 8 . 1 . 0 / 2 4

is

D.

[120/15]

R 192.1 5 8 .5 .0 /2 4
S erial 0

vía
via

directly
via

192 .1 6 8.2 .2 ,
192.1 68 .9.1,
conaected,

00:00:10,
00:00:03,

E thernetO

1 92.168.2.2,

00:00:10,

R espuesta: I)
Página: 154

L os dos valores dentro de los corchetes indican la distancia administrativa y la métrica, que
en este caso ha llegado aI límite 15, el próximo salto será inalcanzable.

277. L a red 131.107.4.0/24 h a sid o publicada p o r un ro u te r vecino u tilizando
R IP y E IG R P , tam b ién h a ag reg ad o una ruta está tic a a 131.107.4.0/24
m an u alm en te. ¿C uál ru ta se rá u tilizad a para reen v iar trá fico ?
A.
B.
C.
D.

L a ru ta E IG R P .
L a ruta estática.
La ru ta R IP.
B alan ceará tráfico en tre las 3 rutas.
R esp u esta: D

E l router recibe información desde dos protocolos diferentes, sumado a la configuración de
una ruta estática en el propio dispositivo, lo que significa que el router conoce la ruta hacia
el destino de tres form as diferentes balanceando la carga por ellas.

278. Para co n fig u rar el R o u ter_ A p a ra que trab aje en un e n to rn o F ram e-R elay ,
uno de los item s que se reco m ie n d a que se configure es la m étrica para la
v elo cid ad d e los en laces E IG R P . ¿Q ué com ando se d eb e u tilizar para esto?
A. R o u t e r _ A ( c o n f i g - i f ) # e i g r p m e t r i c 3 6k
B. R o u t e r _ A ( c o n f i g ) # b a n d w i d t h 3 6
C. R o u t e r _ A ( c o n f i g ) # m e t r i e 3 6 k

D.
E.

R o u t e r _ A ( c o n f i g - i f ) ttbandwidth

36

R o u t e r _ A ( c o n f i g - i f ) ttbandwídth

36000

R espuesta: D
P ágina: 162,271

2 7 9 . ¿C uál de las sigu ien tes es un ejem plo de una d irecció n M A C de capa 21
A.
B.

192.201.63.251
19-22-01-63-25

380

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

ORA-M a

C. 0 0 0 0 .1 2 3 4 .F E G
D. 0 0 -0 0 - 12-34-F E -A A
R espuesta: D
P ág in a: 32

280. B asad o s en la salid a del com ando que se m u estra m ás abajo, ¿qué
rep resen ta [120/3]?
Router_A #show i p r o u te
<some o u t p u t t e x t o m i t t e d >
Gateway o f l a s t r e s o r t i s n o t s e t .
I 1 7 2 . 1 6 . 0 . 0 [ 1 1 0 / 8 4 6 3 2 ] v i a 1 9 2 . 1 6 8 . 6 . 3 , 00 : 0 0 : 1 3 ,
FastE thernetO /O
R 192.168.3.0[120/3] v ia 1 9 2 .1 6 8 .2 .2 ,0 0 :0 0 :0 9 , S e ria l0 /0
C 1 9 2 .1 6 8 .2 .0 i s d i r e c t l y c o n n e c te d , S e r i a l 0/0
C 1 9 2 .1 6 8 .6 .0 i s d i r e c t l y connected, FastE thernetO /O

A.

120 es el p u erto U D P p ara ree n v iar tráfico y 3 es el núm ero de
saltos.
B. 120 es la d istan cia ad m in istrativ a y 3 es la m étrica p a ra esa ruta.
C. 120 es el ancho de b a n d a del enlace y 3 es el nú m ero de p roceso de
en rutam iento.
D. 120 es el v a lo r del te m p o riz ad o r de actu alización y 3 es el núm ero
de actu alizacio n es rec ib id as de esa ruta.
R espuesta: B
P ág in a: 154

281. T en ien d o en cu en ta la siguiente to p o lo g ía, y asum iendo que to d o s los
routers están ejecu tan d o R IP , ¿qué afirm ació n de las siguientes describe
có m o los ro u ters in tercam b ian sus tab las de en ru tam ien to ? (elija 2)
R ou te r 2

R outar 1

R o u te r 4

Router 3

© RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 381

A. R o u te r_ l
B. R o u ter_ l
C . R outer 1
D. R outer_4
E. R outer_4
F. R outer_4

in tercam b ia
in tercam b ia
in tercam b ia
in tercam b ia
in tercam b ia
intercam bia

con
con
con
con
con
con

R outer_3.
R outer_4.
R outer_2.
R o u ter_ 3 .
R o u te r_ l.
R outer_2.

R espuesta:

Se intercambia información directamente desde el vecino correspondiente.

282. ¿Cuá! de los sig u ien tes p ro to co lo s utiliza características tanto de los
p ro to co lo s de v e c to r distan cia co m o de los de estado de en lac e?
A. RIP.
B. O SPF.
C. E IG R P.
D. IG RP.
R esp u esta: C
P á g in a : 160

283. Se ha d ecidido rem o v er el en ru tam ien to por R IP de los ro u te rs e instalar
E IG R P . Y a se h a ejecutado el co m an d o no r o u te r rip en to d o s los routers.
A h o ra es preciso in stalar E IG R P. ¿C uáles son lo com an d o s q u e se deberán
u tiliz a r para h ab ilitar el en ru tam ien to po r E IG R P?

A.

r o u t e r e i g r p 100
netw ork 1 9 2 .1 6 8 .1 .0
netw ork 1 0 .0 .0 .0

B.

r o u t e r e i g r p 1 00
netw ork 1 9 2 .1 6 8 .1 .0
netw ork 1 0 .2 .0 .0

C.

r o u t e r e i g r p 100
netw ork 1 9 2 .1 6 8 .1 .0 1 9 2 .1 6 8 .1 .1
netw ork 1 0 .2 .0 .0 1 0 .2 .1 .1

D.

r o u t e r e i g r p 100
netw ork 1 9 2 .1 6 8 .1 .0 2 5 5 .2 5 5 .2 5 5 .0
n etw ork 1 0 .2 .0 .0 2 5 5 .2 5 5 .0 .0

R e sp u e sta : A
P ág in a : 162

284. ¿Q ué función pro p ia de la c ap a de tran sporte p erm ite im p ed ir que se
so b recarg u e el b u ffer de una term in al?

382

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

A.
B.
C.
D.
E.

© RA-MA

S egm entación.
P aquetes.
C o n firm acio n es de recepción.
C ontrol de flujo.
PD U .
R espuesta: D
P ágina: 42

285. Su g eren te de tecn o lo g ía le h a com entado que d ese a considerar un cam bio
en los p ro to co lo s de en rutam iento im p lem entados en la red, para lo que le ha
so licitad o le señale tres características propias de los pro to co lo s de estad o de
enlace.

A. L os p aq u etes se en rutan sobre la base de la ru ta m ás corta h a c ia el
B.
C.

D.
E.
E.

destino.
L as ru tas son seleccio n ad as tom an d o com o criterio base el facto r de
coste de co n tra tació n de los enlaces.
E l in tercam b io de actu alizacio n es se d isp ara a p artir de cam bios en
la red.
E n un a red m u ltip u n to , todos los ro u ters intercam bian las ta b las de
en ru tam ien to d irectam ente con todos los otros routers.
T o d o ro u te r en u n área O SPF es capaz de re p rese n tar la top o lo g ía
ín teg ra de la red.
S olam en te el ro u te r'd e sig n a d o en un area O ü .rr es capaz de
re p re se n ta r la top o lo g ía ín teg ra de la red.
R espuesta: A, C , E
P ág in a: 97

286. ¿Q ué tip o de en trad a en u n a tabla E IG R P es u n a ru ta sucesora?

A. U n a
B. U n a
C. U na
D. U n a

ruta
ru ta
ru ta
ru ta

de respaldo, alm acenada
p rim aria, alm acen ad a en
de respaldo, alm acenada
p rim aria, alm acen ad a en

en la ta b la de enrutam iento.
la tab la d e enrutam iento.
en la ta b la topológica.
la tab la topológica.
R esp u esta: C
P ág in a: 160

287. ¿S obre qu é tip o de red es O SPF elige un router d esig n ad o de resp ald o ?

A. Punto a p u n to y m ultiacceso.
B. P un to a m u ltip u n to y m ultiacceso.

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 383

© r a -m a

C . Punto a p u n to y punto a m ultipunto.
D . N o d ifu sió n y d ifu sió n m ultipunto.
E. N o d ifu sió n y d ifu sió n m ultiacceso.
R esp u esta: E
P ág in a : 171

288. ¿P o r qu é es m e jo r utilizar u n diseño jerá rq u ic o en re d e s O S P F ? (elija 3 ).
A.

Porque p e rm ite re d u c ir la co m plejidad de la co n fig u ra ció n del
router.
8 . A celera la converg en cia.
C . C onfina la posible inestabilidad de la red a so lo u n áre a de la
m ism a.

D. R educe la so b recarg a p o r enrutam iento.
E. R educe e l coste de reem p lazar routers.
F . P erm ite re d u c ir la laten cia por el increm ento d e a n c h o de banda.
R esp u esta: B, C, D
P ág in a: 51

289. ¿C uáles de las sigu ien tes so n características del p ro to c o lo de e n ru tam ien to
E IG R P ? (elija 2).
A.

T iene u n núm ero m áx im o de salto s de 255.
U tiliza u n a m étrica de 32 bits.
C. Puede d iferen ciar entre rutas internas y externas.
D. S oporta un ú n ico pro to co lo enrutado.
E. Puede m a n te n e r solam ente una tab la de en ru tam ie n to .
F. R equiere que todas las redes en u n m ism o siste m a autónom o
utilicen la m ism a m áscara de svibred.

ü.

R esp u esta: B, C
P ág in a: 160, 163

290. M a ría se trab aja com o adm in istrad o ra de red y h a sid o co n su ltad a so b re las
d iferen cias entre los p ro to co lo s de v ecto r distancia y lo s d e estado de en la ce .
¿C u áles de las sig u ien tes afirm aciones p o d rían estar en su resp u esta? (e lija 2 )
A . Los p ro to co lo s de v e c to r distan cia envían la ta b la de en ru tam ien to
com p leta a los disp o sitiv o s v ecin o s d irectam ente conectados.
B . Los p ro to c o lo s de estad o de en lace envían la ta b la d e en ru tam ien to
com pleta a to d o s los routers en la red.

384

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

® RA-Ma

C . L os p ro to c o lo s de vector distan cia env ían actualizacio n es sobre los
d isp o sitiv o s d irectam ente conectados a todas las redes enlistadas en
la tab la de enrutam iento.
D. L os p ro to c o lo s de estado de enlace env ían actualizacio n es
c o n ten ien d o in form ación sobre el estado de sus p ro p io s enlaces a
to d o s los ro u ters que se encuentran en la red.
R espuesta: A
P ág in a: 94

291. U n a in terfaz O S P F ha sido co n fig u rad a in g resan d o el co m ando bandwith
64. ¿Q ué coste c a lc u la rá O S P F para este enlace?
A. 1
B. 10
C . 1562
D. 64000
E. 128000
R espuesta: C
P ág in a: 169

1 0 8/ 6 4 0 0 0 = 1 5 6 2 , 5
292. ¿Q u é tip o de p a q u etes u tilizan los ro u ters que corren O S P F p a ra m antener
la co n ectiv id ad con los routers vecinos?
A. F aqu cíes
B. P aquetes
C . P aq u etes
D. P aqu etes
E. P aqu etes

de intervalo m uerto.
helio.
LSU .
OSPF.
d e keepalive.
R esp u esta: B
P á g in a : 169

293. ¿P ara cuál de los sig u ientes casos no se n e c e sita ría d isp o n e r de un cable
cru zad o ?
A.
B.
C.
D.

C o n ectar
C o n ectar
C o n ectar
C o n ectar

en la c es ascendentes entre sw itches.
ro u te rs a sw itches.
h u b a hub.
h u b s a sw itches.
Respuesta: B
Págin a: 28

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 385

© RA-MA

294. ¿Q ué in fo rm ació n u tiliz a un ro u te r que corre p ro to c o lo s de estado d e
enlace para construir y m an ten er su base de datos to p o ló g ic a ? (e lija 2).
A.
B.
C.
D.
E.
F.

P aqu etes helio .
M en sajes S A P enviados p o r otros routers.
L S A s de otro s routers.
S eñales recib id as sobre enlaces punto a punto.
T ab las de en ru tam ien to recibidas desde otros ro u te rs q u e corren
pro to co lo s de estado de enlace.
P aqu etes T T L de los rou ters designados.
R espuesta: A, C
P ág in a: 168,169

295. C om o a d m in istrad o r de la red de la em presa, n e c esita c o n fig u ra r un ro u te r
p ara qu e u tilice O S P F y ag reg ar la red 1 9 2.168.10.0/24 al á rea OSPF 0 .
¿C uál de los sig u ien tes co m an d o s n ecesitará u tilizar p a ra esto? (elija to d o s
los que se apliquen).
A. R o u t e r ( c o n f i g - r o u t e r ) # n e t w o r k 1 9 2 . 1 6 8 . 1 0 . 0

0.0.0 .2 55

B.

R o u t e r (c o n f i g - r o u t e r ) # n e t w o r k
area 0

1 92.168.10.0

0.0.0 .2 55

C.

R o u ter(config-router)#netw ork
2 55.255.255.0 area 0

1 97.168.10.0

D.
E.

R outer(config)#router

ospf

0

R outer(config)#router

ospf

1

F.

R o u t e r (c o n f ig) f f r o u te r

ospf area

O

0

R espuesta: B, E
P ágina: 172

296. C u an d o se enruta con O SPF se u tilizan áreas. ¿C uál es la característica d e
estas á re a s? (elija 3).
A.
B.
C.
D.
E.

F.

L as redes O SP F je rá rq u ic a s n o necesitan de m ú ltip le s áreas.
M ú ltip les áreas O S P F d eb en ser conectadas al área 0.
U n área O S P F única d eb e ser co nfigurada en el área 1.
S e p uede a sig n ar a las áreas cualquier n ú m ero en tre 0 y 63535.
E l área 0 es llam ad a ta m b ié n área de backbone.
C a d a área O S P F n ecesita ser config u rada con u n a in terfa z de
loppback.
R esp u esta: B, C, E

386

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

P ágina: 172, 174

297. ¿E n cuál de los sig u ien tes tipos de red O SPF no elegirá un router
d esig n ad o ?
A.
B.
C.
D.
E.

R edes
R edes
R edes
R edes
R edes

punto a punto.
de n o -d ifu sió n y de difu sió n m u ltipunto.
p u n to a p u n to y d e difu sió n m ulti-acceso.
punto a m ultipunto y d ifu sió n m ultiacceso.
de d ifusión y n o -d ifu sió n m u lticacceso .
Respuesta: A
Página: 171

298. ¿C uál de las sig u ien tes en trad as de en ru tam ien to E IG R P puede ser descrita
co m o un a ruta su ceso ra p ro b ab le ?
A.
B.
C.
D.

U na
U na
U na
U na

m ta
ru ta
ru ta
ru ta

prim aria, alm acen ad a en
de resp ald o , alm acen ad a
de resp ald o , alm acenada
prim aria, alm acen ad a en

la tab la de
en la tab la
en la tab la
la tab la de

enrutam iento.
de enrutam iento.
de topología.
topología.
Respuesta: C
Página: 160

299.

¿C u áles de las siguientes son características de N A T ? (e lija 2).
A.
B.
C.
D.

D irecció n
D irecció n
D irección
D irecció n

local interna.
ex tern a local.
ex tern a global.
local externa.
Respuesta: A, D
Página: 263

. ¿C u ál de los diferentes tipos de paquetes m en cio n ad o s m ás abajo es
en v iad o entre routers que co rren O S P F p ara m a n te n e r conectividad con los
ro u te rs vecinos?
A.
B.
C.
D.

P aqu etes
P aqu etes
P aqu etes
P aq u etes

O S PF.
helio.
de keepalive.
de in tervalo m uerto.
Respuesta: B

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN

RA-MA

387

Página: 169
301. U n co m p añ ero de trabajo le pregunta qué tipo de in fo rm ac ió n corre e n un
ro u te r al u tilizar un p rotocolo de estado de enlace p ara c o n stru ir su b ase de
datos to p o ló g ica. ¿Q ué podría decirle al resp ecto? (elija 2 ).
A.
B.
C.
D.
E.
F.

L S A s de otros routers.
R áfagas recibidas sobre los enlaces punto a p u n to .
P aqu etes helio.
T ablas de en rutam iento recibidas desde otros ro u ters.
P aqu etes SA P enviados po r otros routers.
P aquetes T T L enviados p o r algunos routers en esp ecial.
R espuesta: A , C
P ágina: 168, 169

302. A l tra b a ja r co n redes punto a punto, ¿qué dirección u tiliza n los p a q u e tes
h elio de O SPF?
A.
B.
C.
D.
E.
F.

A. 127.0.0.1
B. 192.168.0.5
C. 223.0.0.1
D. 172.16.0.1
E. 224 .0 .0 .5
F. 2 5 4 .2 5 5 .2 5 5 .2 5 5
R espuesta: E
Página: 169

303. ¿Q ué com an d o co p iará la co n fig u ració n de un ro u te r alm acenada e n un
se rv id o r T FT P en la N V R A M de ese router?
A.

tran sfer

IOS

to

172.16.10.1

B. copy running-config startup-config
C. copy tftp startup-config
D. copy tftp running-config
E. copy flash tftp
Respuesta: C
P ágina: 124

304. Para c o p ia r u n a configuración desde u n servidor T F T P a la D R A M d e un
ro u ter C isco en su red, ¿qué com ando p u ed e utilizar?
A.

configure memory

388

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

B.

configure

term inal

C.

copy

ru n n in g -config

D.

c o p y tftp

tftp

ctartup

config

R espuesta: C
P ág in a: 124

305. P ara co p iar u n a co n fig u ra ció n d esde la D R A M de un ro u ter C isco a un
n o d o T F T P de su red , ¿qué co m an d o p u ed e utilizar?

A.

co nfigure

netw ork

B.

configure

memory

C. c o n f i g u r e t e r m i n a l

D. c o p y r u n n i n g - c o n f i g t f t p
E.

copy

startu p -co n fig

tftp

R espuesta: D
P ág in a: 124

306. ¿Q u é m e m o ria en u n router C isco alm acena los buffers de paq u etes y las
tab las de en ru tam ien to ?
A.
B.
C.
D.

Flash.
RAM .
ROM .
NVRAM .

..................

R espuesta: B
P ág in a: 104

307. ¿C u ál de los sig u ien tes es el com ando correcto p ara crear una tabla que
m apee n o m b res de n o d os a d irec cio n e s 1P en un router?

A.

m adrid

B.

host

C.

ip

D.

host

ip

host

1 7 2 .16.10.1

172.16.10.1

h o st m adrid
m adrid

m adrid

17 2 .1 6 .1 0 .1

1 7 2 .16.15.1

172.16.10.1

Respuesta: C
Página: 123

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 389

©RA-MA

308. ¿Q ué com ando le p erm itirá v e r las conexiones e fectu ad as desde su ro u te r
hacia un disp o sitiv o rem oto?

A.
B.

show s e s s i o n s

C.

disconnect

show u s e r s

D. clear line
R espuesta: A
P ág in a: 142

309. ¿C uál de los sigu ien tes co m a n d o s le p ro p o rcio n ará el m ism o resultado q u e
el com ando sh o w cdp neig h b o rs detail?

A.
B.

show cdp

C.

show cdp n e i g h b o r s

I),

show cdp

show c d p
d etail

entry

*

R esp u esta: D
P ág in a: 136

310. U sted está trab ajan d o con un antig u o ro u te r de la se rie 2500. Se en cu en tra
realizan d o el p ro ced im ien to de recu p eració n de claves y acaba de ingresar el
co m an d o o/'r 0x2142. U n co lab o rad o r su y o que está m ira n d o le p reg u n ta
sobre el p ro p ó sito de este co m an d o . ¿Qué p o d ría decirle?
A.
B.
C.
D.
E.

P a ra
P a ra
P a ra
P a ra
P a ra

rein ic ia r el router.
saltar la co n fig u ració n en la N V R A M .
v isu a liz a r la clav e perdida.
g u ard ar los cam b io s a la configuración.
in g re sa r el m odo m o n ito r de RO M .
R esp u esta: B
P ágina: 132

311. El com an d o sh o w c d p n e ig h b o r s d e ta il, ejecutado en u n router C isc o ,
¿cuál de los elem en to s de info rm ació n qu e se en u n cia n a co n tin u ació n le
p ro p o rcio n ará? (elija 6 o pciones).
A.
B.
C.
D.

D irecció n IP del co lin d an te.
P u erto /in terfaz local.
L a m ism a in fo rm ació n q u e show v ersión.
C apacid ad .

390

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

E.

F.

L a m ism a in fo rm ació n que show cdp entry *.
ID del p u e rto rem oto.

G . ID riel d isp o sitiv o co lin d an te

H . T ie m p o de espera.
I. P la ta fo rm a d e hardw are.
J . V elo cid ad del enlace.
R espuesta: B, D, F, G, H, I
P ágina: 136

312.

¿Q ué hace el co m an d o cd p tim e r 90?
M u e stra la frecu encia de a c tu aliz ac ió n de los paquetes C D P.
B. C a m b ia la frecu en cia de actu alizació n de los paquetes C D P.
C . C o n fig u ra e l com ando de C D P co lindante a 90 líneas.
D. C a m b ia el tiem p o de e sp e ra de lo s paquetes C D P.
A.

R espuesta: B
Página: 136

313. ¿Q ué co m an d o in h ab ilita C D P en una in terfaz individual?
A.
¿2»

no cdp
iiv

run
cuawic

C. n o c d p
D.

d isab le

cdp

R espuesta: B
P ágina: 136

1

314. ¿Q ué co m an d o p u ed e u tilizar p ara ver q u é d ispositivos han efectu ad o telnet
en su router?
A.
B.
C.
D.

show v t y
show

lin e

session

show u s e r s
show

connections

Respuesta: C
Página: 142

QRA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 391

315. ¿Q ué com ando se u tiliz a para verificar la ru ta que to m a u n p a q u e te a través
de u n a intem etw ork?
A.
B.
C.
D.

ping
trace
R IP
SA P
Respuesta: B
Página: 142

316. ¿Q ué com ando p u e d e utilizar p a ra efectuar una c o p ia de seguridad de la
config u ració n del ro u te r C isco en u n nodo T F T P ?

A.
B.

copy run
copy

tftp

flash

C. c o p y n v r a m

D.

copy

tftp

tftp
startu p
flash

Respuesta: A
Página: 124
317. ¿Q ué com ando c a n c e lará un a conexión a u n router rem o to ?

A.

C onsole>clear

connection.

B.

C onsole>clear

line

C.

C onsole>disconnect

D.

C onsole>clear

user

Respuesta: C
Página: 143
318. Su com pañía h a ad q u irid o algunos rou ters p ara su operación o n -lin e .
N ecesita g u ard ar u n a copia de resp ald o del IO S y a lm ac en arla en un s e rv id o r
T F T P . ¿C uáles de los sig u ien tes son pasos que debe re a liz a r antes de c o p ia r
la im agen del IO S al serv id o r T F T P ? (elija 3).
A. A seg u rarse el acceso al servidor T F T P de la red .
B. V erificar q u e se ha configurado la a u ten ticació n para acceder.
C . A seg u rarse que el se rv id o r tiene su ficiente e sp a c io para alm acen ar
la im ag en d el IOS.
D. V erificar los requerim ien to s de ru ta y n o m b re del archivo.
E. A seg u rarse que el serv id o r puede leer y corre el código de a rra n q u e .
Respuesta: A, C , D
Página: 124

392

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

<2 RA-MA

319. ¿Q ué co m an d o can c e lará u n a co n exión te ln et iniciada desde una posición
re m o ta h acia su ro u ter?
A. c l e a r c o n n e c t i o n
B. c l e a r l i n e #
C.

disconnect

D. c l e a r u s e r
R espuesta: B
P ág in a: 143

3 2 0 . ¿D esde d ó n d e le e ría un ro u ter la im agen del C isco IO S si el registro de
c o n fig u ra c ió n se fijara en 0x0101?
A. F lash.
B. R O M .
C . B o o tR O M .
D. N V R A M .
R espuesta: B
Página: 131

321. ¿Q ué com ando p u e d e u tiliz ar p a ra copiar u n a n u ev a im agen del C isco IOS
a u n router?
A. copy tftp running-config
B.

copy

tftp

flash

C.

copy

tftp

startup-config

1). c o p y f l a s h t f t p
E.

boot

systera f l a s h

IOS_name

R espuesta: E
Página: 126

322. A fin de re c u p e rar la co n traseñ a de u n ro u ter, ¿cuál de lo s siguientes
elem en to s d eb erán ser m o d ificados? (elija 2).
A.
B.
C.
D.
E.

NVRAM .
R egistro de co n figuración.
B oot flash.
C M O S.
Flash.
Respuesta: A, B
Página: 13 2

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 393

Q RA-MA

323. Se a c a b a de a d q u irir un ro u te r de la serie 2600. P o r d e fe cto , cuando e l
ro u te r se enciende, ¿cuál es la secuencia de b ú sq u e d a que u tiliz a p a ra
lo calizar la im ag en del C isco IO S ?
A . F lash , serv id o r T F T P, R O M
B. N V R A M , se rv id o r T F T P , R O M
C. R O M , F lash , serv id o r T F T P
í) . R O M , N V R A M , serv id o r T FT P
R esp u esta: A
P ág in a: 108

324. A cab a de in tro d u cir el com ando:
R outer(config-line)#logging

sync

L a IO S d isp o n e de com b in acio n es de teclas que le p erm ite n com pletar la
sin tax is d e un com an d o in g resad o parcialm ente. ¿Q ué tec la o c o m b in a c ió n
de teclas d eb erá u tiliz a r p ara com pletar el co m an d o que in g resó antes d e
esta m anera?
R outer(config-line)#logging

synchronous

A. Ctrl + sh ift + 6, luego x
B. ctrl + ?
C . tab

D. /?
E.

Shift
R esp u esta: C
P ág in a : 110, 128

325: F u ll-d u p lex b rin d a la p o sib ilid a d de enviar y re c ib ir dato s al m ism o tie m p o .
¿C uál de los e stán d ares E th ern et que se m en cionan a co n tin u a ció n p u e d e
operar en m o d o fiill-duplex?
A.
B.
C.
D.

10B ase2
10Base5
lO B aseT
lOOBaseT
R espuesta: C, D
P ág in a : 25

326.

El a d m in istrad o r de la re d qu e se m uestra abajo acab a de a g reg ar el n u e v o
ro u ter d en om inado R outer B. D esea h acer u n a c o p ia de respaldo d e la

394

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

im ag en del IO S del nuev o ro u ter en su serv id o r T FT P. C uando procede a
re a liz a r la copia, el p ro cedim iento falla. ¿C uál p u ed e ser la causa del
problema?
Router A

Router B

Servidor TFTP

¡92.16S.15.62
255.255 255.192
Gateway 192 163.15.49

A.
B.
C.
D.

Es
Es
Es
Es

incorrecto
in co rrecta
in co rrecta
in co rrecta

el
la
la
la

default gatew ay del serv id o r T FTP.
m áscara de su b red del serv id o r T FT P.
d irecció n IP del serv id o r T FT P.
d irecció n IP de la in terfaz E 0 del R o u terJB .
R espuesta: B
Página: 71.

327. L as características de ed ición a v a n z a d a de los ro u ters están h ab ilitad as por
d efecto. P ara d esh ab ilitarlas se debe in tro d u cir el co m an d o te r m in a l no
e d itin g . T en ien d o activadas las características de ed ició n avanzada, ¿cuál es
el efecto de C trl-Z ?
A.
B.
C.
I).

Sale p ara reg resar al m odo p rivilegiado.
D e sc o n e c ta de otros routers.
In terru m p e u n a o p eració n de ping.
Sale del m o d o privilegiado.
R espuesta: A
Página: 128

328. S u ay udante h a estad o trabajando en el ro u te r m ientras usted estaba
ausente. ¿Q ué co m an d o le p erm itirá re v isar cu áles so n los últim os com andos
q ue ingresó?

© RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 395

A. control header
B.

show buffer

C . show history
D. show history buffer
R esp u esta: C
P á g in a : 112

329. ¿Q ué se utiliza a nivel de la capa de enlace d e datos p a ra in d iv id u alizar
term inales en un a re d local?
A. D irecciones de red lógicas.
B. N úm eros de puerto.
C . D irecciones de h ardw are.
D. G atew ays por d efecto.
R esp u esta: C
P á g in a : 30

330. ¿C uál de los sig u ien tes elem en to s es utilizado e n las lista s de acceso I P
están d ar com o b ase para p e rm itir o denegar p aq u etes?
A.
B.
C.
D.

D irección de origen.
D irección de destin o .
Protocolo.
Puerto.
R espuesta: A
P á g in a : 195

331. ¿C u ál es el ran g o de n ú m e ro s que identifican u n a lista d e acceso e x ten d id a
IP ?
A.
B.
C.
L>.

1-99
20-299
1000-1999
100-199
R espuesta: D
P ág in a: 201

332. ¿Q u é co m an d o s show p u e d e utilizar p ara id en tificar el núm ero de D L C I
local? (elija 2).

A.

show

fram e-relay

local-dlci

B.

show

fram e-relay

pvc

396

REDES CISCO: GUÍA DE ESTUDIO P A R \ LA CERTIFICACIÓN CCNA 640-802

C.

show

D.

show

frane-relay dlci
frane-relay map

E.

show

±p

O RA-MA

route

R espuesta: B, D
P ág in a: 278

333. ¿C uáles so n los n ú m eros de lista de acceso utilizados p a ra crear listas de
acceso IP e stá n d a r?
A.

1-10

B.

1-99

C.
D.

100-199
1 000-1999

' .
R espu esta: B
P ág in a: 201

334. P ara esp e c ific ar todos los nodos en la red IP Clase B 172.16.0.0, ¿qué
m áscara de w ild c a rd utilizaría?
A.
B.
C.
D.
E.

2 5 5 .2 5 5 .0 .0
2 5 5 .2 5 5 .2 5 5 .0
0.0 .2 5 5 .2 5 5
0.25 5 .2 5 5 .2 5 5
0.0.0.255
R esp u esta: C
P ág in a: 198

335. ¿Q ué w ild card
172.16 2 3 .0 / 2 4 ?
A
B
C
D
E
F

u tiliz aría p ara

filtrar

las

redes

172.16.16.0

172 .1 6 .1 6 .0 0.0.0.255
172.16.255.255 2 5 5 .255.0.0
1 7 2 .1 6 .0 .0 0.0.255.255
172 .1 6 .1 6 .0 0.0.8.255
172 .1 6 .1 6 .0 0.0.7.255
172 .1 6 .1 6 .0 0.0.15.255
Respuesta: E
Págin a: 198

/ 24 a

©

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN

r a -m a

397

336. ¿C uáles de las sig u ien tes son form as v álid as de re fe rirse solo al n o d o
172.16.30.55 en una lista d e acceso IP? (elija 2).

A.

172.16.30.55

0 .0.0.255

B.

172.16.30.55

0 .0 .0.0

C.

any

D.
E.

host

F.

ip

1 7 2 .1 6.30.55
172.16.30.55

0 .0 .0 .0
any

1 7 2 . 1 6 . 3 0 . 55
1 7 2 .1 6 .3 0.55

R espuesta: B, D
P ágina: 198

337. D esp u és de estar re v isa n d o u n a serie de p u b lic ac io n es d e te c n o lo g ía, su
g eren te le pregunta a cerca de la utilidad de las listas de control de acc eso .
¿ C u áles serían resp u estas p o sib les? (elija 3).
A.
B.
C.
D.
E.
F.

P ro teg er los n o d o s de virus.
D etectar escaneo m asiv o de puertos.
A se g u ra r alta d isp o n ib ilid ad d e los recursos d e la red.
Id en tificar tráfico interesante para D D R .
F iltrar tráfico p o r IP.
M o n ito rizar el n ú m ero de bytes y p aquetes.
R espuesta: C, D, E
Página: 194

338. E x iste un a lista de a cceso con u n a única co n signa, ¿q u é significa la p a la b ra
“ any ” que aparece en la consig n a?
access-list

A.
B.
C.
B.
E.

F.

131 p e r m i t

ip

any 1 3 1 .1 0 7 .7 .0

0 .0.0 .25 5

eq

tcp

V erifica c u a lq u ie ra de los bits en la d irecció n de origen.
P erm ite cu alq u ier m áscara de w ild card p ara la dirección.
A cepta c u alq u ier dirección de origen.
V erifica cu a lq u ie r bit en la dirección de destino.
p erm it 2 5 5 .2 5 5 .2 5 5 0.0.0.0.
A cep ta cu alq u ier d irección de destino.
Respuesta: C
P ágina: 198

339. C isco soporta 3 tipos d iferen tes de L M I p a ra F ram e R elay. ¿C uáles d e los
sigu ien tes son tipos de L M I?

398

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

A.
B.
C.
D.
E.
F.

IE T F .
Q 931.
Q 931A
IE E E .
C isco.
A N S I.
R espuesta: C, E, F
Página: 270

340. ¿C uál de los siguientes co m andos es v álid o p ara crear u n a lista de acceso
TP e x ten d id a?

A.

access-list

101 p e r m i t

ip

B.

access-list
log

101. p e r m i t

tcp

C.

access-list
log

101 p e r m i t

icmp

D.

access-list

101 p e r m i t

ip

host

172.16.30.0

host

any

172.16.30.0

eq

21

any eq

host

1 7 2 .16.30.0

any

any eq

172.16.30.0

21

21

ftp
log

R espuesta: B
Página: 202

341. ¿Q ué c o n fig u ració n u tilizan d o listas de acceso p erm ite que solo el tráfico
p ro v e n ie n te de la red 172.16.0.0 entre a la in terfaz serial 0?
A.

a c c e s s - l i s t 10 p e r m i t
interface se rial 0
i p a c c e s s - l i s t 10 i n

17 2.16.0.0

B. a c c e s s - g r o u p 1 0 p e r m i t 1 7 2 . 1 6 . 0 . 0

0 .0 .255.255

0 .0 .255.255

in terface se ria l 0
i p a c c e s s - l i s t 10 o u t

C.

a c c e s s - l i s t 10 p e r m i t
in terface se rial 0
i p a c c e s s - g r o u p 10 i n

1 7 2.16 .0.0

0 .0 .255.255

D.

a c c e s s - l i s t 10 p e r m i t 1 7 2 . 1 6 . 0 . 0
in terface se rial 0
i p a c c e s s - g r o u p 10 o u t

0 .0 .255.255

R esp u esta: C
P ágina: 201

342.

¿D ónde d eb ería co locar las listas de acceso estándar e n una red?
A. E n el sw itc h m ás cercano.
B. L o m ás cercano p o sib le al origen.

0 RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 399

C . L o m ás cercan o posible al destino.
D. E n Internet.
R espuesta: C
P ágina: 196

343.

Si aplica esta lista de acceso, ¿cuál es el efecto?
access.list

122

perm it

ip

131.107.30.0

0.0 .0.2 55

any

A. P erm ite to d o s los p aquetes cuyos 3 prim eros o cteto s de la d irecció n
de orig en coinciden, a todos los destinatarios.
B. P erm ite to d o s los p aquetes cuyo final de la d irecció n de destino
coincide, y acep ta todas las direcciones de origen.
C . P erm ite to d o s los p aquetes que se o rig in a n en la tercera subred de la
d irecció n de red, a todos los d estinatarios.
D. P erm ite to d o s los p aquetes cuyos bits de nodo de la dirección de
o rig en co in cid en , a todos los d estinatarios.
E . P erm ite to d o s los paquetes cuyos 3 prim eros octeto s de la d ire cc ió n
de destin o co in cid en
R espuesta: A
P ág in a: 202

3 1 4 . Su je fe está p re o c u p a d o respecto de la seg u rid ad de la su b red 10.0.1.0/24
que contiene al serv id o r de contaduría. D esea estar seg u ro de que lo s
usuarios n o p o d rá n conectarse utilizando teln e t a ese servidor, y le h a
consultado en o rd en a in co rp o rar una sen ten cia a la lista de acceso e x iste n te
para p rev en ir q u e los usuarios puedan acced er al serv id o r v ía telnet.
¿C uál de las sig u ien tes sentencias d eb ería agregar?
A.

access-list 15 deny tcp 10.0.1.0 255.255.255.0 eq
telnet
33. access-list 115 deny tcp any 10.0.1.0 eq telnet

Co

access-list 115 deny udp any 10.0.1.0 eq 23

D.

access-list 115 deny tcp any 10.0.1.0 0.0.0.255 eq

E.

access-list 15 deny telnet any 10.0.1.0 0, Ó. 0.255eq 23
Respuesta: D
Página: 202

23

400

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

345. ¿Q u é u tiliz a el P ro to co lo de Á rbol de E xpansión p ara d e term in ar el puerto
d esig n ad o en un p uente, en una re d q u e ejecuta STP?
A.
B.
C.
D.

P rio rid ad .
C o ste de lo s en laces c o n e ctad o s al sw itch.
D ire c c ió n M A C .
D ire c c ió n IP.
R esp u esta: E
P ágina: 223

346. El je fe le co m en ta que n o puede acc ed er a los archivos co rp o rativ o s en el
se rv id o r F T P de la co m pañía d e sd e su casa. A ntes p o d ía hacerlo sin
p ro b lem as. Se su p o n e que alg u ien h a cam biado una lista d e acceso que es la
que re g u la el acceso a los datos co rp o rativ o s. El n ú m e ro 'd e la lista de acceso
en c u e stió n es 131.
¿Q u é c o m a n d o le p erm itirá ver la lista de acceso 131?
A. s h o w a c c e s s - l i s t 1 3 1 d e t a i l s

B.

display

C.

show dccess-iists 131

D.

display

ip

ad d ress-list

access-list

131

131

details

R esp u esta: C
P ág in a: 213

347. Se h a cread o u n a lista de acceso IP exten d id a que se m u e stra en la sintaxis.
A h o ra ha a p lic a d o la lista de acceso a la interfaz E th ern et 0. ¿C uál es el
resu ltad o de esta acción?
E outer#show a c c e s s - l i s t s
E x t e n d e d I P a c c e s s l i s t 135
deny tep any 1 3 1 .107.0.0 0 .0 .2 5 5 .2 5 5
deny te p any any eq t e l n e t

eq

Router#show ip i n te r f a c e eth ern etO
E th e r n e t O i s up, l i n e p r o t o c o l i s up
I n t e r n e t a d d r e s s i s 17 2 . 1 7 . 9 . 6 0 / 2 4
Broad a d d re ss is 2 5 5 .2 5 5 .2 5 5 .2 5 5
A d d r e s s d e t e r m i n e d b y s e t u p command
MTU i s 1 5 0 0 b y t e s
H elper address is not set
D ire c te d b ro a d c a st forw arding i s enabled
O u t g o i n g a c c e s s l i s t i s 135
Inbound a c c e s s l i s t i s n o t s e t
P r o x y ARP i s e n a b l e d
S ecurity lev el is d efau lt
S p lit h orizon is enabled

25

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 40 1

0 RA-MA

A . Solo se p e rm ite la salida p o r E thernet 0 al correo electró n ico y los
accesos v ía teln et.
B. T odos los n o d o s en la red 172.30.24.64 ten d rán p erm itid o el co rreo
electrónico y el acceso p o r telnet.
C . T odos los p ro to c o lo s T C P tienen p erm itid o salir por E th ern et 0
excepto el c o rre o electrónico y telnet.
D. T odo el trá fic o IP que q uiera salir p o r E th ern et 0 será denegado.
E . La lista de a cceso está num erada in co rrectam en te y fallará.
R esp u esta: D
Página: 214

Toda lista de acceso debe incluir al menos una instrucción permit. En caso contrario, todo
el tráfico será denegado.

348. U tilizan d o u na d irecció n de re d clase C, se n e c e sita n 5 su b red es con u n
m áx im o de 17 n o d o s e n c ad a u n a de esas su b red es. ¿Q ué m á scara de s u b re d
d e b e rá utilizar?
A.
R.
C.
D.

2 5 5 .2 5 5 .2 5 5 .1 9 2
2 5 5 .2 5 5 .2 5 5 .2 2 4
2 5 5 .2 5 5 .2 5 5 .2 4 0
2 5 5 .2 5 5 .2 5 5 .2 4 8
R espuesta: B
P ágina: 71

349. U sted es el a d m in istra d o r de la red que se m u estra a continuación. Se h a
cread o u n a lista de acceso n o m b rad a “ Intranet” p a ra p rev en ir que u suarios de
la re d de In v estig acio n es y otros que accedan d esde In te rn et p u edan a c c e d e r
al serv id o r de S o p o rte. T odos los demás u su ario s de la em p resa p u eden te n e r
acceso a este servidor.

Investigación
172.1(3 102 0/24

Servidor Ven tas

Seividor Soporte

1 7 2.16.103 252/24

172 1>5 . ! 0 4 .252/24

402

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M a

L a lista contiene las siguientes sentencias:
deny 172.16.102.0
Perm it 1 7 2 .1 6 .0 .0

0 , 0 . 0 . 2 5 5 1 7 2 . 1 6 . 1 0 4 . 2 5 2 0 . 0 . n.O
0 .0 .255.255 172.16.104.252 0 .0 .0 .0

¿C u ál de las sig u ien tes secuencias de co m a n d o s perm itirán co lo car esta
lista de m o d o tal que se c u m p la n los req u erim ien to s enunciados?
A . Router_A(config)(interface eO
Router A (config-if)#ip access-group Intranet in

B.

Router A (config) #int.erface sO
Router A(config-if)#ip access-group Intranet out

C.

Router_B(config)#interface sO
R o u t e r _ B (config-if)#ip access-group Intranet out

D. Router_B(config! #interface si
Router_B(config-if)#ip access-group Intranet in

E.

Router C (conf ig) tfinterf ace si
R o u t e r _ C (config-if)#ip access-group Intranet in

F.

R o u t e r _ C (config)#interface eO
Router C (config-if)#ip access-group Intranet out
R esp u esta: F
P ágina: 204

350. ¿C u án to s tipos de en cap su la ció n F ram e-R elay están d isp o n ib le s en los
rou ters C isco?
A . D os.
B . T res.
C. C uatro.
D . C inco.
R espuesta: A
P ágina: 271

351. ¿C uál de las siguientes tecn o lo g ías u tiliza u n PV C en la cap a 2?
A.
B.
C.
D.

D ial-up.
R D SI.
F ram e-R elay .
HDLC.
Respuesta: C
Página: 268

Q RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 403

352. ¿C óm o se d en o m in an las P D U de la capa de E nlace de D a to s?
A. T ram as.
B. P aquetes.
C.
D.
E.
F.

D atag ram as.
T ran sp o rtes.
S egm en to s.
B its.
R espuesta: A
P ág in a: 49

353. S i usted d eseara v isu alizar los valores de D L C I c o n fig u ra d o s p a ra su re d
F ram e-R elay , ¿qué com an d o utilizaría? (elija 2).

A.

show f r a m e - r e l a y

B.

show r u n n i n g - c o n f i g

C.

show i n t e r f a c e

D.

show f r a m e - r e l a y

dlci

E.

show f r a m e - r e l a y

pvc

serial

0

R espuesta: B, E
Página: 278

354. ¿Q ué co m an d o p resen tará una lista de todos los PV C y D L C I co n fig u rad o s
en un ro u ter C isco ?

A.

show

B.

show f r a m e - r e l a y

fram e-relay

C.

show f r a m e - r e l a y

D.

show pvc

pvc

lmi

R espuesta: A
Página: 278

355. ¿C uál de los sigu ien tes es un m étodo utilizado p o r F ram e-R elay p a ra
m ap ear los P V C a las d irecciones IP?
A.
B.
C.
D.

A R P.
LM I.
SLA RP.
D L C I.
Respuesta: D
Página: 268

404

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© Ra - m a

356. ¿C uál es la e n cap su lació n p o r defecto en enlaces p u n to a p u n to entre dos
routers C isco ?
A. S D L C .
B. H D L C .
C . C isco .
D. A N S I.
R espuesta: B
Página: 254

357. U sted tra b a ja co m o ad m in istrad o r d e la red de la em presa. Está
c o n fig u ran d o u n enlace W A N . ¿C uáles so n en c ap su lacio n es de c a p a 2 típicas
p ara este tip o d e en laces? (elija 3).
A. E th ern et.
B. F ram e-R elay .
C. PO TS.
D. H D L C .
E . PPP.
F . T o k e n R ing.
R espuesta: B, D, E
Página: 106, 254

358. ¿Q ué in fo rm a c ió n es p ro p o rcio n ad a p o r la In terfaz de G estió n L o cal? (elija
3).
A. E l estad o de los circuitos virtuales.

B. L os v a lo re s D L C I actuales.
C . E l sig n ificad o global o local de los valores D L C I.
1). E l tip o de en cap su la ció n LM I.
R espuesta: A , B, C
P ágina: 269

359. ¿E n qué c ap a del m o d elo O SI tiene lu g ar la seg m entación de un flujo de
datos?
A . F ísica.
B. E n lace de datos.
C . R ed.
D. T ransporte.
E . D istrib u ció n.
F. A cceso.
Respuesta: D
Página: 23

e R A -M A ___________ _______________________ APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 405

360.

1
1
■f

y

¿Q ué p ro to co lo u tilizad o en P P P perm ite el u so de m ú ltip le s protocolos d e
cap a de red duran te u n a conexión?
A.
B.
C.
D.

LC P.
N CP.
HDLC.
X .25.
R espu esta: B
P ág in a: 257

361. U sted se en cu en tra d esarro llan d o tareas de técnico d e redes. Se le h a
req u erid o que re su e lv a u n fallo en el enlace W A N entre la oficina p rincipal
de la em presa lo calizad a en M a d rid y una oficina re m o ta localizada e n
O p o rto . U n ro u te r C isco estaba pro v ey en do co n ectiv id ad F ram e -R ela y en el
sitio de O porto, h a sido reem p lazad o con un router F ram e-R ela y de o tro
fabricante. Se h a perdido la conectividad entre am bos sitio s
¿C uál es m ás p ro bablem ente la cau sa del problem a?
A.
B.
C.
D.

F alta de coin cid en cia en el tipo de L M I.
D L C I incorrecto.
F a lta de co in cid en cia en el tipo de encap su lació n .
In c o rre c to m ap eo de la dirección IP.
R espuesta: A
P ágina: 270

362. ¿C uáles de las siguientes son características de PPP? (e lija 3).
A.
B.
C.
D.
E.

P u e d e ser utilizado so b re circuitos asin crónicos.
M a p e a cap a 2 a d ireccio n es de capa 3.
E n cap su la diversos proto co lo s enrutados.
S o p o rta solam ente IP.
P ro v e e m ecanism os de co rrección de errores.
R espuesta: A, C, E
P ágina: 257

363. ¿Q ué ra n g o de direcciones IP puede u tilizarse en el p rim e r octeto de una
d irección de red C lase B ?
A.
B.

C.

1-126
1-127
128-190

406

REDES CISCO: GUÍA DE ESTUDIO PARA L.A CERTIFICACIÓN CCNA 640-802

D.
E.
F.

© RA-Ma

128-191
129-192
192-220
R espuesta: D
Página: 67

364. H a sido co n v o cad o com o co n su lto r p o r u n a co m pañía en rápido
cre c im ie n to y que tiene en este m om ento u n a casa cen tral y 3 oficinas
reg io n ales. E l resp o n sable de la red está estudiando la posibilidad de
im p lem en tació n de un a tecn ología W A N escalable. L os plan es actuales de la
e m p re sa in c lu y e n la apertura d e 7 o ficin as regionales adicionales con
req u erim ien to s de conectividad full tim e. El router actualm ente instalado en
la c a sa central n o dispone de p u e rto s libres.
¿C uál de las sig u ien tes tecn o lo g ías es la m ejo r opción que le p erm itirá dar
re sp u e sta a las necesid ades de la em p resa m an ten ien d o los costes e n un nivel
m ín im o ?
A.
B.
C.
D.
E.

E nlaces dedicados con P P P o H D L C .
F ram e-R elay .
IS D N -B R I.
A DSL.
S erv icio de b anda ancha p o r cable.
R espuesta: D
P ágina: 285

365. ¿ C ó m o son los extrem os de un cable cru zad o ?
A . Los p in e s 1-8 son co m pletam ente opuestos en el otro extrem o (8-1).
B . T iene a los pines 1-8 cab lead o s de ig u al m anera en am bos
extrem os.
C . El p in 1 en uno de los ex trem os se c o n ec ta al pin 3 del otro extrem o
y el p in 2 se conecta al p in 6 del otro extrem o.
D . El p in 2 d e uno de los ex trem os se c o n e c ta al pin 3 del otro
extrem o , y el pin 1 se co n ecta al pin 6 en el otro extrem o.
R espuesta: C
P ágina: 28

366. ¿ E n qu é cap a del m odelo OS1 se u b ican los ro uters?
A . F ísica.
B . T ran sp o rte.

Q RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 407

C. E nlace de datos.
D. Red.
R espuesta: D
P ág in a: 37

367. ¿C u ál de las siguientes o pciones es v erd ad era resp ec to a los L M Is? (e lija
2 ).
A.
B.
C.
D.

Los L M Is m a p e a n los núm eros D L C I a los c ircu ito s v irtu ales.
Los L M Is m a p e a n las direcciones X.21 a los circ u ito s virtuales.
Los L M Is in fo rm an el estado de los circu ito s v irtu ales.
Los m en sajes LM1 proporcionan inform ación a cerca del v a lo r
D L C I actual.
R espuesta: C , D
P ágina: 368

368. ¿C u ál de la s sig u ien tes o p cio n es puede se r n e g o c ia d a utilizando L C P
d u ran te el estab lecim ien to de un enlace P PP? (elija 2)
A.
B.
C.
D.
E.
F.

C allback.
IP C P .
C H A P.
M ultilink.
T C P.
Q93 1.
Respuesta: C , B
Página: 258

369. U tilizan d o la d irecció n de clase C 192.168.21.0, n ecesita g en e ra r 28
su b red es. ¿Q u é m áscara de su b red deberá utilizar?
A.
B.
C.
D.
E.

255.255.0.28
255.2 5 5 .2 5 5 .0
2 5 5 .2 5 5 .2 5 5 .2 8
2 5 5 .2 5 5 .2 5 5 .2 4 8
2 5 5 .2 5 5 .2 5 5 .2 5 2
R espuesta: D
Página: 71

370. ¿C uál de los sig u ien tes recu rso s contiene in fo rm a c ió n de co n tro l d e flujo
F ra m e -R e la y ?
A. D L C I.
B. IA R P .

408

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-Ma

C . L M I.
D. B E C N .
R esp u esta: D
P ág in a: 269

371. Su G eren te le so lic ita 2 m o tivos p a ra u tiliz ar un router p a ra segm entar la
red de la C asa C en tral. Q uisiera saber cu á le s son los ben eficio s. ¿Q ué podría
indicarle co m o b en eficio s?
A. E l filtra d o de paq u etes puede re a liz a rse a p artir de la in fo rm ació n de
cap a 3.
B. Se e lim in a la difusión.
C . L os ro u ters g en eralm en te son m e n o s costosos que los sw itches.
D. L a d ifu sió n no se reen v ía a tra v és de los routers.
E . A g re g a r routers a una red d ism in u y e la latencia.
R esp u esta: A, D
P ág in a: 37

372. ¿Q ue tip o d e N A T u tilizará para e fe c tu a r una traslac ió n de direcciones
desde v a ria s red es internas hacia varias re d e s externas?
A.
B.
C.
D.

NAT
NAT
PA T
NAT

estático.
dinám ico.
.
so b recargado.
R esp u esta : C, D
P ág in a: 263

3 7 3 . Se está c o n fig u ra n d o un ro u ter viejo que ejecuta u n a im ag en a n tig u a del
IO S que no so p o rta A R P inverso. Si el ro u ter no soporta A R P inverso,
¿cóm o p u ed e c o n fig u ra r e n él u n a co n ex ió n F ram e R elay?
A.
B.
C.
D.

C o n fig u ran d o un m apa estático.
D e fin ie n d o una d irecció n IP.
D esh a b ilita n d o D H C P en el ro u te r F ram e R elay.
C o n fig u ra n d o una ruta estática h a c ia la red rem ota.
R esp u esta : A
P ág in a: 269, 272

374. Se le h a req u erid o que configure P P P en una interfaz de u n ro u te r Cisco.
¿C uáles so n los dos m étodos de au ten tic ació n que puede utilizar?

@RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 409

A. SSL.
B. V PN .
C . PA P.
D. L A PB .
E. C H A P .
F. SL IP.
R espuesta: C, E
Pagina: 258

37 5 .

U sted es el a d m in istrad o r de la red de la e m p re s a y se en cuentra
config u ran d o un enlace F ram e-R elay en un router C isco . ¿C uál es el tipo p o r
defecto de Interfaz de A d m in istració n L ocal tra n sm itid a por un router C isc o
en un circuito F ram e-R elay?
A.
B.
C.
D.
E.

Q 933a.
B 8Z s.
IE T F.
C isco.
A N SI.
Respuesta: D
Pàgina: 270

376.

Al co n fig u rar F ram e-R elay en una subinterfaz p u n to a punto, se ing resaro n
los sig u ien tes com andos:
R o u ter(c o n fig )# in t s0/0
R o u te r(c o n fig -if)# ip address 10 .3 9.0 .1 25 5.255.0.0
R outer(config-if)#encapsulation fram e-relay
R o u t e r ( c o n f i g - i f ) # i n t e r f a c e sO /O .39 p o i n t - t o - p o i n t
R o u t e r ( c o n f i g - s u b i f ) # f r a m e - r e l a y i n t e r f a c e - d l c i 139
R o u ter(co n fig -if)# ex it
R outer(config)#exit
Router#copy run s t a r t

¿Cuál de los sigu ien tes elem en to s no d ebería hab er sid o configurado?
A.
B.
C.
D.

L a encapculación F ram e-R elay en la in te rfa z física,
El D L C I local en c a d a subinterfaz.
U n a direcció n IP en la interfaz física.
El tipo de su b in terfaz com o p u n to a punto.
Respuesta: C
Página: 273

410

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

377. E l R o u ter_ A no logra conectarse con el R outer_B , el cual es u n dispositivo
N o rtel. A p a rtir del resu ltado del co m ando show , ¿qué debería cam biar en la
in terfaz serie 0 del R o u ter A p ara que line protocol cam bie d el estado de
c aíd o a activ o ?
R o u t e r A # s h o w i n t e r f a c e sO
S e ria l 0 i s up, lin e p ro to c o l is
H a r d w a r e i s HD64570
In te rn e t a d d ress 1 0 .1 .1 .1
E n c a p s u l a t i o n HDLC, l o o p b a c k n o t

A.
B.
C.
D.

no

down

set

shutdow n

encapsulation

ppp

interface s e r i a l point - t o - p o i n t
clock

rate

56000

R espuesta: B
Página: 257

378. R ob erto es u n em pleado que trab a ja desde su c a sa brindando soporte
técn ico a la co m p añ ía durante las h o ra s de la tarde. P arte de sus
re sp o n sa b ilid a d e s es asegurarse de que la b a se de datos SQ L de la com pañía
p erm a n e z ca o p e ra tiv a p ara los u suarios. R oberto u tiliz a p ara esta tarea
im p o rtan tes ap licacio n es cliente-servidor, y realiza tran sferen cias de grandes
arch iv o s. A d icio n alm en te. cu an d o realiza cam bios, estos d eben hacerse
ráp id am en te. L a co m p añ ía está p reo cu p ad a acerca del coste de esta conexión
y está b u scan d o u n a so lu ción práctica.
¿Q ué co n ex ió n su g eriría para esta organización?
A. U n a co n ex ió n
B. U n a co n ex ió n
C. U n a c o n e x ió n
1). U n a c o n e x ió n
u su ario .

A D SL p ara la casa del usuario.
d edicada T 1 para la casa del usuario.
F ram e-R elay dedicada para la c a sa del usuario.
dial-up p o r lín ea están d ar de 56 K para la c a sa del

R espuesta: A
Página: 285

379. Se ingresó el com an do d e b u g p p p a u th e n íic a tio n , ¿qué tipo de
in tercam b io o salu d o (h an d sh ak in g ) h a sid o utilizado p a ra esta sesión de
PP P?

Q RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 411
Router#debug ppp a u th e n t ic a t i o n
p p p s e r i a l l : s e n d CHAP c h a l l e n g e i d - 4 7 t o
p p p s e r i a l l : CHAP c h a l l e n g e f r o m R o u t e r
ppp

seriall:

CHAP

ppp
ppp
ppp
ppp
ppp

s
s
s
s
s

CHAP r e s p o n s e i d = 4 7 r e c e i v e d f r o m R o u t e r
S e n d CHAP s u c c e s s i d = 4 7 t o r e m o t e
R e m o t e p a s s e d CHAP a u t h e n t i c a t i o n
P a s s e d CHAP a u t h e n t i c a t i o n
P a s s e d CHAP a u t h e n t i c a t i o n w i t h r e m o t e

e
e
e
e
e

r
r
r
r
r

ia
ia
ia
ia
ia

l
l
l
l
l

l
l
l
l
l

:
:
:
:
:

response

received

from

rem ote
Router

A. U n a via.
B. D o b le via.
C. T rip le via.
D. N o se re q u ie re in tercam b io durante la autenticación.
R espuesta: C
P ágina: 259

380. Jorge está tenien d o d ificu ltad es para configurar su b in te rfac es F ra m e -R e lay .
C o m o ad m in istrad o r h a d ecid id o enviar a Jorge u n correo ele ctró n ic o
ex p licán d o le algunos pro ced im ien to s p a ra la instalación. ¿C uál de las
siguientes a firm a c io n es d eb ería in cluir en ese correo electró n ico ? (elija 3).
A. C ada su b in te rfa z es configurada y a sea com o m u lti-p u n to o com o
p u n to a pu n to .
B. C u alq u ier d irecció n de red debe ser rem o v id a de la in terfaz física.
C . L a co n fig u ra c ió n de las sub interfaces se re a liz a en el m o d e (confi g-if)#.
D. L a en cap su lació n F ram e-R elay debe ser co n fig u ra d a en cada
subinterfaz.
R espuesta: A, B, C
Página: 272, 273

381. D os routers están c o n ectad o s a través de sus interfaces seriales tal c o m o
m u estran las sintaxis, pero no p ueden com unicarse. Se sabe que el R o u t e r A
tien e la c o n fig u ració n correcta. A partir de la in fo rm ació n que se su m in istra,
identifique el fallo en el R outer_B que está cau san d o esta p érd id a de
co nectividad.
R o u t e r _ A # s h i n t sO
S e r i a l O i s u p l i n e p r o t o c o l i s down
H a r d w a r e i s HD6457 0
I n t e r n e t a d d re s s i s 192.16 8 .1 0 .1 /2 4
MTU 1 5 0 0 b y t e s , BW 1 . 4 3 3 K b i t s
R e l i a b i l i t y 255/255

412

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓ N CCNA 640-802
E n c a p s u l a t i o n HDLC, l o o p b a c k not
K e e p a l i v e set (10sec)

© RA-MA

set

R outer_B #sh i n t s i
S e r i a l l i s u p l i n e p r o t o c o l i s down
H a r d w a r e i s HD64570
I n te rn e t ad d ress is 192.168.10.2/24
MTU 1 5 0 0 b y t e s , BW 1 . 4 3 3 K b i t s
R e l i a b i l i t y 255/255
E n c a p s u l a t i o n PPP, l o o p b a c k n o t s e t
K e e p a liv e s e t (lOsec)
LCP l i s t e n
C l o s e d : I P C P , CDPCP

A.
B.
C.
D.
E.
F.

U n a d ire c c ió n IP incom pleta.
In su fic ie n te ancho de banda.
M áscara de su b red incorrecta.
E n c a p su la c ió n incom patible.
C o n fia b ilid a d del enlace d em asiado baja.
IP C P no activo.
R espuesta: D

E n la séptima línea de ambas sintaxis se observa la encapsulación de las interfaces, en
este caso son diferentes, HDLCy PPP.

332. U n técnico e stá in stalan d o u n teléfono IP en u n a n ueva oficina. E l teléfono
y los o rd en ad o res están conectados al m ism o dispositivo. C on el fin de
ap ro v ech ar el m áx im o de ancho de banda y que el trafico telefónico se
d iferen cie del d e d ato s, ¿cuál es el m ejo r dispositivo que el técnico puede
im p lem en tar y co n qu é tecn ología? (elija 2).
A.
B.
C.
D.
E.
F.
G.
H.

VLAN.
S u b in terface.
STP.
H ub.
Svvitch.
R outer.
W ireless A ccess P oint.
V T P.
Respuesta: A
Página: 225

c RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 413

3 8 3 . ¿C u al es el están d ar que IE E E d efin e para W i-Fi?
A.
B.
C.
D.
E.

IE E E
IE E E
IE E E
IE E E
IE E E

802.3
802.5
8 0 2 .l l h
802.11c
8 0 2 .il
Respuesta: E
P ág in a: 29, 180

3 8 4 . Es necesario so lu cio n ar u n problem a de in terfe re n cia en la LA.N
inalám brica. ¿C u áles son los dos dispositivos que p u e d e n in terferir con el
fu n cio n am ien to de esta red, y a que operan en frec u en cia s sim ilares? (e lija
dos).
A . M icroondas.
B. R adio A M .
C . T ostadora.
D. C opiadora.
E . T eléfo n o inalám brico.
F . T elefo n ía IP.
G . I-pod.
Respuesta: A, E
P ág in a : 184

38 5 . ¿Q u é capa del m o d elo C isco p ro p o rciona seg m e n tac ió n de las redes de
co n ten ció n ?
A . A cceso.
B. Física.
C . R ed.
D. D istribución.
E . Principal.
F. T ran sp o rte.
G. E nlace de datos.
Respuesta: A
P ág in a: 52

38 6 .

Si u ste d se en cu en tra teclean d o com andos y recibe el sig u ie n te m ensaje,
Router#clock set 10:30:10
% Incomplete command

414

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-MA

¿qué es lo que e stá m al y cóm o lo arreg la? (elija to d as las respuestas que se
apliquen).
A. E l IO S no so p o rta un reloj en este router.
B. E sta c a d e n a de com andos no e stá com pleta.
C . P resio n e la te c la flecha arrib a y un signo de interrogación.
D. P resio n e la te c la flecha abajo y la te cla T ab.
E. B o rre lo q u e escribió y reinicie el router.
R espuesta: B, C
Página: 128

387. ¿C uál de los sig u ien tes es u n pro to co lo de estado de enlace IP?
A. R IPv2.
B. E IG R P .
C. OSPF.
D. IG R P.
R espuesta: C
P ág in a: 168

388. U sted trab aja co m o auxiliar del ad m in istra d o r de la red. E l adm inistrador
se en cu en tra co n fig u ran d o un ro u te r con interfaces tan to lógicas como
físicas, y le p re g u n ta qué factor u tiliza O S P F para d eterm in ar el ro u ter ID.
¿C uál d eb ería ser su resp u esta?
A. El m e n o r n ú m ero de red de cu alq u ier interfaz.
B. L a m en o r d irecció n IP de cu alq u ier interfaz lógica.
C . L a m en o r d irecció n IP de cu alq u ier interfaz física.
D. El m ay o r n ú m ero de red de cu alq u ier in terfaz
E . L a m ay o r d irecció n IP de cu alq u ier interfaz lógica.
F . L a m ay o r d irecció n IP de cu alq u ier interfaz física.
R espuesta: E
P ág in a: 170

El router ID es un número de 32 bits utilizado por OSPF para identificar el router. Para
esto se utilizan las direcciones IP del router. E n principio se utiliza la dirección IP de la
interfaz de loopback, si hay varias interfaces de loopback, se toma la dirección IP mayor
de las interfaces loopback.

389. A l e x a m in a r la c o n fig u ració n de en rutam iento del R o u te r_ l y R outer_2
después de que sea en v iada la p ró x im a actualización de E IG R P desde el

Q ra -M A

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 415

R o u te r_ l al R o u ter_ 2 , ¿qué rutas se m ostrarán en la tab la d e enrutam iento d e
R o u ter_ 2 ?
R outer_l(config)#router

eigrp

2 00

R o u terl(config-router)ffnetw ork

192.168.3.0

R outer_l(config-router)#netw ork

192.168.4.0

R outer_l(config-router)#netw ork

192.168.5.0

R outer_l(config-router)#netw ork

17 2 . 1 6 . 0 . 0

R outer_2(config)brouter

eigrp

300

R outer_2(config-router)tnetw ork

192 . 1 6 8 . 6 . 0

R outer_2(config-router)#netw ork

192.168.7.0

A.

B.

C

.

192.16 8.3 .0

R o u ter_ 2 ( c o n f i g - r o u t e r ) ((network

192.168.3.0
192.168.4.0
192.168.5.0
1 92.168.6.0
1 92.168.7.0
172.16.0.0
192.168.3.0
192.168.6.0
192.168.7.0

1AO 1/"O -» o

. lyz.iuo.j.u

D.
E.

19 2 .168.4.0
19 2.168.5.0
192.168.6.0
192.168.7.0
172.16.0.0
192.168.3.0
192.168.4.0
192.168.5.0
R espuesta: A
Página: 163

La información de enrutamiento se distribuye automáticamente dentro de diferentes A S
de EIG RP y se identifican como EIGRP externo.

390.

¿C uál de los sig u ie n te s es el rango de nodo v álid o p a ra la dirección IP
1 92.168.168.188 2 5 5 .2 5 5 .2 5 5 .1 9 2 ?

416

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

A.

Q

r a . Ma

1 9 2 .1 6 8 .1 6 8 .1 2 9 -190

B. 192.168.168.129-191
C.
D.

1 9 2 .1 6 8 .1 6 8 .1 2 8 -190
192.1 6 8 .1 6 8 .1 2 8 -192
R espuesta: A
P ág in a: 71

39 1 . U n c o m p añ ero de trab ajo se en cu en tra estu d ian d o el algoritm o d e árbol de
ex p a n sió n y le a c a b a de p re g u n ta r cóm o se d eterm ina el coste de cada ruta
p o sib le p o r d efecto. ¿C uál de las sig u ien tes sería la resp u esta adecu ad a?
A. C u en ta del n ú m ero total de saltos.
33. S u m a de los costes basados en el ancho de banda.
C . Se d e te rm in a d in ám icam en te en fu n ció n de la carga.
D. E l coste de cad a enlace individual se basa en la latencia.
R espuesta: B
P ág in a: 223

39 2 . ¿Q ué co m an d o m u estra la inform ación co rresp o n d ien te a la opción de
seg u rid ad co n fig u rad a en u n a interfaz?

A.

show p o r t

security

[interface

interface-id ]

B.

show p o r t - s e c u r i t y

[interface

interface-id]

C.

ahow s e c u r i t y p o r t i n t e r f a c e

[ in t e r f a c e - i d ]

!í.

silo ws e c u r i t y - p o r t

[interface-id]

in terface

R esp u esta: B
P ágina: 238

3 9 3 . ¿C uál de los sig u ien tes co m an d o s en crip tará su co n traseñ a de acceso por
teln et en u n ro u te r C isco?
A. l i n e

telnet 0
e n c r y p t i o n on
lo g in
passw ord cisxo

B.

lin e vty 0
passw ord-encryption
lo g in
passw ord cisxo

C.

se rv ic e passw ord-encryption
lin e vty 0 4
login
passw ord cisxo

Q RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 417

D.

passw crd-encryption
lin e vty 0 4
login
paS3word c i a x o

R esp u esta: C
P ág in a: 113, 115

3 94. Si se tiene la sig u ien te e n tra d a d e la tabla de en ru tam ien to , ¿cuál de lo s
elem en to s q u e se en u n cian a co n tinuación ha sido u tiliz a d o p o r defecto en e l
cálcu lo del v alo r 1200?
172 .1 6 .0 .0

[90/1200]

via

192.168.16.3,

00:00:55,

E thernetl

A.
B.
C.
D.
E.

M TU.
A n ch o de banda.
D istan cia ad m in istrativ a.
C uenta de saltos.
M étrica.
F. R etraso.
R espuesta: B, F
P ágina: 161,168

3 95. Si desea ten er m ás de un a se sió n de T elnet abierta al m ism o tiem po, ¿q u é
co m b in ació n de teclas u tiliz a ría p a ra alternar de u n a se sió n a la otra?
A.
B.
C.
D.

T ab
C trl
C trl
C trl

+
+
+
+

b arra e sp a d a d o ra .
x, luego 6.
shift + x , luego 6.
shift + 6, luego x.
R esp u esta: D
P ágina: 142’

396.' Es n ecesario ag reg ar un p u n to d e acceso inalám brico a u n a n u ev a o ficina.
¿Q ué otros paso s de c o n fig u ra c ió n serán n ecesarios p a ra co n e ctarse al p u n to
d e acceso qu e ya ha sid o co n fig u rad o su SS ID ?
A. C o n fig u rar la au te n tic a ció n abierta en el A P y e l cliente.
B.E stab lecer el v alo r S S ID públicam ente en
el so ftw a re del cliente.
C.
E stablecer el v alo r SS ID en el cliente p ara el S S ID configurado en
el AP.
I). C o n fig u ració n de filtrad o de direcciones M A C p a ra p erm itir que e l
cliente se co n ecte al A P.
E . N in g u n a de las an terio res.
Respuesta: C
Página: 189

418

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA. 640-802

© RA-Ma

397. ¿C uál de los sig u ien tes tipos de redes de datos se im p lem entará p ara un
u su ario m ó v il si se req u iere u n a tarifa de datos relativ am en te alta, p e ro a m u y
corta distan cia?
A.
B.
C.
D.
E.

C o m u n ic a c ió n de b a n d a ancha p e rso n al (PC S).
A D S L de b an d a ancha.
P A N in frarro jo s.
S p read Spectrum .
L A N cable.
R espuesta: C
P ág in a: 180

3 9 8 . U n ú n ico p u n to d e acceso 802.1 lg se ha co n fig u ra d o e in stalad o en el
centro de un a oficina. A lgunos usuarios inalám bricos están experim entando
len to ren d im ien to , m ien tras que la m ay o ría de los u suarios están operando a
su m áx im a eficien cia.
¿C uáles so n
A.
B.
C.
D.
E.
F.
G.

las tre s causas p ro b ab les de este pro b lem a? (elija tres)

N u lo SSID .
C o n flicto d e cifrado TK JP.
T eléfo n o s inalám bricos.
T ip o u orien tació n de las antenas.
C o in c id e n te s SSID.
A rch iv ad o res o arm ario s de m etal.
H o rn o s de m icro o n d as en la sala de descanso.
R esp u esta: C, D, F
P ágina: 184

39 9 . U n a sede c o rp o ra tiv a cu enta con u n sistem a de tele co n fere n cia que utiliza
V o IP (V oz sobre IP). Este sistem a u tiliz a U D P com o el tran sp o rte de los
datos. Si estos d atag ram as U D P llegan a su destino fuera de secu en cia, ¿qué
pasará?
A. U D P en v ia rá una so licitud de inform ación IC M P al h o st de origen.
B. U D P h ará lleg ar la in fo rm ació n en los datag ram as h asta la siguiente
c ap a del m od elo O SI en el orden que lleguen.
C . U D P b ajará los d atagram as.
D. U D P u tiliz a los n ú m ero s de secuencia en las cabeceras de
d atag ram a p a ra v o lv er a e n sam b lar los datos en el orden correcto.

© RA-MA

APÉNDICE A. PREPARATIVOS PARA EL EXAMEN 419

E.

U D P no se re c o n o cen los datagram as y esp erara u n a retran sm isió n
de d atagram as.
R esp u esta: B
P ág in a: 40

400. La W A N de su e m p re sa está m igrando de R IP v l a R IP v 2 . ¿Q ué tre s
afirm acio n es son co rrectas sobre la versión 2 de R IP? (elija tres).
A.
B.
C.
D.

Se u tiliza d ifu sió n de su s actualizaciones de en ru tam ien to .
Se adm ite la auten ticació n .
Es un p ro to co lo de en rutam iento sin clase.
T iene una d ista n c ia inferior pred eterm inada ad m in istra tiv a de RIP
versió n 1.
E. L a cuenta m á x im a de salto s es la m ism a que la v ersió n 1.
F. N o envía la m áscara de subred en actualizaciones increm entales.
R esp u e sta : B, C, E
P ág in a: 151

Apéndice B

RESUMEN DE COMANDOS
CISCO IOS
A co n tin u ació n se detalla un listad o de co m andos C isc o
complementan a los d escrito s en los cap ítu lo s anteriores.
a c c e s s - l i s t a c c e s s - l i s t - n u m b e r {deny
p e rm it | rem ark l i n e } s o u r c e [ s o u r c e -

n.prrl

w ildcard]

access-list a ccess-list-n u m b er
[dynamic d y n a m i c - n a m e [ tim e o u t
m i n u t e s ]]
{deny | p e r m i t | r e m a rk
} p ro to co l source so u rce-w ild ca rd
d e s tin a tio n

name]

a lias

|

{configure

a lia s-n a m e

banner

new

|

exec

[tos

to s ]

Configura una ACL IP
extendida

Crea un alias para un
comando determinado
Determina el ancho de
banda sobre una interfaz

k ilo b its

c

b a n n e r-te x t

b a n n e r m otd

d

m essage

boot

flash

system

Configura una ACL IP
estándar

[log

in terface}

a lia s

exec

fs :]

lin e

d e stin a tio n -w ild c a rd

[precedence p rec e d en c e ]
| lo g -in p u t][tim e-ran g e

bandw idth

|

IOS

c

Mensaje diario

d

[ fla sh -

[pa rtition-n um beri]

Mensaje para el modo
ejecutable

[filenam e]

Para iniciar el IOS desde
la Flash

que

42 2

R E D E S C ISC O : G U ÍA D E E S T U D IO PA R A LA C E R T IF IC A C IÓ N C C N A 6 4 0 -8 0 2

© RA-MA

Activa el CDP en una
interfaz

cdp enable

Activa el CDP de
manera global

cdp run

clear counters i n t e r f a c e - t y p e

number

clock rate s p e e d - i n - b i t s - p e r - s e c o n d

Borra todos los
contadores de la interfaz
Determina el
sincronismo en una
interfaz DCE

clock set h h : m m : s s d a y month y e a r

Configura el reloj interno

config-register r e g i s t e r - v a l u e

Determina el registro de
configuración

copy {flash | ftp | nvram | runningconfig|startup-config | system | tftp}
{flash | ftp | nvram | running-config
| startup-config | system | tftp}

Activa la copia según el
origen y el destino
Inicia un proceso de
depuración total

debug all

debug ip nat

Muestra los procesos de
traslación de direcciones

debug ip rip

Muestra los procesos de
actualización de RIP
Muestra los procesos
Helio OSPF

debug ip ospf hello

duplex {full

| half

| auto}

enable password [level l e v e l ]
{password | [ e n c r y p tio n - ty p e ]

encrypted-password)
enable secret

[level l e v e l ]

| [e n c ry p tio n -ty p e ]
p a ssw o rd }

{ p assw ord
e n c r y p te d -

encapsulation {dotlq | isl} v l a n - i d
[native]

Especifica la forma de
operar de una interfaz
Configura laenable
password
Configura la enable
secret
Determina la
encapsulación troncal

RA -M A

A P É N D IC E B R E S U M E N DE C O M A N D O S C IS C O IO S 4 2 3

encapsulation { frame-relay | ppp |
slip | hdlc}

Asigna el tipo de
encapsulación dentro de
una interfaz

erase {f i l e s y s t e m : | start-up conflg}

Elimina el contenido de
la NVRAM

ip access-group access-list-number |

a c c e s s - l i s t - n a m e {in | out}

Asigna una ACL dentro
de la interfaz

ip access-list extended n am e

Define una ACL
extendida nombrada

ip access-list standard name

Define una ACL
estándar nombrada

ip address i p - a d d r e s s mask [secondary]

Configura la dirección IP
de una interfaz

ip classless

Permite recibir paquetes
destinados a subredes

ip default-gateway i p a d d r e s s

Configura una puerta de
enlace

ip default-network n e t w o r k number

ip domain-lookup

ip host n a m e - o f - h o s t

ip-address

[tcp-port-number]
[i p - a d d r e s s 2 . . . a d d r e s s 8 ]

Activa la traslación de
nombre de host
Crea una tabla de host
Activa la configuración
desde un navegador

ip http server

ip nat {inside

Determina una red de
último recurso

| outside}

ip nat pool name s t a r t - i p e n d - i p
{netmask n e t m a s k \ prefix-lsngth
p r e f i x - l e n g t h } [type rotary]
ip ospf cost c o s t

Determina si la interfaz
es entrante o saliente en
NAT
Crea un almacén de
direcciones en NAT
Determina el coste OSPF
dentro de una interfaz

424

R E D E S C IS C O : G U ÍA D E E S T U D IO P A R A L A C E R T IF IC A C IÓ N C C N A 6 40-802

© RA-M A

Determina la prioridad
OSPF dentro de una
interfaz

ip ospf priority nu mb e r
ip route p r e f i x mask

{a d d r e s s \ i n t e r f a c e } [d is ta n c e ]
t a g ] [permanent]

Crea una ruta estática

[tag

Activa el enrutamiento
IP

ip routing

Permite utilizar la subred
cero

ip subnet-zero

isdn spidl s p i d - n u m b e r

[ld n 3 ]

...

[Id n ]

Determina el
identificador del Canal 1
RDSI

[l d n 2 ]

[Id n ]

Determina el tipo de
switch RDSI

isdn switch-type s w i t c h - t y p e

line

[aux | console

| tty

Determina a qué tipo de
terminal ingresar

| vty ]

line-num ber [ending-line-number]
login

[local

Define la forma de inicio
de sesión

| tacacs]

Determina la cantidad de
lului pai a lelas en un
protocolo

maximum paths m a x i mum

media-type {aui
mii}

| lObaset

| lOObaset

|

network a d d r e s s w i l d c a r d - m a s k area

area-id

passive-interface ty p e num ber

[ p r o to c o l]
hostname}

ping

{i p - a d d r e s s

|

ppp authentication {chap | chap pap |
pap chap | pap} [if-needed] [ l i s t - n a m e
1 default] [callin]

Define el tipo de medios
de una interfaz
Define red y área en un
protocolo
Evita envíos de
actualizaciones de
enrutamiento en la
interfaz
Inicia el envío de
paquetes ping
Determina la
autenticación PPP dentro
de una interfaz

© RA-MA

A P É N D IC E B. R E S U M E N DE C O M A N D O S C IS C O IOS

ppp chap hostname h o s t n a m e

Define el nombre de host
en PPP/chap

ppp chap password p a s s w o r d

Define la contraseña en
PPP/chap

redistribute p r o t o c o l [ p r o c e s s - i d ]
[metric m e t r i c - v a l u e ] [metric-type
ty p e -v a lu e ]
[match {internal |
external 1 | external 2}] [tag t a g v a l u e ] [route-map m a p - ta g ] [weight
w e i g h t ] [subnets]

Configura la
redistribución en un
protocolo

Determina a BGP como
protocolo de
enrutamiento

router bgp a s -n u m b e r

Determina a EIGRP
como protocolo de
enrutamiento

router eigrp a u t o n o m o u s - s y s t e m

Determina a IGRP como
protocolo de
enrutamiento

router igrp a u t o n o m o u s - s y s t e m

Determina a OSPF
como protocolo de
enrutamiento

router ospf p r o c e s s - i d

Determina a RIP como
protocolo de
enrutamiento

router rip

/ a c c e s s -2 is t-n a m e ]

Muestra todas las ACL
configuradas

show cam count {dynamic | static |
permanent | system} [v la n ]

Muestra el contenido de
la memoria CAM

show access-lists

show cdp neighbors
[detail]

[ a c c e s s -1 is t-n u m b e r

[ ty p e num ber]

show controllers serial

Muestra los vecinos CDP

[num ber]

Determina diagnósticos
del estado de la interfaz

(2500 s e r i e s )
show f l a s h - filesystem:
filesys]

show frame-relay map

[all

| chips

|

Muestra los archivos
contenidos en la FLASH
Muestra los mapas
Frame-Relay

425

4 26

R E D E S C IS C O : G U ÍA D E E S T U D IO P A R A L A C E R T IF IC A C IÓ N C C N A 640-802

show frame-relay pvc
[d l c i ]]

[t y p e number

© R A -M a

Muestra los PVC FrameRelay

show hosts

Muestra la tabla de host

show interface [i n t e r f a c e - i d / vlan
[flow-control | pruning |
status | switchport [allowed-vlan |
prune-elig | native-vlan]]

Muestra la información
de una interfaz en un
switch

number]

show interfaces

{ty p e number}

show ip arp [ i p - a d d r e s s ]
[h o s t n a m e ]
[mac-address] [type number]
show ip interface i n t e r f a c e - t y p e

number

Muestra una tabla ARP
Muestra información IP
de una interfaz
Muestra un resumen del
estado de las interfaces

show ip interface brief

show ip nat translations

Muestra la información
de una interfaz

[verbose]

Muestra las traslaciones
NAT

Apéndice C

GLOSARIO
A:
A B M . Modo de Compensación Asincrono. Modo de comunicación HDLC (y protocolo derivativo)

que admite comunicaciones punto a punto orientadas a iguales entre dos estaciones, en el cual
cualquiera de las estaciones puede iniciar la transmisión.
A C K . Acuse de recibo utilizado por TCP. Mensaje que se envía para confirmar que un paquete o un

conjunto de paquetes ha llegado. Si el terminal de destino tiene capacidad para detectar errores, el
significado uc ACK es “lia llegado y además ha llegado correctamente”.
A C L {lista de control de acceso). Lista mantenida por un router de Cisco para controlar el acceso
desde o hacia un router para varios servicios (por ejemplo, para evitar que los paquetes con una
dirección IP determinada salgan de una interfaz en particular del router). Ver también ACL extendida
y ACL estándar.
A C L estándar (lista de control de acceso estándar). ACL que filtra basándose en la máscara y

dirección origen. Las listas de acceso estándares autorizan o deniegan todo el conjunto de protocolos
TCP/IP. Ver también ACL, ACL extendida.
A C L extendida (lista de control de acceso extendida). ACL que verifica las direcciones origen y

destino. Comparar con ACL estándar. Ver también ACL.
A ctualización del enrutam ienlo. Mensaje que se envía desde el router para indicar si la red es

accesible y la información de coste asociada. Normalmente, las actualizaciones del enrutamiento se
envían a intervalos regulares y después de que se produce un cambio en la topología de la red.
Comparar con actualización relámpago.
Actualización inversa. Función de 1GRP destinada a evitar grandes bucles de enrutamiento. Las

actualizaciones inversas indican explícitamente que una red o subred no se puede alcanzar, en lugar
de implicar que una red no se puede alcanzar al no incluirla en las actualizaciones.

4 28

R E D E S C IS C O : G U ÍA D E E S T U D IO P A R A L A C E R T IF IC A C IÓ N C C N A 6 4 0 -8 0 2

© R A -M A

relámpago. Proceso mediante el cual se envía una actualización antes de que
transcurra el intervalo de actualización periódica para notificar a otros routers acerca de un cambio en
la métrica.

A ctualización

Adaptador. Ver N IC .

Una de cinco categorías de administración de red (administración de
costos, de la configuración, de rendimiento y de seguridad) definidas por ISO para la administración
de redes OSI. La administración de errores intenta asegurar que los fallos de la red se detecten y
controlen.

Adm inistración de errores.

A dm inistración de red. Uso de sistemas o acciones para mantener, caracterizar o realizar el
diagnóstico de fallos de una red.
A d m inistrad o r de red. Persona a cargo de la operación, mantenimiento y administración de una red.
A D S L (Asymmetric D igital Subscriber Line). Línea Digital del Suscriptor Asimétrica. Una de las

cuatro tecnologías DSL. ADSL entrega mayor ancho de banda hacia abajo (desde la oficina central al
lugar del cliente) que hacia arriba (desde el lugar del cliente a la oficina central). Las tasas hacia abajo
oscilan entre 1.5 a 9 Mbps, mientras que el ancho de banda hacia arriba oscila entre 16 a 640 kbps.
Las transmisiones a través de ADSL funcionan a distancias de hasta 5.488 metros sobre un único par
de cobre trenzado. Vea también DSL, HDSL, SDSL y VDSL.
*

AFP (.Protocolo de archivo AppleTalk). Protocolo de capa de presentación que permite que los
usuarios compartan archivos de datos y programas de aplicación que residen en un servidor de
archivos. AFP reconoce archivos compartidos de AppleShare y Mac OS.
Alcance de cable. Intervalo de números de red válidos para su uso por parte de nodos en una red

extendida AppleTalk. El valor del alcance de cable puede ser un solo número de red o una secuencia
coiiíixua de varios números de red. Las direcciones de ios nodos se asignan con base en ei vaior de
alcance de cable.
Algoritm o de árbol de extensión. Algoritmo utilizado por el Protocolo de árbol de Extensión para

crear un árbol de extensión. A veces abreviado como STA.
Alm acenamiento en caché. Forma de réplica en la cual la información obtenida durante una
transacción anterior se utiliza para procesar transacciones posteriores.
Alm acenam iento y envío. Técnica de conmutación de paquetes en la que las tramas se procesan

completamente antes de enviarse al puerto apropiado. Este procesamiento incluye calcular el CRC y
verificar la dirección destino. Además, las tramas se deben almacenar temporalmente hasta que los
recursos de la red (como un enlace no utilizado) estén disponibles para enviar el mensaje.
A nalizador de protocolo. V e r analizador de red.
A nalizador de red. Dispositivo de hardware o software que le brinda diversas funciones de

diagnóstico de fallos de la red, incluyendo decodificadores de paquete específicos del protocolo,
pruebas de diagnóstico de fallas específicas preprogramadas, filtrado de paquetes y transmisión de
paquetes.
Ancho de banda. Diferencia entre las frecuencias más altas y más bajas disponibles para las señales

de red. Así mismo, la capacidad de rendimiento medida de un medio o protocolo de red determinado.

o R A -M A

A P É N D IC E C . G L O S A R IO

429

Anillo. Conexión de dos o más estaciones en una topología circular lógica. La información se pasa de
forma secuencial entre estaciones activas. Token Ring, FDDI y CDDI se basan en esta topología.
Anillos dobles contrarrotantes. T o p o lo g ía de ic d cu la qu e d o s ru ta s d e se ñ a le s, cu y a s d u c c c ío iie b

son opuestas, existen en una red de transmisión de tokens. FDDI y CDDI se basan en este concepto.
A N S I (Instituto Nacional Americano de Normalización). Organización voluntaria compuesta por

corporativas, organismos del gobierno y otros miembros que coordinan las actividades relacionadas
con estándares, aprueban los estándares nacionales de los EE.UU. y desarrollan posiciones en nombre
de los Estados Unidos ante organizaciones internacionales de estándares. ANSI ayuda a desarrollar
estándares de los EE.UU. e internacionales en relación con, entre otras cosas, comunicaciones y
networking. ANSI es miembro de la IEC (Comisión Electrotécnica Internacional) y la Organización
Internacional para la Normalización.
A plicación. Programa que ejecuta una función directamente para un usuario. Los clientes FTP y
Telnet son ejemplos de aplicaciones de red.
A plicación cliente/servidor. Aplicación que se almacena en una posición central en un servidor y a

la que tienen acceso las estaciones de trabajo, lo que hace que sean fáciles de mantener y proteger.
APPN (Internetwork avanzada de p a r a par). Mejoramiento de la arquitectura original SNA de IBM.
APPN maneja el establecimiento de una sesión entre nodos de iguales, cálculos de ruta transparentes
y dinámicos, y priorización del tráfico APPC.
A prendizaje de la dirección MAC. Servicio que caracteriza a un switch de aprendizaje en el que se

guarda la dirección MAC origen de cada paquete recibido, de modo que los paquetes que se envían en
el futuro a esa dirección se pueden enviar solamente a la interfaz de switch en la que está ubicada esa
dirección. Los paquetes cuyo destino son direcciones de broadeast o multicast no reconocidas se
envían desde cada interfaz de switch salvo la de origen. Este esquema ayuda a reducir el tráfico en las
LAN conectadas. El aprendizaje de las direcciones MAC se define en el estándar IEEE 80?. 1.
A R A (Acceso Remoto AppleTalk). Protocolo que brinda a los usuarios de Macintosh acceso directo a

la información y recursos de un sitio remoto AppleTalk.
A RP (Protocolo de Resolución de Direcciones). Protocolo de Internet que se utiliza para asignar una

dirección IP a una dirección MAC. Se define en RFC 826. Comparar con RARP.
ARP proxy (Protocolo pro xy de resolución de direcciones). Variación del protocolo ARP en el cual

un dispositivo intermedio (por ejemplo, un router) envía una respuesta ARP en nombre de un nodo
final al host solicitante. ARP proxy puede reducir el uso del ancho de banda en enlaces WAN de baja
velocidad.
ARPANET. Red de la Agencia de proyectos de Investigación Avanzada. Una red de conmutación de
paquetes de gran importancia establecida en 1969. ARPANET fue desarrollada durante los años 70
por BBN y financiada por ARPA (y luego DAR?A). Con el tiempo dio origen a Internet. El ténnino
ARPANET se declaró oficialmente en desuso en 1990.
AS (Sistema autónomo). Conjunto de redes bajo una administración común que comparte una
estrategia de enrutamiento en común. También denominado dominio de enrutamiento. La Agencia de
Asignación de Números Internet le asigna al AS un número de 16 bits.

430

R E D E S C ISC O : G U ÍA D E E S T U D IO PA R A L A C E R T IF IC A C IÓ N C C N A 640-802

© R A -M A

ASBR (Router límite de sistema autónomo). ABR ubicado entre un sistema autónomo OSPF y una
red no OSPF. Los ASBR ejecutan OSPF y otro protocolo de enrutamiento, como RIP. Los ASBR
deben residir en un área OSPF no sustitutiva.
ASCII ( Código americano normalizado para el intercambio de la información). Código de 8 bits (7

bits más paridad) para la representación de caracteres.
Asignación de direcciones. Técnica que permite que diferentes protocolos interoperen convirtiendo
direcciones de un formato a otro. Por ejemplo, al enrutar IP en X.25, las direcciones IP deben
asignarse a las direcciones X.25 para que la red X.25 pueda transmitir los paquetes IP.
Atenuación. Pérdida de energía de la señal de comunicación.

ATM (Modo de Transferencia Asincrono). Norma internacional para la retransmisión de celdas, en la
cual se transmiten múltiples tipos de servicio (como voz, vídeo o datos), en celdas de longitud fija (53
bytes). Las celdas de longitud fija permiten que el procesamiento de celdas tenga lugar en el
hardware, lo que reduce los retrasos en el tránsito. ATM está diseñado para aprovechar medios de
transmisión de alta velocidad como E3, SONET y T3.
ATP (Protocolo de Transacción AppleTalk). Protocolo a nivel de transporte que brinda un servicio de
transacción libre de pérdidas entre sockets. El servicio permite intercambios entre dos clientes de
sockets, donde uno de los clientes solicita al otro que realice una tarea en particular y que informe de
los resultados. ATP enlaza la solicitud y la respuesta juntas para asegurar un intercambio confiable de
pares de solicitud/respuesta.
AUI (Interfaz de unidad de conexión). Interfaz IEEE 802.3 entre una MAU y una tarjeta de interfaz

de red. El término AUI también puede hacer referencia al puerto del panel posterior al que se puede
conectar un cable AUI, como los que pueden encontrarse en la tarjeta de acceso Ethernet del
LightStream de Cisco. También denominado cable transceptor.
AURP (Protocolo de enrutamiento AppleTalk basado en actualización). Método para encapsular

tráfico AppleTalk en el encabezado de un protocolo ajeno, permitiendo la conexión de dos o más
intemetworks de redes AppleTalk no contiguas a través de una red ajena (como TCP/IP) para formar
una WAN AppleTalk. Esta conexión se denomina túnel AURP. Además de su función de
encapsulamiento, AURP mantiene tablas de enrutamiento para toda la WAN AppleTalk
intercambiando información de enrutamiento entre routers exteriores.
Autenticación. Con respecto a la seguridad, la verificación de la identidad de una persona o proceso.

Backibone. Núcleo estructural de la red, que conecta todos los componentes de la red de manera que
se pueda producir la comunicación.
Balanceo de la carga. En el enrutamiento, la capacidad de un router para distribuir el tráfico a lo
largo de todos sus puertos de red que están a la misma distancia desde la dirección destino. Los
buenos algoritmos de balanceo de carga usan velocidad de línea e información de confiabilidad. El
balanceo de carga aumenta el uso de segmentos de red, aumentando así el ancho de banda efectivo de
la red.

© R A -M A

A P É N D IC E C. G L O S A R IO

431

Banda ancha. Técnica de transmisión de alta velocidad y alta capacidad que permite la transmisión
integrada y simultánea de diferentes tipos de señales (voz, datos, imágenes, etc.).
Base de inform ación de adm inistración. Ver MIB.

BECN (Notificación de la congestión retrospectiva). Bit colocado por una red Frame-Relay en las
tramas que viajan en sentido opuesto al de las tramas que encuentran una ruta congestionada. Los
dispositivos DTE que reciben tramas con el bit BECN pueden solicitar que los niveles de protocolos
más elevados tomen las medidas de control de flujo que consideren adecuadas. Ver también FECN.
BGP (Protocolo de gateway fronterizo). Protocolo de enrutamiento interdominios que reemplaza a
EGP. BGP intercambia información de accesibilidad con otros sistemas BGP y se define en RFC
1163.

B in a rio . Sistema numérico compuesto por unos y ceros (1 = encendido; 0 = apagado).

BIT. Dígito binario utilizado en el sistema numérico binario. Puede ser cero o uno. Ver también byte.
BOOTP (Protocolo Bootstrap). Protocolo usado por un nodo de red para determinar la dirección IP
de sus interfaces Ethernet para afectar al inicio de la red.
Bootstrap. Operación simple predeterminada para cargar instrucciones que a su vez hacen que se
carguen otras instrucciones en la memoria o que hacen entrar a otros modos de configuración.

BPDU ( Unidad de datos de protocolo de puente ). Paquete Helio del protocolo Spanning-Tree (árbol
de extensión) que se envía a intervalos configurables para intercambiar información entre los puentes
de la red.
B R I (Interfaz de Acceso Básico). Interfaz RDSI compuesta por dos canales B y un canal D para la
comunicación por uu encuito conmutado de voz, video y datos. Comparar con PRI.

Broadcast. Paquete de datos enviado a todos los nodos de una red. Los broadcasts se identifican por
una dirección broadcast. Comparar con multicast y unicast. Ver también dirección broadcast, dominio
de broadcast y tormenta de broadcast.
Bucle. Ruta donde los paquetes nunca alcanzan su destino, sino que pasan por ciclos repetidamente a
través de una serie constante de nodos de red.

Bucle local. Cableado (normalmente de cables de cobre) que se extiende desde la demarcación a la
oficina central del proveedor de la WAN.
B úfer de memoria. Área de la memoria donde el svvitch almacena los datos destino y de transmisión.

Buffer (aprox. colchón). Memoria intermedia que se utiliza corno memoria de datos temporal durante
una sesión de trabajo.
B ug (aprox. bicho, error). Error en el hardware o en el software que, si bien no impide la ejecución

de un programa, perjudica el rendimiento del mismo al no permitir la realización de determinadas
tareas o al complicar su normal funcionamiento. Esta palabra también se utiliza para referirse a un
intruso.
Búsqueda de direcciones de Internet. Ver ping.

432

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© RA-MA

B y te . S e rie de d íg ito s b in a rio s c o n s e c u tiv o s q u e o p e ra n c o m o u n a u n id a d ( p o r e je m p lo , un byte d e 8
b its). V er ta m b ié n bit.

C ab le coaxial. Cable que consta de un conductor cilindrico extemo hueco, que reviste a un conductor
con un solo cable interno. Actualmente se usan dos tipos de cable coaxial en las LAN: el cable de 50
ohmios, utilizado para la señalización digital, y el cable de 75 ohmios, utilizado para señales
analógicas y señalización digital de alta velocidad.
Cable de fibra óptica. Medio físico que puede conducir una transmisión de luz modulada. En
comparación con otros medios de transmisión, el cablc de fibra óptica es más caro, pero por otra parte
no es susceptible a la interferencia electromagnética, y permite obtener velocidades de datos más
elevadas. A veces se denomina fibra óptica.
Cableado backbone. Cableado que brinda interconexiones entre los armarios de cableado, entre los

armarios de cableado y el POP, y entre edificios que forman parte de la misma LAN.
Cableado de categoría 1. Uno de los cinco grados del cableado UTP descrito en el estándar EIA/TIA
568B. E l cableado de Categoría 1 se utiliza para comunicaciones telefónicas y no es adecuado para la

transmisión de datos. Ver también UTP.
Cableado de categoría 2. Uno de los cinco grados del cableado UTP descrito en el estándar EIA/TIA
568B. El cableado de Categoría 2 puede transmitir datos a velocidades de hasta 4 Mbps. Ver también
UTP.
Cableado de categoría 3. Uno de los cinco grados del cableado UTP descrito en el estándar EIA/TIA

568B. El cableado de Categoría 3 se utiliza en redes lOBaseT y puede transmitir datos a velocidades
de hasta 10 Mbps. Ver también UTP.
Cableado de categoría 4. Uno de los cinco grados del cableado UTP descrito en el estándar EIA/TIA

568B. El cableado de Categoría 4 se utiliza en redes Token Ring y puede transmitir datos a
velocidades de hasta 16 Mbps. Ver también UTP.
Cableado de categoría 5. Uno de los cinco grados del cableado UTP descrito en el estándar EIA/TIA

568B. El cableado de Categoría 5 puede transmitir datos a velocidades de hasta 100 Mbps. Ver
también UTP.
Cableado vertical. Cableado del backbone.

Caching. La tecnología caching permite que las páginas web solicitadas con mayor frecuencia por los
usuarios puedan ser almacenadas en múltiples localizaciones geográficas. De esta manera, cuando un
cibemauta requiere una página determinada, ésta puede bajarse desde el servidor más cercano, en
lugar de hacerse desde una única computadora centralizada, localizada en algún lugar lejano del
mundo. Esta tecnología pennite mayores velocidades de navegación para el usuario final y ahorros en
tiempos y costos.
C A M (Memoria de contenido direccionable). Memoria que mantiene una base de datos precisa y

funcional.

© R A -M A

APÉN DICE C. GLOSARIO 4 33

C an al B (Canal principal). En RDSI, canal de dúplex completo de 64 kbps usado para enviar datos

del usuario. Ver también 2B+D, canal D, canal E y canal H.
Canal D (Canal de clalus). C a a a l RDSI, de 16
también canal B, canal D, canal E, y canal H.

kbps

(BRI)

o

64

kbps

(PR1),

d ú p le x c o m p le to . V e r

C an a l E (Canal de eco). Canal de control de conmutación de circuito RDSI de 64 kbps. El canal E se
definió en la especificación RDSI de la UIT-T de 1984, pero se abandonó en la especificación de
1988. Comparar con canal B, canal D y canal E.
C an a ! H (Canal de alta velocidad). Canal de velocidad primaria RDSI de dúplex completo que opera
a 384 kbps. Comparar con canal B, canal D y canal E.
C apa de acceso. Capa en la cual una LAN o grupo de LAN, normalmente Ethernet o Token Ring, le
ofrece a los usuarios acceso frontal a los servicios de la red.
Capa de aplicación. Capa 7 del modelo de referencia OSI. Esta capa brinda servicios de red para
aplicaciones del usuario. Por ejemplo, una aplicación de procesamiento de textos recibe servicios de
transferencia de archivos en esta capa. Ver también modelo de referencia OSI.
C ap a de control de enlace de datos. Capa 2 del modelo arquitectónico SNA. Es responsable de la
transmisión de datos a través de un enlace físico en particular. Corresponde aproximadamente a la
capa de enlace de datos del modelo de referencia OSI. Ver también capa de control de flujo de datos,
capa de control de ruta, cana de control físico, capa de servicios de presentación, capa de servicios de
transacción y capa de control de transmisión.
C ap a de control de flu jo de datos. Capa 5 del modelo arquitectónico SNA. Esta capa determina y
maneja las interacciones entre socios de sesión, especialmente el flujo de datos. Corresponde a la capa
de sesión del modelo de referencia OSI. Ver también capa de control de enlace de datos, capa de
control de ruta, capa de control físico, capa de servicios de presentación, capa de servicios de
transacción y capa de control de transmisión.
C ap a de control de ruta. Capa 3 del modelo arquitectónico SNA. Esta capa ejecuta servicios de

control secuencial relacionados con el reensamblaje adecuado de datos. La capa de control de ruta
también es responsable por el enrutamiento. Equivale aproximadamente a la capa de red del modelo
de referencia OSI. Ver también capa de control de flujo de datos, capa de control de enlace de datos,
capa de control físico, capa de servicios de presentación, capa de servicios de transacción y capa de
control de transmisión.
C ap a de control de transm isión. Capa 4 en el modelo arquitectural SNA. Esta capa tiene la
responsabilidad de establecer, mantener y finalizar las sesiones SNA, secuenciar mensajes de datos y
controlar el tlujo de nivel de sesión. Equivale a la capa de transporte del modelo de referencia OSI.
Ver también capa de control de tlujo de datos, capa de control de enlace de datos, capa de control de
ruta, capa de control físico, capa de servicios de presentación y capa de servicios de transacción.

Capa de control físico. Capa 1 del modelo arquitectónico SNA. Esta capa es responsable por las
especificaciones físicas de los enlaces físicos entre sistemas finales. Corresponde a la capa física del
modelo de referencia OSI. Ver también capa de control de flujo de datos, capa de control de enlace de
datos, capa de control de ruta, capa de servicios de presentación, capa de servicios de transacción y
capa de control de transmisión.

434

REDES CISCO: G U ÍA DE E ST U D IO PARA LA CERTIFICACIÓN CCNA 640-802

O RA-MA

C ap a de distribución. Capa en la que la distribución de los servicios de red se produce en m ú l t i p l e s

LAN en un entorno de WAN. Esta es la capa en la que se encuentra la red backbone de la WAN
normalmente basada en Fast Ethernet.
Capa de enlace. Ver capa de enlace de datos.
Capa de enlace de datos. Capa 2 del modelo de referencia. Esta capa proporciona un tránsito de
datos confiable a través de un enlace físico. La capa de enlace de datos se ocupa del direccionamiento
físico, topología de red, disciplina de línea, notificación de errores, entrega ordenada de las tramas y
control de flujo. IEEE dividió esta capa en dos subcapas: la subcapa MAC y la subcapa LLC. A veces
se denomina simplemente capa de enlace. Corresponde aproximadamente a la capa de control de
enlace de datos del modelo SNA. Ver también modelo de referencia OSI.
Capa de presentación. Capa 6 del modelo de referencia OSI. Esta capa suministra representación de
datos y formateo de códigos, junto con la negociación de la sintaxis de transferencia de datos.
Asegura que los datos que llegan de la red puedan ser utilizados por la aplicación y garantiza que la
información enviada por la aplicación pueda transmitirse a través de la red. Ver también modelo de
referencia OSI.
C ap a de red. Capa 3 del modelo de referencia OSI. Esta capa proporciona conectividad y selección
de rutas entre dos sistemas finales. La capa de red es la capa en la que se produce el enrutamiento.
Equivale aproximadamente a la capa de control de ruta del modelo SNA. Ver también modelo de
referencia OSI.
C ap a de servicios de presentación. Capa 6 del modelo arquitectónico SNA. Esta capa proporciona
administración de recursos de red, servicios de presentación de sesión y algo de administración de
aplicaciones. Equivale aproximadamente a la capa de presentación del modelo de referencia OSI.

Capa 7 en el modelo de arquitectura SNA. Representa las
funciones de aplicación del usuario, por ejemplo,-hojas de cálenla, procesamiento de texto o correo
electrónico, mediante los cuales los usuarios interactúan con la red. Equivale aproximadamente a la
capa de aplicación de! modelo de referencia OSI. Ver también capa de control de flujo de datos, capa
de control de enlace de datos, capa de control de ruta, capa de control físico, capa de servicios de
presentación y capa de control de transmisión.
C a p a d e serv icio s de tr a n s a c c ió n .

C a p a de sesión. Capa 5 del modelo de referencia OSI. Esta capa establece, mantiene y administra las

sesiones entre las aplicaciones. Ver también modelo de referencia OSI.
C ap a de transporte. Capa 4 del modelo de referencia OSI. Esta capa segmenta y reensambla los
datos dentro de una corriente de datos. La capa de transporte tiene el potencial de garantizar una
conexión y ofrecer transporte confiable. Ver también modelo de referencia OST.

Capa física. Capa 1 del modelo de referencia OSI. La capa fisica define las especificaciones
eléctricas, mecánicas, de procedimiento y funcionales para activar, mantener y desactivar el enlace
físico entre sistemas finales. Corresponde a la capa de control físico del modelo SNA. Ver también
modelo de referencia OSI.
C ap a núcleo. Capa que suministra conexiones rápidas de área amplia entre sitios geográficamente
remotos, uniendo una serie de redes de campus en una WAN de empresa o corporativa.
C arga. Parte de una celda, trama o paquete que contiene información de capa superior (datos).

© RA-MA

A PÉN D IC E C. GLOSARIO

435

Carga. Cantidad de actividad de un recurso de la red, como por ejemplo un router o un enlace.
C a r r ie r común. Compañía de servicios privada, que opera bajo licencia, a cargo del suministro de
servicios de comunicación al público, con tarifas reguladas.

CCITT (Comité de Consultorio Internacional para Telefonía y Telegrafía)'. Organización
internacional responsable del desarrollo de estándares de comunicación. Actualmente ha pasado a
llamarse UIT-T.
C D D I {Interfaz de datos distribuidos p o r cobre). Implementación de protocolos FDDI en cableado

STP y UTP. CDDI transmite a distancias relativamente cortas (unos 100 metros), con velocidades de
datos de 100 Mbps mediante una arquitectura de doble anillo para brindar redundancia. Se basa en el
estándar dependiente del medio físico de par trenzado (TPPMD) de ANSI. Comparar con FDDI.
CDMA ( Code División Múltiple Access). Es un téixnino genérico que define una interfaz de aire
inalámbrica basada en la tecnología de espectro extendido (spread spectrum). Para telefonía celular,
CDMA es una técnica de acceso múltiple especificada por la TIA (Telecommunications Industry
Association) como IS-95.
C H A P (Protocolo de autenticación de intercambio de señales). Función de seguridad utilizada en

líneas que usan el encapsulamiento PPP para evitar el acceso no autorizado. CHAP no impide por sí
mismo el acceso no autorizado, pero sí identifica el extremo remoto; el router o servidor de acceso
determina entonces si se permite el acceso a ese usuario.
C ID R (Enrutamiento sin clase entre dominios). Técnica reconocida por BGP y basada en el agregado
de rutas. CIDR permite que los routers agrupen rutas para reducir la cantidad de información de
enrutamiento transportada por los routers principales. Con CIDR, un conjunto de redes IP aparece
ante las redes ajenas al grupo como una entidad única de mayor tamaño.
C ifrado , codificado {encrypliurí). Método para proteger los. datos-de un acceso no autorizado a los

mismos. Se utiliza normalmente en Internet para sustraer el correo electrónico.
C I R ( Velocidad de información suscrita). Velocidad en bits por segundo, a la que el switch FrameRelay acepta transferir datos.
C ircuito. Ruta de comunicaciones entre dos o más puntos.
C ircuito asincrono. Señal que se transmite sin sincronización precisa. Estas señales normalmente
tienen diferentes frecuencias y relaciones de fases. Las transmisiones asincronas habitualmente
encapsulan caracteres individuales en bits de control (denominados bits de inicio y detención) que
designan el principio y el fina! de cada carácter. Ver también circuito síncrono.

Circuito síncrono. Señal transmitida con sincronización precisa. Estas señales tienen la misma
frecuencia, y los caracteres individuales están encapsulados en bits de control (denominados bits de
arranque y bits de parada) que designan el comienzo y el fin de cada carácter.
C ircu ito virtu al. Circuito creado para garantizar la comunicación confiable entre dos dispositivos de
red. Un circuito virtual se define por un par VPI/VCI y puede ser permanente (PVC) o conmutado
(SVC). Los circuitos virtuales se usan en Frame-Relay y X.25. En ATM, un circuito virtual se
denomina canal virtual. A veces se abrevia V C .

Circuito virtual permanente. Ver PVC.

436

REDES CISCO: G U ÍA D E E S T U D IO PA R A LA CERTIFICACIÓN CC N A 640-802

© R A -M A

Cliente. Nodo o programa de software (dispositivo front-end) que requiere servicios de un servidor

Ver también servidor.
C l i e n t e / s e r v i d o r . A rq u ite c tu ra d e la re la c ió n e n tre u n a e s ta c ió n de tr a b a jo y u n s e rv id o r en u n a red
C o m p a r a r c o n p a r a par.

C M I P (Protocolo de información de administración común). Protocolo de administración de red de

OSI, creado y estandarizado por ISO para el control de redes heterogéneas. Ver también CMIS.
CMIS (Servicios de información de administración común). Interfaz de servicio de administración de
red de OSI creada y estandarizada por ISO para el control de redes heterogéneas. Ver también CMIP.
C O ( Oficina central). Ot'icina local de la compañía telefónica en la cual todos los pares locales en un
área determinada se conectan y donde ocurre la conmutación de circuito de las líneas del subscriptor.
Codificación. Técnicas eléctricas utilizadas para transmitir señales binarias.
Codificación. Proceso a través del cual los bits son representados por voltajes.
C ola. 1. En general, una lista ordenada de elementos a la espera de ser procesados. 2. En
enrutamientos, una reserva de paquetes que esperan ser enviados por una interfaz de router.
C o la de prioridad. Función de enrutamiento en la cual se da prioridad a las tramas de una cola de
salida de interfaz basándose en diversas características, tales como el protocolo, el tamaño de paquete
y el tipo de interfaz.
Colisión. En Ethernet, el resultado de dos nodos que transmiten simultáneamente. Las tramas de cada
dispositivo impactan y se dañan cuando se encuentran en el medio físico.
Colocación en cola. Proceso e n v i que las-ACL p u e d e n designar ciertos paquetes para que los procese
un router antes que cualquier otro tráfico, con base en el protocolo.
C o m p a rtir la carga. Uso de dos o más rutas para enrutar paquetes al mismo destino de forma
igualitaria entre múltiples routers para equilibrar el trabajo y mejorar el desempeño de la red.
Concentrador. Ver hub.
Conexión a tierra de referencia de señal. Punto de referencia que usan los dispositivos informáticos

para medir y comparar las señales digitales entrantes.
Conexión doble. Topología de red en la que un dispositivo se encuentra conectado a la red a través

de dos puntos de acceso independientes (puntos de conexión). Un punto de acceso es la conexión
primaria, y el otro es una conexión de reserva que se activa en caso de fallo de la conexión primaria.
Conexión punto a multipunto. Uno de los dos tipos fundamentales de conexión. En ATM, una

conexión punto a multipunto es una conexión unidireccional en la cual un solo sistema final de origen
(denominado nodo raíz) se conecta a múltiples sistemas finales de destino (denominados hojas).
Comparar con conexión punto a punto.
Conexión punto a punto. Uno de dos tipos fundamentales de conexión. En ATM, una conexión
punto a punto puede ser una conexión unidireccional o bidireccional entre dos sistemas finales A TM .

Comparar con conexión punto a multipunto.

© RA -M A

APÉNDICE C. G L O S A R IO

437

Confiabilidad. Proporción entre los mensajes de actividad esperados y recibidos de un enlace. Si la
relación es alta, la línea es confiable. Utilizado como métrica de enrutamiento.
Congestión. Tráfico que supera la capacidad de la red.
Conm utación. Proceso de tomar una trama entrante de una interfaz y enviarla a través de otra

interfaz.
Conm utación asimétrica. Tipo de conmutación que brinda conexiones conmutadas entre puertos de

ancho de banda diferente, como una combinación de puertos de 10 Mbps y 100 Mbps.
Conm utación de circuito. Sistema de conmutación en el que un circuito físico dedicado debe existir

entre el emisor y el receptor durante la “llamada”. Se usa ampliamente en la red de la compañía
telefónica. La conmutación de circuito se puede comparar con la contención y la transmisión de
tokens como método de acceso de canal y con la conmutación de mensajes y la conmutación de
paquetes como técnica de conmutación.
Conm utación de paquetes. Método de networking en el cual los nodos comparten el ancho de banda

entre sí enviando paquetes.
rápida. Conmutación que ofrece el nivel más bajo de latencia, enviando
inmediatamente un paquete después de recibir la dirección destino.

Conm utación

Conm utación sin fragmentos. Técnica de conmutación que filtra, antes de que comience el envío,

los fragmentos de colisión que constituyen la mayoría de los paquetes de errores.
Consola. Equipo terminal de datos a través del cual se introducen los comandos en un host.

Canienciún. Método de acceso en el que los dispositivos de la red compiten para obtener permiso
para acceder a un medio físico.
Control de Acceso al Medio. Ver MAC.
Control de enlace de datos síncrono. Ver S D L C .
Control de enlace lógico. Ver LLC.

Control de íiujo. Técnica para garantizar que una entidad transmisora no supere la capacidad de
recepción de datos de una entidad receptora. Cuando los búferes del dispositivo receptor están llenos,
se envía un mensaje al dispositivo transmisor para que suspenda la transmisión hasta que se hayan
procesado los datos en los búferes. En las redes IBM, esta técnica se llama pacing.
Control del flujo de ventana deslizante. Método de control de flujo en el que un receptor le da a un
transmisor permiso para transmitir datos hasta que una ventana esté llena. Cuando la ventana está
llena, el emisor debe dejar de transmitir hasta que el receptor publique una ventana de mayor tamaño.
TCP, otros protocolos de transporte y varios otros protocolos de la capa de enlace de datos usan este
método de control de flujo.
Convergencia. Velocidad y capacidad de un grupo de dispositivos de intemetwork que ejecutan un
protocolo de enrutamiento específico para concordar sobre la topología de una intemetwork de redes
después de un cambio en esa topología.

438

REDES CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CC N A 640-802

Cookie (galleta). Pequeño archivo que se genera en el disco duro del usuario desde una página web
Un archivo de esta clase puede registrar las actividades del usuario en la página visitada. Su uso es
controvertido, puesto que implica un registro de datos en el PC del usuario.
Costo. Valor arbitrario, basado normalmente en el número de saltos, ancho de banda del medio u
otras medidas, que es asignado por un administrador de red y utilizado para comparar diversas rutas a
través de un entorno de intemetwork de redes. Los valores de coste utilizados por los protocolas de
enrutamiento determinan la ruta más favorable hacia un destino en particular: cuanto menor el coste
mejor es la ruta.
CPE (Equipo terminal del abonado). Equipo de terminación (por ejemplo: terminales, teléfonos y
módems) proporcionados por la compañía telefónica, instalados en el sitio del cliente y co n ectad o s a
la red de la compañía telefónica.
CSMA/CB (Acceso múltiple con detección de portadora y detección de colisiones). Mecanismo de
acceso a medios dentro del cual los dispositivos que están listos para transmitir datos primero
verifican el canal en busca de una portadora. El dispositivo puede transmitir si no se detecta ninguna
portadora durante un período de tiempo determinado. Si dos dispositivos transmiten al mismo tiempo,
se produce una colisión que es detectada por todos los dispositivos que colisionan. Esta colisión
subsecuentemente demora las retransmisiones desde esos dispositivos durante un período de tiempo
de duración aleatoria. El acceso CSMA/CD es utilizado por Ethernet e IEEE 802.3.
CSU/DSU ( Unidad de servicio de canal/unidad de servicio de datos). Dispositivo de interfaz digital
que conecta el equipamiento de! usuario final al par telefónico digital local.
Cuenta al infinito. Problema que puede ocurrir al enrutar algoritmos que son lentos para converger,
en los cuales los routers incrementan continuamente el número de saltos a redes particulares.
Normalmente se impone algún número arbitrario de saltos para evitar este problema.

DARPA (Agencia de Proyectos de Investigación Avanzada para la Defensa). Agencia gubernamental
de los EE.UU. que financió la investigación y la experimentación con Internet. Antiguamente
denominada ARPA, volvió a utilizar ese nombre a partir de 1994. Ver también ARPA.
DAS (Estación de doble conexión). Dispositivo conectado a los anillos FDDI primario y secundario.
La doble conexión brinda redundancia para el anillo FDDI: si falla el anillo primario, la estación
puede reiniciar el anillo primario al anillo secundario, aislando el fallo y recuperando la integridad del
anillo. También denominada estación Clase A. Comparar con SAS.
Datagrama. Agrupamiento lógico de información enviada como unidad de capa de red a través de un
medio de transmisión sin establecer previamente un circuito virtual. Los datagramas IP son las
unidades de información primaria de Internet. Los términos celda, trama, mensaje, paquete y
segmentó también se usan para describir agrupamientos de información lógica en las diversas capas
del modelo de referencia OSI y en varios círculos tecnológicos.
Datagrama IP. Unidad fundamental de información transmitida a través de Internet. Contiene
direcciones origen y destino junto con datos y una serie de campos que definen cosas tales como la
longitud del datagrama, la suma de verificación del encabezado y señaladores para indicar si el
datagrama se puede fragmentar o ha sido fragmentado.

© R A -M A

A PÉN D IC EC . GLOSARIO

439

Datos. Datos de protocolo de capa superior.
DCE (Equipo de transmisión de datos). Dispositivo usado para convertir los datos del usuario del
DTE en una forma aceptable para la instalación de servicios de WAN. Comparar con DTE.
DDN (R ed de Defensa de los D atos). Red militar de los EE.UU. compuesta por una red no clasificada
(MILNET) y varias redes secretas y de secreto máximo. DDN es operada y mantenida por D1SA.
DDP (Protocolo de entrega de datagramas). Protocolo de capa de red AppleTalk responsable de la
entrega socket-a-socket de datagramas en una intemetwork AppleTalk.
DDR (Enrutamiento po r llamada telefónica bajo demanda). Técnica utilizada para que un router
inicie y cierre dinámicamente sesiones conmutadas por circuito a medida que las estaciones
transmisoras finales las necesiten.
DECnet Grupo de productos de comunicaciones (incluyendo un conjunto de protocolos)
desarrollado y soportado por Digital Equipment Corporation. DECnet/ OS! (también denominado
DECnet Fase V) es la iteración más reciente y es compatible con los protocolos OSI y protocolos
Digital propietarios. Fase IV Prime brinda soporte para direcciones inherentes MAC que permiten que
los nodos DECnet coexistan con sistemas que ejecutan otros protocolos que tengan restricciones de
dirección MAC.
Demarcación. Punto donde termina CPE y comienza la parte del bucle local del servicio. A menudo
se produce en el POP de un edificio.
Demuitiplexión. Separación en múltiples corrientes de entrada que han sido multiplexadas en una
señal física común en múltiples comentes de salida. Ver también multiplexión.

Determinación de ruta. Decisión de cuál es la ruta que debe recorrer el tráfico en la nube de red. La
determinación de rutase produce en la capa'de red del modelo-da-referencia OSI..DHCP. Protocolo de configuración dinámica del liost. Protocolo que proporciona un mecanismo para
asignar direcciones IP de forma dinámica, de modo que las direcciones se pueden reutilizar
automáticamente cuando los hosts ya no las necesitan.
Dial up {marcar). Establecer comunicación entre dos PC.
Dirección. Estructura de datos o convención lógica utilizada para identificar una entidad única, como
un proceso o dispositivo de red en particular.
Dirección broadeast. Dirección especial reservada para enviar un mensaje para todas las estaciones.
Por lo general, una dirección broadeast es una dirección destino MAC compuesta exclusivamente por
números uno. Comparar con dirección multicast y dirección unicast. Ver también broadeast.

Dirección de capa MAC. Ver dirección MAC.
Dirección de enlace de datos. Ver dirección MAC.
Dirección de hardw are. Ver dirección MAC.
D irección de host. Ver número de host.

440

R E D E S CISCO: GUÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© R A -M a

Dirección de presentación OSI. Dirección utilizada para ubicar una entidad de aplicación de OSI
Está compuesta por una dirección de red OSI y hasta tres selectores, uno para cada entidad de
transporte, sesión y presentación.
Dirección de protocolo. Ver dirección de red.
Dirección de punto decim al. Anotación común para direcciones ÍP con el formato a.b.c.d, donde

cada número representa, en decimales, 1 byte de la dirección IP de 4 bytes. También denominada
dirección de punto o anotación punteada en cuatro partes.
Dirección de red. Dirección de capa de red que se refiere a un dispositivo de red lógico, en lugar de
físico. También denominada dirección de protocolo.
Dirección de subred Parte de una dirección IP especificada como la subred por la máscara de

subred.
D irección de zona de m ulticast. Dirección multicast dependiente de enlace de datos en el que un
nodo recibe los broadcasts NBP dirigidos a esta zona.
D irección del salto siguient«. Dirección IP del siguiente router en una ruta hacia determinado

destino.
D irección destino. Dirección de un dispositivo de red que recibe datos. Ver también dirección origen.
D irección física. Ver dirección MAC.
D irección IP . Dirección de 32 bits asignada a los hosts mediante TCP/IP. Una dirección IP
corresponde a una de las cinco clases (A, B, C, D o E) y se escribe en forma de 4 octetos separados
por puntos (formato decimal con punto). Cada dirección consta de un número de red, un número
opcional de suorsa y un númeTO de liúsí. Los uumeios ele red y de subred se utilizan conjuntamente
para el enrutamiento, mientras que el número de host se utiliza para el direccionamiento a un host
individual dentro de la red o de la subred. Se utiliza una máscara de subred para extraer la
información de la red y de la subred de la dirección IP. También denominada dirección de Internet
(dirección IP).

Dirección MAC {Control de Acceso al Medio). Dirección de capa de enlace de datos estandarizada
que se necesita para cada puerto o dispositivo que se conecta a una LAN. Otros dispositivos de la red
usan estas direcciones para ubicar dispositivos específicos en la red y para crear y actualizar las tablas
de enrutamiento y las estructuras de los datos. Las direcciones MAC tienen 6 bytes de largo y son
controladas por el IEEE. También se denominan direcciones de hardware, dirección de capa MAC o
dirección física. Comparar con dirección de red.
Dirección multicast. Dirección única que se refiere a múltiples dispositivos de red. Sinónimo de
dirección de grupo. Comparar con dirección broadeast y dirección unicast. Ver también multicast.
Dirección origen. Dirección de un dispositivo de red que envía datos.
Dirección unicast. Dirección que especifica un solo dispositivo de red. Comparar con dirección
broadeast y dirección multicast.
Direccionam iento plano. Esquema de direccionamiento que no utiliza una jerarquía lógica para

determinar una ubicación.

© R A -M A

A P É N D IC E C. G L O S A R .IO

441

División en capas. Separación de funciones de networking utilizadas por el m odelo de referencia
OSI, que sim plifica las tareas requeridas para que dos PC se comuniquen entre sí.
D l . C Í (idenilflcador de conexión de enluce de datos). V a lo r que e s p e c ific a un P V C o un S V C e n u n a
red Frame-Relay. En la especificación Frame Reky básica, los DLCI son significativos localm ente
(es decir, dispositivos conectados que usan diferentes valores para especificar la misma conexión). En
la especificación extendida LMI, los DLCI son significativos globalmente (es decir, los DLC I
especifican dispositivos de extrem os individuales).

D N S (Sistema de denominación de dominio). Sistema utilizado en Internet para convertir los nom b res
de los nodos de red en direcciones.
D oD (Departamento de Defensa). Organización gubernamental de los EE.UU. responsable de la
defensa nacional. El Departamento de Defensa ha financiado con frecuencia el desarrollo de
protocolos de comunicación.
Dom inio ( domain ). Nombre em pleado para referirse a una máquina o a un servidor determinado en
Internet. El nombre de dom inio comprende varias partes; la última parte, o sufijo, designa el n iv el de
estructura superior.
Ejem plos de dominios:
.com (organizaciones com erciales)
.edu (organizaciones educativas)

.gov (organizaciones gubernamentales)
Dom inio de broadeast. Conjunto de todos los dispositivos que reciben tramas de broadeast que se

originan en cualquier dispositivo dentro de ese conjunto. Los dominios de broadeast normalmente se
encuentran limitados por routers porque los rouiers no envían tramas de broadeast. Ver también
broadeast.
D om in io de colisión. En F them et, el área de la red en la que las tramas que colisionan se propagan.
Los repetidores y ios huos propagan ¡as colisiones, mientras que los sw itches de LAN, pu en tes y
routers no lo hacen.
DR P (Protocolo de Enrutamiento DECnet). Esquema de enrutamiento propietario introducido por
D igital Equipment Corporation en DECnet Fase III. En DECnet Fase V, DECnet com pletó su
transición a los protocolos d e enrutamiento OSI (ES-IS e IS-IS).
D S A P (Punto de acceso al servicio destino). SAP del nodo de red designado en el campo destino de
un paquete. Comparar con S S A P . Ver también SAP (punto de acceso al servicio).

D SL (Digital Subscriber L ine, Línea Digital del Suscriptor). Tecnología de red que permite
conexiones de banda ancha sobre el cable de cobre a distancias limitadas. Hay cuatro tipos d e DSL:
A D SL , HDSL, SDSL y V D SL . Todas estas tecnologías funcionan a través de pares de m ódem s, con
un módem localizado en la oficina central y el otro en el lugar del cliente. Debido a que la m ayoría de
tecnologías DSL no utilizan todo el ancho de banda del par trenzado, queda espacio disponible para
un canal de voz.
D T E (Equipo terminal de datos). D ispositivo en si extrem o del usuario de una interfaz usuario a red
que sirve com o origen de datos, destino o ambos DTE se conecta a una red de datos a través de un
dispositivo DCE (por ejem plo, un m ódem ) y utiliza normalmente señales de sincronización generadas
por el DCE. DTE incluye dispositivos tales como PC, traductores de protocolo y multiplexores.
Comparar con DCE.

442

R E D E S C ISC O : G U ÍA DE E S T U D IO PA R A LA C E R T IF IC A C IÓ N C C N A 6 4 0 -8 0 2

© RA-M a

DWMD ( Dense Wavelength D ivisión Multiplexing). DW DM es una tecnología que emplea múltiples
ondas para transmitir señales sobre una sola fibra óptica. Actualm ente, D W D M es un componente
crucial de las redes ópticas porque m axim iza el uso de cables de fibra instalados y permite la entre°a
de servicios rápida y fácilmente sobre una infraestructura existente.

E l . Esquem a de transmisión digital de área amplia utilizado especialm ente en Europa, que lleva datos
a una velocidad de 2,048 Mbps. Las líneas El pueden ser dedicadas para el uso privado de carriers
com unes. Comparar con TI.
E3. Esquema de transmisión digital de área amplia utilizado especialm ente en Europa, que lleva datos
a una velocidad de 34,368 Mbps. Las líneas E3 pueden ser dedicadas para el uso privado de carriers
com unes. Comparar con T3.
E E P R G M ( Memoria prograinable de solo lectura borrable eléctricamente). EPROM que se puede
borrar utilizando señales eléctricas aplicadas a contactos (pins) específicos.
E IA (Asociación de Industrias Electrónicas). Grupo que especifica los estándares de transmisiones
eléctricas. EIA y TÍA han desarrollado en conjunto numerosos estándares de com unicación de amplia
difusión, com o EIA/TIA-232 y EIA /TIA-449.

EIA/TÍA568 E stándar que describe las características y aplicaciones p ara diversos grados de
cableado UTP.
E n cab ezad o. Información de control colocada antes de los datos al encapsularios para la transmisión
en red.
E n cap su lam icn ts.'C olocación en les datos de un encabezado de protocolo en particular. Por ejemplo,
a los datos de capa superior se les coloca un encabezado esp ecífico de Ethernet antes de iniciar el
tránsito de red. Además, al puentear redes que no son similares, toda la trama de una red se puede
ubicar sim plemente en el encabezado usado por el protocolo de capa de enlace de datos de la otra red.
E n cap su lar. Ver encapsulamiento.
E n lace. Canal de com unicaciones de red que se compone de un circuito o ruta de transmisión y todo
el equipo relacionado entre un em isor y un receptor. Se utiliza con mayor frecuencia para referirse a
una conexión de WAN. A veces se denomina línea o enlace de transmisión.
E n la ce dedicado. Enlace de com unicaciones que se reserva indefinidamente para transmisiones, en
lugar de conmutarse según lo requiera la transmisión. Ver también línea arrendada.
E n la ce p u nto a punto. Enlace que proporciona una sola ruta preestablecida de com unicaciones de
W A N desde las instalaciones del cliente a través de una red de carriel", com o, por ejemplo, la de una
com pañía telefónica, a una red remota. También denominado enlace dedicado o línea arrendada.
E n la ce W A N . Canal de com unicaciones de W AN que se com pone de un circuito o ruta de
transm isión y todo el equipo relacionado entre un em isory un receptor.

© R A -M A

A P É N D IC E C. G L O S A R IO 4 4 3

Enrutamiento. Proceso de descubrimiento de una ruta hacia el host destino. E! enrutamiento e s
sumamente com plejo en grandes redes debido a la gran cantidad de destinos intermedios potenciales
que debe atravesar un paquete antes de llegar al host destino.
Enrutam iento dei camino más corto. Enrutamiento que reduce al mínimo la distancia o costo de la
ruta a través de una aplicación de un algoritmo.
Enrutam iento dinámico. Enrutamiento que se ajusta automáticamente a la topología de la red oa los

cambios de tráfico. También denom inado enrutamiento adaptable. Comparar con enrutamiento

estático.
E n ru tam ien to estático. Ruta que se ha configurado e introducido explícitam ente en la tabla de
enrutamiento. Las rulas estáticas tienen prioridad sobre las rutas elegidas por los protocolos de
enrutamiento dinámico. Comparar con enrutamiento dinámico.
E n ru tam ien to m ultiproíocoto. Enrutamiento en el que un router entrega paquetes desde distintos
protocolos enrutados, como TCP/IP e IPX, en los mismos enlaces de datos.

Enrutamiento por ¡¡asnada telefónica bajo demanda Ver DDR.
Envío. Proceso para enviar una trama hacia su destino íinal mediante un dispositivo de intemetwork.
Envío de tram as. Mecanismo a través del cual el tráfico basado en tramas, com o HDLC y SDLC,
atraviesa una red ATM.

EPROM (Memoria programable de solo lectura borrable). Chips de memoria no volátil
programados después de su fabricación y que, de ser necesario, pueden ser borrados por ciertos
medios y reprogramados. Cumpaiai con EEPROM y PROM.
E S-IS (Sistem a Final a Sistema Intermedio). Protocolo OSI que define el m odo en que-los-sistem as.
finales (hosts) se anuncian a los sistem as intennedios (routers). Ver también IS-IS.
Escalabilidad. Capacidad de una red para aumentar de tamaño sin que sea necesario realizar cam bios

importantes en el diseño general.
E spera. Función de IGRP que rechaza nuevas rutas para el mismo destino durante un período
determinado d e tiempo.
Estación con doble conexión. Ver D A S.
Estación

local

doble.

D ispositivo

conectado

a múltiples concentradores FDD! para lograr

redundancia.
Estación secundaria. En protocolos síncronos de bit de la capa de enlace de datos (por ejem plo,

HDLC), una estación que responde a los com andos desde una estación primaria. A veces s e le
denomina sim plem ente secundaria.
E stándar. Conjunto de reglas o procedim ientos de uso generalizado o de carácter oficial.
Ethernet. El método de conexión más com ún en las redes de área local, LAN. En el caso de Ethernet,

todas las estaciones del segm ento comparten el ancho de banda total, que es 10 megabits por segundo
(Mbps), 100 M bps para Fast Ethernet o 1000 M bps para Gigabit Ethernet.

444

REDES CISCO: GUÍA D E ESTUDIO PA RA LA CERTIFICACIÓN CC N A 640-802

© R A -M A

E thernet de dúplex completo. Capacidad de transmisión sim ultánea de datos entre una estación
em isora y una estación receptora. Comparar con Ethernet sem idúplex.

E thernet semidúplex. Capacidad de transmisión de datos en una sola dirección a la vez entre una
estación transmisora y otra receptora. Comparar con Ethernet de dúplex completo.

Evaluación loopback. Prueba en la que se envían las señales y luego se dirigen de vuelta hacia su
origen desde un punto a lo largo de la ruta de com unicaciones. La evaluación loopback a menudo se
usa para probar la capacidad de uso de la interfaz de la red.

F:
Fast Ethernet. Cualquiera de varias especificaciones de Ethernet de 100-Mbps. Fast Ethernet ofrece
un incremento de velocidad diez veces mayor que el de la especificación de Ethernet lOBaseT,
aunque preserva características tales com o formato de trama, m ecanism os M AC y M TU. Estas
sim ilitudes permiten el uso de herramientas de administración de red y aplicaciones lOBaseT
existentes en redes Fast Ethernet. Se basa en una extensión de la especificación IEEE 802.3. Ver
tam bién Ethernet.

FDDI (Interfaz de datos distribuida por fibra). Estándar de LA N , definido por A N SI X 3T 9.5, que
e sp ecifica una red de transmisión de tokens de 100 M bps que utiliza cable de fibra óptica, con
distancias de transmisión de hasta 2 km. FDDI usa una arquitectura de anillo doble para brindar
redundancia. Comparar con CDDI y FDDI II.
F B D I II. Estándar ANSI que mejora FDDI. FDDI II brinda transmisión isócrona para circuitos de
datos no orientado a conexión y circuitos de voz y vídeo orientados a conexión. Comparar con FDDI.
FF.C N (Notificación explícita de la congestión). Bitonlncarlo.nnr una red Frame-Relay para informar
a los dispositivos DTE que reciben las tramas que se produjo congestión en la ruta del origen hacia el
destino. Los dispositivos DTE que reciben las tramas con el bit FECN pueden solicitar que los
protocolos de más alto nivel tom en las medidas de control de flujo correspondientes. V er también
BECN.

Fibra local 4B/5B. Fibra local de 4 bytes/5 bytes. M edio físico de canal de fibra utilizado para FDDI
y ATM . Admite velocidades de hasta 100 Mbps en fibra m ultim odo.

Fibra local 8B/10B. Fibra local de 8 bytes/10 bytes. M edio físico de canal de fibra que admite
velocidades de hasta 149,76 M bps en fibra multimodo.

Fibra local de 4 bytes/5 bytes. V er fibra local 4B /5B .
F ib ra m ultim odo. Fibra óptica que soporta la propagación de múltiples frecuencias de luz.

Fibra óptica. Fibra basada en el vidrio, que sustituye a los clásicos cables de cobre y permite
transmitir un gran volum en de inform ación a alta velocidad y a gran distancia. La información no se
transmite mediante im pulsos eléctricos, sino que se modula en una onda de luz generada por un láser.
Filtrado de tráfico local. Proceso por el cual un puente filtra (descarta) tramas cuyas direcciones
M AC origen y destino se ubican en la mism a interfaz en el puente, lo que evita que se envíe tráfico
innecesario a través del puente. D efinido en el estándar IEEE 802.1.

© RA-M A

APÉN DICF. C. GLOSARIO 445

Filtro. En general, se refiere a un proceso o dispositivo que rastrea e l tráfico de red en busca de
determinadas características, por ejemplo, una dirección origen, dirección destino o protocolo y
determina si debe enviar o descartar ese tráfico basándose en los criterios establecidos.

Firewall. Router o servidor de acceso, o varios routers o servidores de acceso, designados para
funcionar com o búfer entre redes de conexión pública y una red privada. U n router de firewall utiliza
listas de acceso y otros métodos para garantizar la seguridad de la red privada.
Firmware. Instrucciones de software establecidas de forma permanente o sem ipermanente en la
ROM.

Flooding. Técnica de transmisión de tráfico utilizada por sw itches y puentes, en la cual el tráfico
recibido por una interfaz se envía a todas las interfaces de ese dispositivo, salvo a la interfaz desde la
cual se recibió originalmente la información.

Flujo. Corriente de datos que viajan de un punto a otro a través de una red (por ejemplo, desde una
estación de la LA N a otra). Se pueden transmitir varios flujos en un so lo circuito.

Foro ATM. Organización internacional fondada en 1991 de forma conjunta por Cisco Systems,
NET/A D A PTIV E, Northern T elecom y Sprint, con el fin de desarrollar y promover acuerdos de
im plem entación basados en estándares para tecnología de ATM. El Foro A TM expande los estándares
oficiales desarrollados por A N SI y UIT-T, y desarrolla acuerdos de im plem entación antes de los
estándares oficiales.

Fragm entación. Proceso de dividir un paquete en unidades más pequeñas al transmitir a través de un
m edio de red que no puede acomodar el tamaño original del paquete.
Fragmento. Parte de un paquete mayor que se ha dividido en unidades m ás pequeñas. En las redes

Ethernet, también se hace referencia a esto com o una trama con un lím ite inferior al límite permitido
de 64 bytes.
...

Frame-Relay. Protocolo conm utado de la capa de enlace de datos, de norma industrial, que
administra varios circuitos virtuales utilizando un encapsulam iento HDLC entre dispositivos
conectados. Frame-Relay es más eficiente que X .25, el protocolo para el cual se considera por lo
general un reemplazo.

FTP (Protocolo de Transferencia de Archivos). Protocolo de aplicación, parte de la pila de protocolo
TCP/IP, utilizado para transferir archivos entre nodos de red. FTP se define en la RFC 959.
Full dúplex. Capacidad para la transmisión simultánea de datos entre la estación emisora y la
estación receptora. Comparar con sem idúplex y unidireccional.

G:
Gateway. En la comunidad IP, término antiguo que se refiere a un dispositivo de enrutamiento.
Actualm ente, el término router se utiliza para describir nodos que desem peñan esta función, y
gatew ay se refiere a un dispositivo especial que realiza conversión de capa de aplicación de la
inform ación de una pila de protocolo a otro. Comparar con router.
Gateway de último recurso. Router al cual se envían todos los paquetes no enrutables.

Gb (gigabit). Aproximadamente 1.000.000.000 de bits.

446

REDES CISCO: G U ÍA DE ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-MA

Gbps (gigabytes por segundo). M edida de velocidad de transferencia.
Gigabit. VerGb.
GNS (Obtener Servidor Más Cercano). Paquete de solicitud enviado por un cliente en una red IPX
para ubicar el servidor activo más cercano de un tipo en particular. Un cliente de red IPX emite una
solicitud GNS para pedir una respuesta directa de un servidor conectado o una respuesta de un router
que le indique en qué parte de la intemetwork de redes se puede ubicar el servicio. GNS es parte de
IPX SAP.

GPRS (Servicio general de paquetes por radio). General Package Radio Service. Servicio general de
paquetes por radio que perm ite manejar datos sobre redes celulares de una manera más eficiente.
Grupo de circuito. A grupación de líneas seriales asociadas que unen dos puentes. Si uno de los
enlaces seriales en un grupo d e circuito se encuentra en el árbol de extensión para una red, cualquiera
de los enlaces seriales en el grupo de circuito se puede usar para balanceo de carga. Esta estrategia de
balanceo de carga evita los problem as de ordenamiento de los datos, asignando cada dirección destino
a un enlace serial en particular.

GSM (Global System fo r Mobile Communications). Es un sistema global para las com unicaciones de
m óviles digitales celulares. El G SM usa TDM A de banda estrecha que permite 8 llamadas
simultáneas sobre la m ism a radiofrecuencia. El GSM se introdujo en 1991, y desde finales de 1997
este servicio estuvo disp onible en m ás de 100 países y se ha consolidado com o sistema estándar en
Europa y Asia.
GUI (Interfaz gráfica del usuario). Entorno del usuario que utiliza representaciones gráficas y
textuales de las aplicaciones de entrada y salida y de la estructura jerárquica (o de otro tipo) en la que
se almacena la inform ación. Las convenciones com o botones, iconos y ventanas son típicas, y varias
acciones se realizan m ediante un apuntador (como un ratón). M icrosoft W indow s y Apple Macintosh
son ejemplos importantes de plataform as que usan GUI.

H:
HCC (Interconexión horizontal). Armario de cableado donde el cableado horizontal se conecta a un
panel de conmutación conectad o mediante cableado backbone al M DF.

HDLC (Control de Enlace de Datos de Alto Nivel). Protocolo síncrono de la capa de enlace de datos,
orientado a bit, desarrollado por ISO. HDLC especifica un m étodo de encapsulamiento de datos en
enlaces síncronos seriales que utiliza caracteres de trama y sumas de comprobación.

HDSL (High-data-rate D igital Subscriber Line). Línea Digital del Suscriptor de alta velocidad. Una
de las cuatro tecnologías D S L . H D SL entrega 1.544 Mbps de ancho de banda hacia arriba (desde el
lugar del cliente a la oficin a central) y hacia abajo (desde la oficina central al lugar del cliente), sobre
dos pares de cobre trenzados. Debido a que HDSL ofrece velocidad TI, las com pañías telefónicas han
estado utilizando H DSL para entregar acceso local para servicios TI en la m edida de lo posible. El
funcionamiento de H D SL está lim itado a un rango de distancia de hasta 3658,5 metros. Se utilizan
repetidoras de señal para ampliar el servicio. HDSL requiere dos pares trenzados. Por esta razón es
utilizado principalmente para conexion es de red PBX, sistem as de circuito de carrier digitales, POP
de intercambio, servidores d e Internet y redes de datos privadas. Ver tam bién DSL, A D SL , SD SL y
VD SL.

O R A -M A

A PÉN D IC E C. GLOSARIO 447

Header {cabecera). Parte inicial de un paquete de datos a transmitir, que contiene la información

sobre los puntos de origen y de destino de un envió y sobre el control de errores. Esta expresión se
aplica con frecuencia, y de manera errónea, solo a envío de correo electrónico, por lo que recibe el
nombre de “mailheader”, pero normalmente cualquier paquete de datos que se transmite de PC a PC
contiene una “header”.
Herramienta de punción. Herramienta accionada por resorte que se usa para cortar y conectar cables
en un jack o en un panel de conmutación.
Hexadecimal {base 16). Representación numérica que usa los dígitos del 0 al 9, con su significado
habitual, y las letras de la A a la F, para representar dígitos hexadecimales con valores del 10 al 15. El
dígito ubicado más a la derecha cuenta por uno, el siguiente por múltiplos de 16, el siguiente por
16A2=256, etc.
Horizonte dividido. Técnica de enrutamiento en la cual se impide que la información acerca de los
routers salga de la interfaz del router a través de la cual se recibió la información. Las actualizaciones
del horizonte dividido son útiles para evitar los bucles de enrutamiento.
Host. PC en una red. Similar a nodo, salvo que el host normalmente implica un PC, mientras que
nodo generalmente se aplica a cualquier sistema de red, incluyendo servidores y routers. Ver también
nodo.
HTML {Lenguaje de Etiquetas por Hipertexto). Formato simple de documentos en hipertexto que usa
etiquetas para indicar cómo una aplicación de visualización, como por ejemplo un navegador de la
Web, debe interpretar una parte determinada de un documento.
HTTP {Protocolo de Transferencia de Hipertexto). Protocolo utilizado por los navegadores y
servidores de la Web para transferir archivos, como archivos de texto y de gráficos.
- H»b. -1. En general, .dispositivo que sirve como centro de una topología en estrella. También
denominado repetidor multipueito. 2. Dispositivo de hardware o software que contiene múltiples---■
módulos de red y equipos de red independientes pero conectados. Los hubs pueden ser activos
(cuando repiten señales que se envían a través de ellos) o pasivos (cuando no repiten, sino que
simplemente dividen las señales enviadas a través de ellos).
I:
IAB {Comité de Arquitectura de Internet). Comité de investigadores de internetwork de redes que
discute temas relativos a la arquitectura de Internet. Responsables de designar una serie de grupos
relacionados con Internet, como IANA, IESG e IRSG. El IAB es nombrado por los síndicos de la
ISOC. Ver también IANA, IESG, IRSG e ISOC.
IANA {Agencia de Asignación de Números Internet). Organización que funciona bajo el auspicio de
la ISOC como parte del IAB. La IANA delega la autoridad de asignar espacios de direcciones IP y
nombres de dominio al InterNIC y otras organizaciones. La IANA mantiene también una base de
datos de identificadores de protocolo asignados que se utilizan en la pila TCP/IP, incluyendo los
números de sistemas autónomos.
ICMP {Protocolo de mensajes de control en Internet). Protocolo Internet de capa de red que informa
de errores y brinda información relativa al procesamiento de paquetes IP. Documentado en RFC 792.

448

REDES CISCO: GUÍA D E ESTUDIO PA RA LA CERTIFICA C IÓ N CCNA 640-802

© RA-M a

IDF (Servicio de distribución intermedia). Sala de comunicaciones secundaria para un edificio donde
funciona una topología de networlcing en estrella. El IDF depende del MDF.
IEC (Comisión Electrotécnica Internacional). Grupo industrial que escribe y distribuye estándares
para productos y componentes eléctricos.
IEEE (Instituto de Ingeniería Eléctrica y Electrónica). Organización profesional cuyas actividades
incluyen el desarrollo de estándares de comunicaciones y redes. Los estándares de LAN de IEEE son
los estándares de mayor importancia para las LAN de la actualidad.
IEEE 802.2. Protocolo de LAN de IEEE que especifica una implementación del la subcapa LLC de la
capa de enlace de datos. IEEE 802.2 maneja errores, entramados, control del flujo y la interfaz de
servicio de la capa de red (capa 3). Se utiliza en las LAN IEEE 802.3 e IEEE 802.5. Ver también
IEEE 802.3 e IEEE 802.5.
IEEE 802.3. Protocolo IEEE para LAN que especifica la implementación de la capa física y de la
subcapa MAC de la capa de enlace de datos. IEEE 802.3 utiliza el acceso CSMA/CD a varias
velocidades a través de diversos medios físicos. Las extensiones del estándar IEEE 802.3 especifican
implementaciones para Fast Ethernet. Las variaciones físicas de la especificación IEEE 802.3 original
incluyen 10Base2, 10Base5, lOBaseF, lOBaseT y 10Broad36. Las variaciones físicas para Fast
Ethernet incluyen lOOBaseTXy lOOBaseFX.
IEEE 802.5. Protocolo de LAN de IEEE que especifica la implementación de la capa física y la
subcapa MAC de la capa de enlace de datos. IEEE 802.5 usa acceso de transmisión de tokens a 4 o 16
Mbps en cableado STP o UTP y desde el punto de vista funcional y operacional es equivalente a
Token Ring de IBM. Ver también Token Ring.
IETF (Fuerza de Tareas de Ingeniería de Internet). Fuerza de tareas compuesta por más de 80 grupos
de trabajo responsables del desarrollo de estándares de Internet. IETF opera bajo el auspicio de ISOC.
IGRP (Protocolo de enrutamiento de gateway interior). Protocolo desarrollado por Cisco para tratar
los problemas asociados con el enrutamiento en redes heterogéneas de gran envergadura.
IGRP extendido (Protocolo de enrutamiento de gateway interior extendido). Versión avanzada de
IGRP desarrollada por Cisco. Ofrece propiedades de convergencia y eficacia operativa superiores, y
combina las ventajas de los protocolos del estado de enlace con las de los protocolos porvector
distancia. Comparar con IGRP. Ver también OSPF y RIP.
Información final. Información de control añadida a los datos cuando se encapsulan para una
transmisión de red. Comparar con encabezado.
Instituto de Ingenieros Eléctricos y Electrónicos. Ver IEEE.
Intercambio de paquetes de internetwork. Ver IPX.
Intercambio de Paquetes Secuenciado. Ver SPX.
Intercambio de señales. Secuencia de mensajes intercambiados entre dos o más dispositivos de red
para garantizar la sincronización de transmisión antes de enviar datos del usuario.
Interconexión horizontal. VerFICC.

© R A -M A
Interconexión vertical.

A PÉ N D IC E C. GLOSARIO 449

Ver VCC.

1. Conexión entre dos sistemas o dispositivos. 2. En terminología de enrutamiento, una
conexión de red. 3. En telefonía, un límite compartido definido por características de interconexión
física comunes, características de señal y significados de las señales intercambiadas. 4. Límite entre
capas adyacentes del modelo de referencia OSI.
Interfaz.

Interfaz de A cceso Básico. Ver BRI.
Interfaz de administración local.

Ver LMI.

Interfaz de datos distribuida por fibra. Ver FDÜI.
Interfaz de red. Límite entre una red de carrier y una instalación de propiedad privada.
Interfaz de Red a Usuario. Ver UNI.
Internet. La internetwork de redes más grande del mundo, que conecta decenas de miles de redes de
todo el mundo y con una cultura que se concentra en la investigación y estandarización basada en el
uso real. Internet evolucionó en parte de ARPANET. En un determinado momento se llamó Internet
DARPA, y no debe confundirse con el término general internet (minúsculas).
Internet. Abreviatura de internetwork de redes. No debe confimdirse con la Internet. Ver

internetwork de redes.
Internetwork. Industria dedicada a la conexión de redes entre sí. Este término se refiere a productos,

procedimientos y tecnologías.
Internetwork de redes. Agmpamiento de redes interconectadas por routers y otros dispositivos que

funciuiia (de modo general) como una sola red.

.

Internetwork de sistemas abiertos. Ver OSI.

InterNIC. Organización que brinda asistencia al usuario, documentación, capacitación, servicios de
registro para nombres de dominio de Internet, direcciones de red y otros servicios a la comunidad de
Internet. Antiguamente denominada NIC.
Interoperabilidad. Capacidad de los equipos de informática de diferentes fabricantes para

comunicarse entre sí en una red.
Interrupción. Mensaje que envía un agente SNMP al NMS, a una consola o a una terminal para
indicar que se ha producido un evento importante, por ejemplo, que se ha alcanzado una condición o
umbral definido específicamente.
Intervalo de mensajes de actividad. Período de tiempo transcurrido entre cada mensaje de actividad
enviado por un dispositivo de red.
IOS (Sistem a Operativo de Internetwork). Ver software Cisco IOS.
IP (Protocolo Internet). Protocolo de capa de red de la pila TCP/IP que ofrece un servicio de
internetwork de redes no orientado a conexión. El IP brinda funciones de direccionamiento,
especificación del tipo de servicio, fragmentación y reensamblaje, y seguridad. Se define en RFC 791.

450

RE D E S CISCO: G U ÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CC N A 640-802

IPv4 (Protocolo Internet versión 4) es un protocolo de conmutación no orientado a conexión de
máximo esfuerzo. Ver también IPv6.
IPSec (Protocolo de Internet Seguro). Es un conjunto de protocolos y algoritmos de seguridad
diseñados para la protección del tráfico de red para trabajar con IPv4 e IPv6 de modo transparente o
modo túnel que soporta una gran variedad de encriptaciones y autenticaciones.
IPv6 (IP versión 6). Reemplazo de la versión actual de IP (versión 4). IPv6 brinda soporte para
identificación de flujo en el encabezado del paquete, que se puede usar para identificar flujos.
Anteriormente denominado IPng (IP de próxima generación).
IPX (Intercambio de Paquetes de Internetwork). Protocolo de capa de red de NetWare utilizado para
transferir datos desde los servidores a las estaciones de trabajo. IPX es similar a IP y XNS.
IPX de Novell. Ver IPX.
IPXWAN (red de área amplia IPX). Protocolo que negocia opciones de extremo a extremo para
nuevos enlaces. Cuando aparece un enlace, los primeros paquetes IPX enviados son paquetes
IPXWAN que negocian las opciones para el enlace. Cuando las opciones IPXWAN se determinan
con éxito, comienza la transmisión IPX normal. Definido por RFC 1362.
IS-IS (Sistema Intermedio a Sistema Intermedio). Protocolo de enrutamiento jerárquico de estado de
enlace OSI basado en el enrutamiento DECnet Fase V, en el que los IS (routers) intercambian
información de enrutamiento con base en una métrica única para determinar la topología de la red.
Ver también ES-IS y OSPF.
ISO (Organización Internacional para la Normalización). Organización internacional que tiene a su
cargo una amplia gama de estándares, incluyendo aquellos referidos al nctworking. ISO desarrolló el
modelo de referencia OSI, un modelo popular de referencia de networking.
ISOC (Sociedad Internet). Organización internacional sin fines de lucro fundada en 1992, que
coordina la evolución y el uso de la Internet. Además la ISOC delega facultades a otros grupos
relacionados con la Internet, por ejemplo el IAB. La ISOC tiene su sede en Reston, Virginia, EE.UU.
Ver también IAB.

K:
kb (kilobit). Aproximadamente 1.000 bits.
kB (kilobyte). Aproximadamente 1.000 bytes.
kbps (kilobits por segundo). Medida de velocidad de transferencia.
kBps (kilobytes por segundo). Medida de velocidad de transferencia.
Kilobit. Ver kb.
Kilobits por segundo. Ver kbps.
Kilobyte. Ver kB.
Kilobytes por segundo. Ver kBps.

© R A -M A

APÉN DICE C. GLOSARIO

451

L:
LAN (Red de área local). Red de datos de alta velocidad y bajo nivel de errores que cubre un área
geográfica relativamente pequeña (hasta unos pocos miles de metros). Las LAN conectan estaciones
de trabajo, periféricos, terminales y otros dispositivos en un solo edificio u otra área geográficamente
limitada. Los estándares de LAN especifican el cableado y señalización en las capas físicas y de
enlace de datos del modelo OSI. Ethernet, FDDI y Token Ring son tecnologías LAN ampliamente
utilizadas. Comparar con MAN y WAN. Ver también VLAN.
LAPB (Procedimiento de Acceso a l Enlace Balanceado). Protocolo de capa de enlace de datos en la

pila de protocolo X.25. LAPB es un protocolo orientado a bit derivado de HDLC. Ver también HDLC
y X.25.
LAPD (Procedimiento de Acceso a l Enlace en el Canal D). Protocolo de capa de enlace de datos

RDSI para el canal D. LAPD deriva del protocolo LAPB y se diseñó primariamente para satisfacer
los requisitos de señalización del acceso básico de RDSI. Definido por las Recomendaciones de UITT Q.920 y Q.921.
LAT (Transporte de área Local). Protocolo de terminal virtual de red desarrollado por Digital

Equipment Corporation.
Latencia. Retardo entre el momento en que un dispositivo solicita acceso a una red y el momento en
que se le concede el permiso para transmitir. Intervalo de tiempo que toma el procesamiento de una
tarea.
LCP (Protocolo de Control de Enlace). Protocolo que proporciona un método para establecer,

configurar, mantener y terminar una conexión punto a punto.
Lenguaje de Etiquetas por Hipertexto Ver HTML.

Límite de tiempo. Evento que se produce cuando un dispositivo de red espera saber lo que sucede
con otro dispositivo de red dentro de un período de tiempo especificado, pero nada de esto sucede. El
agotamiento del límite de tiempo resultante generalmente hace que se deba volver a transmitir la
información o que se termine la sesión entre los dos dispositivos.
Línea arrendada. Línea de transmisión reservada para una portadora de comunicaciones para uso
privado de un cliente. Una línea arrendada es un tipo de línea dedicada. Ver también enlace dedicado.
Línea de acceso telefónico. Circuito de comunicaciones establecido por una conexión conmutada por
circuito que usa la red de la compañía telefónica.
LLC ( Control de enlace lógico). La más alta de las dos subeapas de enlace de datos definidas por el
IEEE. La subeapa LLC maneja el control de errores, control del flujo, entramado y direccionamiento
de subeapa MAC. El protocolo LLC más generalizado es IEEE 802.2, que incluye variantes no
orientadas a conexión y orientadas a conexión.
LMI (Interfaz de Adm inistración Local). Conjunto de mejoras a la especificación básica FrameRelay. LMI incluye soporte para un mecanismo de actividad, que verifica que los datos estén
fluyendo; un mecanismo de multicast, que le ofrece al servidor de red su DLCI local y DLCI de
multicast; direccionamiento global, que le ofrece a los DLCI significado global en lugar de local en

452

REDES CISCO: GUÍA D E ESTUDIO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-MA

las redes Frame-Relay; y un mecanismo de estado, que proporciona un informe de estado constante
sobre los DLCI que el switch conozca.
Localizador de recursos uniforme. Ver URL.
LSA (Publicación del estado de enlace). Paquete de broadcast utilizado por los protocolos del estado
de enlace que contiene información acerca de vecinos y costes de ruta. Los LSA son utilizados por los
routers receptores para mantener sus tablas de enrutamiento. A veces se denomina paquete de estado
de enlace (LSP).

M:
MAC (Control de Acceso al Medio). Parte de la capa de enlace de datos que incluye la dirección de 6
bytes (48 bits) del origen y del destino, y el método para obtener permiso para transmitir. Ver también
capa de enlace de datos y LLC.
Malla. Topología de red en la cual los dispositivos se organizan de manera administrable,
segmentada, con varias interconexiones, a menudo redundantes, colocadas de forma estratégica entre
los nodos de la red. Ver también malla completa y malla parcial.
Mapa de ruta. Método para controlar la redistribución de rutas entre dominios de enrutamiento.
Máscara. Ver máscara de dirección y máscara de subred.
Máscara de dirección. Combinación de bits utilizada para describir cuál es la porción de una
dirección que se refiere a la red o subred y cuál es la que se refiere al host. A veces se llama
simplemente máscara.
Máscara de subred. Máscara utilizada para extraer, información de red y subred de la dirección IP
Máscara wildcard Cantidad de 32 bits que se utiliza junto con una dirección IP para determinar qué
bits en una dirección IP deben ser ignorados cuando se compara dicha dirección con otra dirección IP.
Una máscara wildcard se especifica al configurar una ACL.
MAU (Unidad de conexión al medio). Dispositivo utilizado en redes Ethernet e IEEE 802.3 que
proporciona una interfaz entre el puerto AUI de una estación y el medio común de Ethernet. La
MAU, que puede ser incorporada a una estación, o puede ser un dispositivo separado, lleva a cabo
funciones de la capa física, incluyendo la conversión de datos digitales de la interfaz Ethernet, la
detección de colisiones y la inyección de bits en la red. Denominada a veces unidad de acceso al
medio, también abreviada como MAU, o transceptor.
Máximo esfuerzo de entrega. Entrega que se produce cuando un sistema de red no usa un sistema
sofisticado de acuse de recibo para garantizar la entrega confiable de la infonnación.
Mb (megabit). Aproximadamente 1.000.000 de bits.
Megabits por segundo. Ver Mbps,
Megabyte. Ver MB.
Memoria de acceso aleatorio. Ver RAM.

© R A -M A

A PÉN D IC E C. GLOSARIO

453

Memoria flash. Almacenamiento no volátil que se puede borrar eléctricamente y reprogramar, de
manera que las imágenes de software se pueden almacenar, iniciar y reescribir según sea necesario.
La memoria flash fue desarrollada por Intel y se otorga bajo licencia a otras empresas de
semiconductores.
Mensaje. Agrupación lógica de información de la capa de aplicación, a menudo compuesta por una
cantidad de agrupaciones lógicas de las capas inferiores, por ejemplo, paquetes. Los términos
datagrama, trama, paquete y segmento también se usan para describir agolpamientos de información
lógica en las diversas capas del modelo de referencia OSI y en varios círculos tecnológicos.
Mensaje de actividad. Mensaje enviado por un dispositivo de red para informar a otro dispositivo de
red que el circuito virtual entre ellos se mantiene activo.
Método de acceso. 1. En general, la manera en que los dispositivos de red acceden al medio de red. 2.
Software dentro de un procesador SNA que controla el flujo de información a través de una red.
Método de corte. Técnica de conmutación de paquetes que hace pasar los datos por un switch de
manera tal que la parte frontal de un paquete salga del switch en el puerto de salida antes de que el
paquete termine de entrar al puerto de entrada. Un dispositivo que usa conmutación de paquetes por
método de corte lee, procesa y envía los paquetes inmediatamente después de que se verifica la
dirección destino y se determina el puerto saliente. También denominado conmutación de paquete al
vuelo.
Métrica de enrutamiento. Método mediante el cual un protocolo de enrutamiento determina que una
mta es mejor que otra. Esta información se almacena en tablas de enrutamiento. Las métricas
incluyen ancho de banda, coste de la comunicación, retardo, número de saltos, carga, MTU, coste de
ruta y confiabilidad. A menudo denominada simplemente métrica.
MIB (Base de Información de Administración). Base de datos de información de administración de la
red utilizada y mantenida por un protocolo de administración de la red, por ejemplo SNMP. El valor
de un objeto MIB se puede modificar o recuperar mediante los comandos SNMP, generalmente a
través del sistema de administración de red GUI. Los objetos MIB se organizan en una estructura de
árbol que incluye las ramas públicas (estándar) y privada (propietaria).
Modelo cliente/servidor. Descripción común de los servicios de red y los procesos del usuario
modelos (programas) de estos servicios. Los ejemplos incluyen el paradigma servidor de
nombres/resolución de nombres del DNS y las relaciones entre servidor de archivos/archivo-cliente
como NFS y hosts sin disco.
Modelo de referencia de Internetwork de Sistemas Abiertos. Ver modelo de referencia OSI.
Modelo de referencia OSI (Modelo de referencia de internetwork de sistemas abiertos). Modelo de
arquitectura de red desarrollado por ISO e UIT-T. El modelo está compuesto por siete capas, cada una
de las cuales especifica funciones de red individuales, tales como el direccionamiento, el control de
flujo, el control de errores, el encapsulamiento y la transferencia confiable de mensajes. La capa
inferior (la capa física) es la más cercana a la tecnología de los medios. Las dos capas inferiores se
implementan en el hardware y en el software, y las cinco capas superiores se implementan solo en el
software. La capa superior (la capa de aplicación) es la más cercana al usuario. El modelo de
referencia OSI se usa a nivel mundial como método para la enseñanza y la comprensión de la
funcionalidad de la red. Similar en algunos aspectos a SNA. Ver capa de aplicación, capa de enlace de
datos, capa de red, capa física, capa de presentación, capa de sesión y capa de transporte.

454

REDES CISCO: GUÍA DE ESTUDIO PARA LA C E R TIFICA C IÓ N CCNA 640-802

© R A -M A

Módem. Contracción de modulador y demodulador. Puesto que el PC y la red telefónica tradicional
utilizan diferentes técnicas para la transmisión de datos (el PC utiliza la técnica digital, y la línea
telefónica tradicional emplea la analógica), entre arribos se debe conectar un módem, que convierte la
señal del PC en señal acústica, y que en el punto de destino la convierte de nuevo en señal digital.
Monitor activo. Dispositivo a cargo de las funciones de mantenimiento de una red Token Ring. Se
selecciona un nodo de red para ser el monitor activo si tiene la dirección MAC más alta del anillo. El
monitor activo se encarga de las tareas de mantenimiento de anillo; por ejemplo, garantiza que no se
pierdan los tokens y que las tramas no circulen indefinidamente.
MPLS (Multiprotocol Label Switching, Sw itching de etiquetas multiprotocoló). MPLS es un estándar
de la industria sobre el cual se basa la conmutación (switching) de etiquetas, las cuales identifican los
diferentes tipos de información sobre la red. La tecnología MPLS le permite a un proveedor de
servicio montar sobre su red servicios diferenciados a los cuales se tiene acceso a través del protocolo
IP. MPLS permite que los usuarios tengan acceso a la red y se “matriculen” a algunos servicios
específicos, sin que esto implique tener acceso a toda la red, es decir, que se garantiza la privacidad y
seguridad de la información mediante la creación de redes virtuales privadas, VPN. MPLS ofrece
tanto a los operadores como a los usuarios gran flexibilidad en la implementación de servicios
basados en IP así como también facilidad en la implementación de múltiples esquemas de acceso y
una alta disponibilidad.
MSAIJ ( U nidad de acceso de estación múltiple). Concentrador de cableado al que se conectan todas
las estaciones finales de una red Token Ring. La MSAU suministra una interfaz entre estos
dispositivos y la interfaz Token Ring de un router. A veces abreviada MAU.
MSO (M últiple Service Operador, Operador de servicios múltiples). Operador de Servicios de Cable
que también ofrece otros servicios, tales como datos y/o telefonía de voz.
MTU ( Unidad máxima de transmisión). Tamaño máximo de paquete, en bytes, que puede manejar
una interfaz en particular.

V'"
Multicast. Paquetes únicos copiados por una red y enviados a un conjunto de direcciones de red.
Estas direcciones están especificadas en el campo de dirección del destino. Comparar con broadeast y
unicast.
Multiplexión. Esquema que permite que varias señales lógicas se transmitan de forma simultánea a
través de un canal físico exclusivo. Comparar con demultiplexión.

N:
NAK (Acuse de recibo negativo). Respuesta que se envía desde un dispositivo receptor a un
dispositivo transmisor que indica que la información recibida contiene errores. Comparar con acuse
de recibo.
NAT ( Traducción de direcciones de red). Mecanismo que reduce la necesidad de tener direcciones IP
exclusivas globales. NAT permite que las organizaciones cuyas direcciones no son globalmente
exclusivas se conecten a la Internet transformando esas direcciones en espacio de direccionamiento
enrutable global. También denominado traductor de dirección de red.
NA UN (Vecino corriente arriba activo más cercano). En las redes Token Ring o IEEE 802.5, el
dispositivo de red corriente arriba más cercano a cualquier dispositivo que aún esté activo.

© R A -M A

A PÉN D IC E C. GLOSARIO 455

NCP (Program a d e control de red). Programa que enruta y controla el flujo de datos entre un
controlador de comunicaciones y otros recursos de red.
NetBEUI (Interfaz de Usuario N etBIO S Extendida). Versión mejorada del protocolo NetBIOS que
usan los sistemas operativos de red (por ejemplo: LAN Manager, LAN Server, Windows for
Workgroups y Windows NT). NetBEUI formaliza la trama de transporte y agrega funciones
adicionales. NetBEUI implementa el protocolo OSI LLC2.
NetBIOS (Sistem a Básico de Entrada/Salida de Red). Interfaz de programación de aplicación que
usan las aplicaciones de una LAN IBM para solicitar servicios a los procesos de red de nivel inferior.
Estos servicios incluyen establecimiento y finalización de sesión, así como transferencia de
información.

NetWare. Popular sistema operativo de red distribuido desarrollado por Novell. Proporciona acceso
remoto transparente a archivos y varios otros servicios de red distribuidos.
Networking. Interconexión de estaciones de trabajo, dispositivos periféricos (por ejemplo,
impresoras, unidades de disco duro, escáneres y CD-ROM) y otros dispositivos.
NFS (Sistem a de Archivos de Red). Se utiliza comúnmente para designar un conjunto de protocolos
de sistema de archivos distribuido, desarrollado por Sun Microsystems, que permite el acceso remoto
a archivos a través de una red. En realidad, NFS es simplemente un protocolo del conjunto. Los
protocolos NFS incluyen RPC y XDR. Estos protocolos son parte de una arquitectura mayor que Sun
denomina ONC.
NIC ( Centro de Información de Red). Organización cuyas funciones ha asumido InterNIC. Ver
InterNIC.
NIC ( Tarjeta de interfaz de red). Tarjeta que brinda capacidades de comunicación de red hacia y
desde un PC. También denominada adaptador.
~
—••
^
--— -• - •—
NLM (M àdido Cargable NetWare). Programa individual que se puede cargar en la memoria y que
funciona como parte del sistema operativo de red NetWare.
NLSP (Protocolo d e Servicios de Enlace de NetWare). Protocolo de enrutamiento de estado de enlace
basado en IS-IS. La implementación de Cisco de NLSP también incluye variables y herramientas
MIB para redistribuir el enrutamiento y la información SAP entre NLSP y otros protocolos de
enrutamiento IPX.
NMS (Sistem a de administración de red). Sistema que tiene la responsabilidad de administrar por lo
menos parte de una red. Por regla general, un NMS es un PC bastante potente y bien equipado, como,
por ejemplo, una estación de trabajo de ingeniería. Los NMS se comunican con los agentes para
ayudar a realizar un seguimiento de las estadísticas y los recursos de la red.
No orientado a conexión. Transferencia de datos sin un circuito virtual. Comparar con orientado a
conexión. Ver también circuito virtual.
Nodo. Punto final de la conexión de red o una unión que es común para dos o más líneas de una red.
Los nodos pueden ser procesadores, controladores o estaciones de trabajo. Los nodos, que varían en
cuanto al enrutamiento y a otras aptitudes funcionales, pueden estar interconectados mediante enlaces
y sirven como puntos de control en la red. La palabra nodo a veces se utiliza de forma genérica para

456

REDES C ISC O : G U ÍA DE ESTUDIO PARA LA C ERTIFICA C IÓ N C C N A 640-802

© RA-MA

hacer referencia a cualquier entidad que tenga acceso a una red y frecuentemente se utiliza de m odo
indistinto con la palabra dispositivo.
NOS (Sistema operativo de red). Sistema operativo utilizado para hacer funcionar una red, como, por
ejemplo, NetWare de Novell y Windows NT.
NT1 (Terminación de red de tipo 1). Dispositivo que conecta el cableado RDSI del suscriptor de
cuatro alambres a la instalación de bucle convencional local de dos alambres.
NT2 ( Terminación de re d de tipo 2). Dispositivo que dirige el tráfico hacia y desde distintos
dispositivos del suscriptor y el NT1. El NT2 es un dispositivo inteligente que realiza conmutación y
concentración.
NTP (Protocolo de Tiempo d e Red). Protocolo desarrollado sobre el TCP que garantiza la precisión
de la hora local, con referencia a los relojes de radio y atómicos ubicados en la Internet. Este
protocolo puede sincronizar los relojes distribuidos en milisegundos durante períodos de tiempo
prolongados.
Número de host. Parte de una dirección IP que designa a qué nodo de la subred se realiza el
direccionamiento. También denominada dirección de host.
Número de la red. Parte de una dirección IP que especifica la red a la que pertenece el host.
Número de saltos. Métrica de snrutamiento utilizada para medir la distancia entie uu origen y un
destino. RIP utiliza el número de saltos como su métrica exclusiva.
Número de socket. Número de 8 bits que identifica a un socket. Se pueden asignar como máximo
254 números de socket en un nodo ApplcTalk.
NVRAM (R A M n o volátil). Memoria RAM que conserva su contenido cuando se apaga una unidad.

O:
Obtener servidor más cercano. Ver GNS.
Octeto. 8 bits. En networking, el término octeto se utiliza a menudo (en lugar de byte) porque algunas
arquitecturas de máquina utilizan bytes que no son de 8 bits de largo.
ODI (Interfaz A bierta de E nlace de Datos). Especificación de Novell que suministra una interfaz
estandarizada para tarjetas de interfaz de red (NIC) que permite que múltiples protocolos usen una
sola NIC.
Oficina pequeña/oficina hogareña. Ver SOHO.
Orden de bytes de la red. Ordenamiento estándar de la Internet de los bytes correspondientes a
valores numéricos.
Organización internacional para la normalización. Ver ISO.
Orientado a conexión. Transferencia de datos que requiere que se establezca un circuito virtual. Ver
también no orientado a conexión y circuito virtual.

O R A -M A

A P É N D IC E C. GLO SA RIO 457

OSI (Internetwork de sistemas abiertos). Programa internacional de estandarización creado por ISO e
UIT-T para desarrollar estándares de networking de datos que faciliten la interoperabilidad de equipos
de varios fabricantes.
OSPF (Primero la ruta libre más corta). Protocolo de enrutamiento por estado de enlace jerárquico,
que se ha propuesto como sucesor de RIP en la comunidad de Internet. Entre las características de
OSPF se incluyen el enrutamiento de menor costo, el enrutamiento de múltiples rutas y el balanceo de
carga.
OUI (identijicador exclusivo de organización). Tres octetos asignados por el IEEE en un bloque de
direcciones de LAN de 48 bits.

P:
Pane! de conmutación. Conjunto de ubicaciones de pins y puertos que se pueden montar en un
bastidor o en una consola en el armario de cableado. Los paneles de conmutación actúan como
tableros de conmutación que conectan los cables de las estaciones de trabajo entre sí y con el exterior.
PAP (Protocolo de Autenticación de Contraseña). Protocolo de autenticación que permite que los
PPP iguales se autentiquen entre sí. El router remoto que intenta conectarse al router local debe enviar
una petición de autenticación A diferencia de CHAP, PAP pasa la contraseña y el nombre de host o
nombre de usuario sin cifrar. PAP no evita el acceso no autorizado, sino que identifica el extremo
remoto, el router o el servidor de acceso y determina si a ese usuario se le permite e! acceso. PAP es
compatible solo con las líneas PPP. Comparar con CHAP.
Papelera de bits. Destino de los bits descartados, según lo determine el router.
Paquete. Agrupación lógica de información que incluye un encabezado que contiene la información
de control y (generalmente) los datos del usuario. Los paquetes se usan a menudo para referirse a las
unidades de datos de capa de icd. Los términos datagrarna, trama, mensaje y segmento también se
usan para describir agrupamientos de información lógica en las diversas capas del modelo de
referencia OSI y en varios círculos tecnológicos.
Paquete de temporizador. Método utilizado para asegurarse de que un cliente todavía está conectado
a un servidor NetWare. Si el servidor no ha recibido un paquete de parte de un cliente durante un
período de tiempo determinado, envía a dicho cliente una serie de paquetes de temporizador. Si la
estación no envía ninguna respuesta a una cantidad predefinida de paquetes de temporizador, el
servidor deduce que la estación ya no está conectada y cierra la conexión para dicha estación.
Paquete helio. Paquete multicast utilizado por routers que utilizan ciertos protocolos de enrutamiento
para el descubrimiento y recuperación de vecinos. Los paquetes helio también indican que un cliente
se encuentra aún operando y que la red está lista.
Par a par. Describe la comunicación entre implementaciones de la misma capa del modelo de
referencia OSI en dos dispositivos de red distintos. Comparar con cliente/servidor.
PBX ( Central telefónica privada). Conmutador de un teléfono analógico o digital ubicado en las
instalaciones del suscriptor y que se usa para conectar redes telefónicas privadas y públicas.
PDN (Red de datos públicos). Red operada por el gobierno (como en el caso de Europa) o por
entidades privadas para suministrar comunicaciones computacionales al público, generalmente

458

REDES CISCO: G U ÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

© RA-M A

cobrando una tarifa. Las PDN permiten que las pequeñas organizaciones creen una WAN sin los
costos de equipamiento de los circuitos de larga distancia.
PDU (Unidad de datos de protocolo). Término OSI equivalente a paquete.
PHY. 1. Subcapa física. Una de las dos subcapas de la capa física de FDDI. 2. Capa física. En ATM
la capa física se encarga de la transmisión de celdas a través de un medio físico que conecta, dos
dispositivos ATM. La PHY está compuesta por dos subcapas: PMD y TC.
Pico de tensión. Cualquier aumento de voltaje por encima del 110% del voltaje normal transportado
por una línea de alimentación eléctrica.
Pila de protocolo. Conjunto de protocolos de comunicación relacionados entre sí que operan de
forma conjunta y, como grupo, dirigen la comunicación a alguna o a todas las siete capas del modelo
de referencia OSI. No todas las pilas de protocolo abarcan cada capa del modelo, y a menudo un solo
protocolo de la pila se refiere a varias capas a la vez. TCP/IP es una pila de protocolo típico.
Ping (Búsqueda de direcciones de Internet). Mensaje de eco ICMP y su respuesta. A menudo se usa
en redes IP para probar el alcance de un dispositivo de red.
Plan de distribución. Diagrama simple que indica la ubicación de los tendidos de cables y los
números de las habitaciones a los que se dirigen.
PLP (Protocolo-a nivel de paquete). Protocolo de capa de red en la pila de protocolo X.25. Algunas
veces denominado X.25 Nivel 3 y protocolo X.25. Ver también X.25.
POP (Punto de presencia). Punto de interconexión entre las instalaciones de comunicación
suministradas por la compañía telefónica y el servicio de distribución principal del edificio.
Portadora. O nda electromagnética ó corriente , altsSma dé- una" sola frecuencia, adecuada para
modulación por parte de otra señal portadora de datos.
POST (.Pruebas a l inicio). Conjunto de diagnósticos de hardware que se ejecutan en un dispositivo de
hardware cuando se enciende.
Postergación. Retardo en la retransmisión que se produce cuando tiene

lugar una colisión.

PPP (Protocolo Punto a Punto). Sucesor del SLIP, un protocolo que suministra conexiones router a
router y host a red a través de circuitos síncronos y asincronos.
PRI (Interfaz de Acceso Principal). Interfaz RDSI al acceso principal. El acceso principal consta de
un canal D único de 64 Kbps más 23 canales B (TI) o 30 canales B (El) para voz o datos. Comparar
con BRI.
Primero la ruta libre m ás corta. Ver OSPF.
P R O M (Memoria program able de solo lectura). ROM que puede programarse utilizando equipo

especial. Las PROM pueden ser programadas solamente una vez. Comparar con EPROM.
Protocolo. Descripción formal de un conjunto de normas y convenciones que establecen la forma en

que los dispositivos de una red intercambian información.

© R A -M A

A PÉN DICE C. GLOSARIO

459

Protocolo Bootstrap. Ver BOOTP.
Protocolo de árbol de expansión. Protocolo puente que utiliza el algoritmo de árbol de expansión, lo
que habilita un puente de aprendizaje para funcionar dinámicamente en tomo de bucles en una
topología de red creando un árbol de expansión. Los puentes intercambian mensajes BPDU con otros
puentes para detectar bucles y luego eliminarlos al desactivar las interfaces de puente seleccionadas.
Se refiere tanto al estándar IEEE 802.1 de Protocolo de árbol de expansión, como al Protocolo de
árbol de expansión más antiguo, de Digital Equipment Corporation, en el cual se basa. La versión de
IEEE admite dominios de puente y permite que el puente desarrolle una topología sin bucles a través
de una LAN.
Protocolo de enrutamiento. Protocolo que logra el enrutamiento mediante la implementación de un
protocolo de enrutamiento específico. Entre los ejemplos de protocolo de enrutamiento se incluyen
IGRP, OSPF y RIP. Comparar con protocolo enrutado.
Protocolo de enrutamiento DECnet. Ver DRP.
Protocolo de enrutamiento híbrido balanceado. Protocolo que combina aspectos de los protocolos
de estado de enlace y por vector distancia. Ver también protocolo de enrutamiento de estado de enlace
y protocolo de enrutamiento por vector distancia.
Protocolo de enrutamiento por estado de enlace. Protocolo de enrutamiento en el cual cada router
realiza un broadcast o multicast de información referente al coste de alcanzar cada uno de sus vecinos
a todos los nodos de la intemetwork de redes. Los protocolos de estado de enlace crean una vista
coherente de la red y por lo tanto no son propensos a bucles de enrutamiento, pero por otro lado para
lograr esto deben sufrir dificultades informáticas relativamente mayores y un tráfico más diseminado
(comparado con los protocolos de enrutamiento por vector distancia). Comparar con protocolo de
enrutamiento híbrido balanceado y protocolo de enrutamiento por vector de distancia.
Protocolo de enrutamiento por vector distancia. Protocolo que itera en el número de saltos en una
ruta para encontrar el árbol de extensión de ruta más corta. Los protocolos de enrutamiento por vector
distancia piden a cada router que envíe su tabla de enrutamiento completa en cada actualización, pero
solamente a sus vecinos. Los algoritmos de enrutamiento por vector distancia pueden ser propensos a
los bucles de enrutamiento, pero desde el punto de vista informático son más simples que los
algoritmos de enrutamiento de estado de enlace. También denominado algoritmo de enrutamiento
Bellman-Ford. Comparar con el protocolo de enrutamiento híbrido balanceado y el protocolo de
enrutamiento del estado de enlace.

Protocolo enrutado. Protocolo que puede ser enrutado por el router. Un router debe ser capaz de
interpretar la intemetwork de redes lógica según lo que especifique dicho protocolo enrutado.
AppleTalk, DECnet e IP son ejemplos de protocolos enrutados. Comparar con protocolo de
enrutamiento.
Protocolo exterior. Protocolo utilizado para intercambiar información de enmtamiento entre redes
que no comparten una administración común. Comparar con protocolo interior.
Protocolo interior. Protocolo utilizado para enrutar redes que se encuentran bajo una administración
de red común.
Protocolo Internet. Cualquier protocolo que forme parte de la pila de protocolo TCP/IP. Ver IP. Ver
también TCP/IP.

460

REDES CISCO: GUÍA DE E ST U D IO PA RA LA CERTIFICACIÓN CCNA 640-802

© R A -M A

Protocolo Internet. Ver IP.
Protocolo proxy de resolución de direcciones. Ver ARP proxy.
Protocolo punto a punto. Ver PPP.

Protocolo SPF (Primero la ruta m ás corta). Algoritmo de enrutamiento que itera sobre la longitud de
la ruta para determinar el árbol de extensión de la ruta más corta. Comúnmente empleado en los
algoritmos de enrutamiento de estado de enlace. A veces denominado algoritmo de Dijkstra.
Proveedor de acceso (A ccess provider). Cualquier organización comercial o privada que ofrece
acceso a Internet o a un servicio de esta red, por ejemplo, al correo electrónico (e-mail).
Proxy. Entidad que, para aumentar la eficiencia, esencialmente reemplaza a otra entidad.
PTT (Administración postal, de telégrafos y de teléfonos). Agencia gubernamental que brinda
servicios telefónicos. Las PTT existen en la mayoría de las áreas fuera de América del Norte y brinda
servicios telefónicos tanto locales como de larga distancia.
Publicación. Proceso de router en el que las actualizaciones de servicio o enrutamiento se envían de
tal manera que otros routers de la red puedan mantener listas de rutas utilizables.
Puente. Dispositivo que conecta y transmite paquetes entre dos segmentos de red que usan el mismo
protocolo de comunicaciones. Los puentes operan en la capa de enlace de datos (capa 2) del modelo
de referencia OSI. En general, un puente filtra, envía o realiza un flooding de una trama entrante con
base en la dirección MAC de esa trama.
Puenteado. Tecnología en la que un puente conecta dos o más segmentos de LAN.

Puerto, i. Interfaz en un dispositivo de intemetwork (por ejemplo, un router). 2. Enchufé hembra en
un panel de conmutación que acepta un enchufe macho del mismo tamaño, como un jack RJ-45. En
estos puertos se usan los cables de conmutación para interconectar PC conectados al panel de
conmutación. Esta interconexión permite que la LAN funcione. 3. En la terminología IP, un proceso
de capa superior que recibe información de las capas inferiores. Los puertos tienen un número, y
muchos de ellos están asociados a un proceso específico. Por ejemplo, SMTP está asociado con el
puerto 25. Un número de puerto de este tipo se denomina dirección conocida. 4. Volver a escribir el
software o el microcódigo para que se ejecute en una plataforma de hardware o en un entorno de
software distintos de aquellos para los que fueron diseñados originalmente.
Punto de acceso al servicio. Campo definido por la especificación IEEE 802.2 que forma parte de
una especificación de dirección.
Punto de acceso al servicio destino. Ver DSAP.
Punto de referencia. Especificación que define la conexión entre dispositivos específicos, según sea
su función en la conexión de extremo a extremo.
PVC ( Circuito virtual perm anente). Circuito virtual que se establece de forma permanente. Los PVC
ahorran el ancho de banda relacionado con el establecimiento y el desmantelamiento del circuito en
situaciones en las que ciertos circuitos virtuales deben existir de forma permanente. Comparar con
SVC.

© R A -M A

A PÉN D IC E C. GLO SA RIO 461

Q:
Q.931. Protocolo que recomienda una capa de red entre el extremo final de la terminal y el switch
RDSI local. Q.931 no impone una recomendación de extremo a extremo. Los diversos proveedores y
tipos de switch de RDSI pueden usar varias implementaciones de Q.931.
QoS (Calidad de servicio). Medida de desempeño de un sistema de transmisión que refleja su calidad
de transmisión y disponibilidad de servicio.

R:
RAM (Memoria de acceso aleatorio). Memoria volátil que puede ser leída y escrita por un
microprocesador.
RARP {Protocolo de Resolución Inversa de Dirección). Protocolo en la pila TCP/ IP que brinda un
método para encontrar direcciones IP con base en las direcciones MAC. Comparar con ARP.
RDSI (Red digital de servicios integrados). Protocolo de comunicaciones que ofrecen las compañías
telefónicas y que permite que las redes telefónicas transmitan datos, voz y tráfico de otros orígenes.
Red. Agrupación de PC, impresoras, routers, switches y otros dispositivos que se pueden comunicar
entre sí a través de algún medio de transmisión.
Red de área local. Ver LAN.
Red de área local en bus con paso de token. Arquitectura de LAN que usa la transmisión de tokens
en una topología de bus. Esta arquitectura de LAN es la base de la especificación de LAN IEEE
802.4.
Red digital de servicios integrados. Ver RDSI.
Red empresaria. La red de una asociación comercial, agencia, escuela u otra organización que une
sus datos, comunicaciones, informática y servidores de archivo.
Red híbrida. Intemetwork de redes compuesta por más de un tipo de tecnología de red, incluyendo
LAN y WAN.
Red interna. Red interna a la que tienen acceso los usuarios con acceso a la LAN interna de una
organización.
Red no extendida. Red AppleTalk Fase 2 que soporta direccionamiento de hasta 253 nodos y solo 1
zona.
Red plana. Red en la cual no hay routers ubicados entre los switches, los broadcasts y las
transmisiones de capa 2 se envían a todos los puertos conmutados y hay un dominio de broadcast que
ocupa toda la red.
Red suministrada. El conjunto de switches e instalaciones (denominadas enlaces troncales) dentro
de la nube del proveedor de WAN.

462

REDES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICACIÓN CCNA 640-802

©RA-MA

Redirigido. Parte de los protocolos ICMP y ES-IS que permiten que el router le indique al host que

sería más efectivo usar otro router.
R edundancia. 1. En intemetwork, duplicación de dispositivos, servicios o conexiones, de modo que

en caso de que se produzca una falla, los dispositivos, servicios o conexiones redundantes puedan
realizar el trabajo de aquellos en los que se produce la falla. 2. En telefonía, la porción de la
información total contenida en un mensaje que se puede eliminar sin sufrir pérdidas de información o
significado esencial.
Reensam blaje. Colocación en su formato original de un datagrama IP en el destino después de su

fragmentación en el origen o en un nodo intermedio.
Rendimiento. Velocidad de la información que llega a, y posiblemente pase a través de, un punto
determinado del sistema de red.
Repetidor. Dispositivo que regenera y propaga las señales eléctricas entre dos segmentos de red.
Reserva de ancho de banda. Proceso de asignar ancho de banda a usuarios y aplicaciones que
reciben servicios de una red. Involucra asignar una prioridad a diferentes flujos de tráfico según su
importancia y grado de sensibilidad al retardo. Utiliza de la mejor manera posible el ancho de banda
disponible y, si la red se congestiona, el tráfico de baja prioridad se descarta. A veces se denomina
asignación de ancho de banda.
Resolución de direcciones. En general, un método para resolver diferencias entre esquemas de
direccionamiento del computador. La resolución de direcciones habitualmente especifica un método
para asignar las direcciones de capa de red (capa 3) a las direcciones de capa de enlace de datos (capa
2 ).

Resolución de nombre. En general, el proceso de asociación de un nombre con una dirección de red.
Resumen de ruta. La consolidación de números de red publicados en OSPF e IS-IS. En OSPF, esto
hace que un resumen de ruta único se publique a otras áreas a través de un router fronterizo.
Retardo. Tiempo entre la iniciación de una transacción por parte del emisor y la primera respuesta
recibida por éste. Así mismo, el tiempo requerido para mover un paquete desde el origen hasta el
destino en una ruta dada.
Retardo de cola. Cantidad de tiempo que los datos deben esperar antes de poder ser transmitidos a un
circuito físico multiplexado estadísticamente.
Retardo de propagación. Tiempo requerido para que los datos recorran una red, desde el origen
hasta el destino final. También denominado latencia.
RFC (petición de comentarios). Serie de documentos empleada como medio de comunicación
primario para transmitir información acerca de la Internet. Algunas RFC son designadas por el IAB
como estándares de Internet. La mayoría de las RFC documentan especificaciones de protocolos tales
como Telnet y FTP, pero algunas son humorísticas o históricas. Las RFC pueden encontrarse en línea
en distintas fuentes.
RIP (Protocolo de información de enrutamiento). Protocolo suministrado con los sistemas BSD de
UNIX. El Protocolo de Gateway Interior (IGP) más común de la Internet. RIP utiliza el número de
<5n1tr»c romo métrica de enrutamiento

© R A -M A

A PÉN D IC E C. GLOSARIO

463

RMON (Monitoreo remoto). Especificación del agente MIB descrita en RFC 1271 que define las
funciones del monitoreo remoto de dispositivos de la red. La especificación RMON suministra varias
capacidades de monitoreo, detección de problemas c informes.
ROM (Memoria de solo lectura). Memoria no volátil que puede ser leída, pero no escrita, por el
microprocesador.
Router. Dispositivo de capa de red que usa una o más métricas para determinar cuál es la ruta óptima
a través de la cual se debe enviar el tráfico de red. Los routers envían paquetes de una red a otra
basándose en la información de capa. Denominado a veces gateway (aunque esta definición de
gateway se está volviendo obsoleta).
Router de generación. Router de una red AppleTalk que tiene el número de red o rango de cable
incorporado en el descriptor de puerto. El router de generación define el número de red o el alcance
de cable para otros routers de ese segmento de la red y responde a las consultas de configuración de
los routers no generadores en la red AppleTalk conectada, permitiendo que esos routers confirmen o
modifiquen sus configuraciones en consecuencia. Cada red AppleTalk debe tener al menos un router
de generación.
Router designado. Router OSPF que genera LSA para una red multiacceso y tiene otras
responsabilidades especiales al ejecutar OSPF. Cada OSPF multiacceso, que tiene por lo menos dos
routers conectados, tiene un router designado elegido por el protocolo Helio OSPF. El router
designado permite una reducción en la cantidad de adyacencias requeridas en una red multiacceso,
que a su vez reduce la cantidad de tráfico de protocolo de enrutamiento y el tamaño de la base de
datos topológica.
Router fronterizo. Router ubicado en los bordes, o al final, de la frontera de la red, que brinda
protección básica contra las redes externas, o contra un área menos controlada de la red para un área
más privada de la red.
Router no generador. En AppleTalk, un router que primero debe obtener, y luego verificar, su
configuración con un router de generación antes de poder comenzar a operar. Ver también router de
generación.
Routers vecinos. En OSPF, dos routers que tienen interfaces a una red común. En redes multiacceso,
el protocolo Helio OSPF detecta a los vecinos de forma dinámica.
RPC (Llamada de procedimiento remoto). Base tecnológica de la arquitectura cliente/servidor. Las
RPC son llamadas de procedimiento que los clientes crean o especifican y que se ejecutan en los
servidores. Los resultados se devuelven a los clientes a través de la red.
RPF (Envío del camino inverso). Técnica multicast en la cual un datagrama multicast se envía a todas
las interfaces salvo la interfaz receptora si esta es la que se utiliza para enviar datagramas unicast
hacia el origen del datagrama multicast.
RSVP (Protocolo de reserva de recursos). Protocolo que hace posible la reserva de recursos a través
de una red IP. Las aplicaciones que se ejecutan en los sistemas finales IP pueden usar RSVP para
indicarle a los otros nodos la naturaleza (ancho de banda, fluctuación de fase, ráfaga máxima, etc.) de
las corrientes de paquetes que desean recibir. RSVP depende de IPv6. También denominado
Protocolo de configuración de reserva de recursos.

464

REDES CISCO: G U IA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

RTMP (Protocolo de Mantenimiento de Tabla de Enrutamiento). Protocolo de enrutamiento
propietario de Apple Computer. RTMP establece y mantiene la información de enrutamiento que se
necesita para enrutar datagramas desde cualquier Socket origen hacia cualquier socket destino en una
red AppleTalk. Al usar RTMP, los routers mantienen las tablas de enrutamiento de forma dinámica
para reflejar los cambios en la topología. RTMP deriva de RIP.
RTP (Protocolo de Tabla de Enrutamiento). Protocolo de enmtamiento VINES basado en RIP.
Distribuye la información de la topología de red y ayuda a los servidores VINES a detectar a los
clientes, servidores y routers vecinos. Usa el retardo como medida de enrutamiento.
RTP (Protocolo de Transporte Rápido). Protocolo que suministra control de flujo y recuperación de
errores para datos APPN a medida que atraviesa la red APPN. Con RTP, la recuperación de errores y
el control de flujo se realizan de extremo a extremo en lugar de en cada nodo. RTP previene la
congestión, en lugar de reaccionar ante ella.
RTP (Protocolo de Transporte en Tiempo Real). Uno de los protocolos IPv6. RTP está diseñado para
suministrar funciones de transporte de red de extremo a extremo para aplicaciones que transmiten
datos de tiempo real, como, por ejemplo, datos de audio, vídeo o simulación, a través de servicios de
red de multicast o de unicast. RTP suministra diversos servicios, tales como la identificación de tipo
de carga, la numeración de secuencias, el uso de marca horaria y el monitoreo de entrega para
aplicaciones de tiempo real.
Ruta por defecto. Una entrada de la tabla de enrutamiento que se utiliza para dirigir las tramas para
las cuales el próximo salto no está explícitamente mencionado en la tabla de enrutamiento.

S:
SAI (Sistemas de alimentación ininterrumpida). Dispositivo de seguridad diseñado para suministrar
una fuente He alimentación ininterrumpida en caso de que se produzca una interrupción de! suministro
de energía. Los SAI habitualmente se instalan en servidores de archivos y hubs de cableado.
Salto. Pasaje de un paquete de datos entre dos nodos de red (por ejemplo, entre dos routers).
SAP (Protocolo de Publicación de Servicio). Protocolo IPX que suministra un medio para informar a
los clientes, a través de routers y servidores, acercá de los recursos y los servicios de red disponibles.
SAS (Estación de una conexión). Dispositivo conectado solo al anillo primario de un anillo FDDI.
También denominada estación de Clase B. Comparar con DAS. Ver también FDDI.
SDLC (Control Síncrono del Enlace de Datos). Protocolo de comunicaciones de capa de enlace de
datos de SNA. SDLC es un protocolo serial de dúplex completo orientado a bit que ha dado origen a
numerosos protocolos similares, entre ellos HDLC y LAPB.
8 DSL (very-high-data-rate digital subscriber Une). Línea Digital del Subscriptor de altísima
velocidad. Una de las cuatro tecnologías DSL. VDSL entrega entre 13 y 52 Mbps hacia abajo (desde
la oficina central al lugar del cliente) y entre 1.5 y 2.3 hacia arriba (desde el lugar del cliente a la
oficina central) sobre un único par de cobre trenzado. El funcionamiento de VDSL está limitado a un
rango de entre 304,8 y 1.372 metros. Vea también DSL, ADSL, HDSL y VDSL.
Segmentación. Proceso de división de un solo dominio de colisión en dos o más dominios de colisión
para reducir las colisiones y la congestión de la red.

© R A -M A

A PÉN D IC E C. GLOSARIO 465

Segmento. 1. Sección de una red que está rodeada de puentes, routers o switches. 2. En una LAN que
usa topología de bus, un circuito eléctrico continuo que a menudo está conectado a otros segmentos
similares a través de repetidores. 3. En la especificación TCP, una unidad única de información de
capa de transporte. Los términos datagrarna, trama, mensaje y paquete también se usan para describir
agrupamientos de información lógica en las diversas capas del modelo de referencia OSI y en varios
círculos tecnológicos.
Semidúplex. Capacidad de transmisión de datos en una sola dirección a la vez entre una estación
transmisora y otra receptora. Comparar con fúll dúplex y unidireccional.
Señalización. En el contexto RDSI, el proceso de configuración de llamada utilizado, como
establecimiento de la llamada, terminación de la llamada, información y mensajes varios, incluyendo
configuración, conexión, liberación, información del usuario, cancelación, estado y desconexión.
Señalización de bit A&B. Procedimiento utilizado en las instalaciones de transmisión de TI, en el
que cada uno de los 24 subcanaies TI dedica 1 bit de cada seis tramas a la información de
señalización supervisora.
Servidor. Nodo o programa de software que suministra servicios a los clientes. Ver también cliente.
Servidor de empresa. Servidor que soporta a todos los usuarios en una red, ofreciendo servicios
como correo electrónico o Sistema de Denominación de Dominio (DNS). Comparar con servidor de
grupo de trabajo.
Servidor de grupo de trabajo. Servidor que soporta un conjunto específico de usuarios y ofrece
servicios tales como procesamiento de texto y compartir archivos, que son servicios que solo algunos
grupos de personas necesitan. Comparar con servidor de empresa.
Servidor de nombre. Servidor conectado a una red que resuelve nombres de red en direcciones de
red.
....... ....
Sesión. 1. Conjunto relacionado de transacciones de comunicaciones orientadas a conexión entre dos
o más dispositivos de red. 2. En SNA, una conexión lógica que permite que dos unidades de red
direccionables se comuniquen.
Sistema Básico de Entrada/Salida de Red. Ver NetBIOS.
SLIP (Protocolo Internet de Enlace Serial). Protocolo estándar para las conexiones seriales punto a
punto que utiliza una variación de TCP/IP. El antecesor del PPP.
SMI (Estructura de Administración d e la Información). Documento (RFC 1155) que especifica
normas que se usan para definir objetos administrados en la MIB.
SNA (Arquitectura de Sistemas de Red). Arquitectura de red grande, compleja, con gran cantidad de
funciones, desarrollada en 1970 por IBM. Similar en algunos aspectos al modelo de referencia OSI,
pero con varias diferencias. SNA está compuesto esencialmente por siete capas. Ver capa de control
de flujo de datos, capa de control de enlace de datos, capa de control de ruta, capa de control físico,
capa de servicios de presentación, capa de servicios de transacción y capa de control de transmisión.
SNMP (Protocolo simple de adm inistración de redes). Protocolo de administración de redes utilizado
casi con exclusividad en redes TCP/IP. El SNMP brinda una forma de monitorear y controlar los

466

REDES CISCO: GUÍA DE ESTUDIO PARA LA C E R TIFICA C IÓ N CCNA 640-802

© R A -M A

dispositivos de red y de administrar configuraciones, recolección de estadísticas, desempeño y
seguridad.
Socket. 1. Estructura de software que funciona como un punto final de las comunicaciones dentro de
un dispositivo de red (similar a un puerto). 2. Entidad direccionable dentro de un nodo conectado a
una red AppleTalk; los sockets son propiedad de procesos de software denominados clientes de
socket. Los sockets AppleTalk se dividen en dos grupos: las SAS, que están reservadas para clientes
como, por ejemplo, los protocolos principales AppleTalk, y las DAS, que son asignadas de forma
dinámica por DDP a pedido de los clientes del nodo. Un socket AppleTalk es conceptualmente
similar a un puerto TCP/1P.
Software Cisco IOS (Sistem a Operativo de Internetwork). Software de sistema de Cisco que*
proporciona funcionalidad, escalabilidad y seguridad comunes a todos los productos bajo la
arquitectura CiscoFusion. El software Cisco IOS permite la instalación y administración centralizada,
integrada y automatizada de internetwork, garantizando al mismo tiempo la compatibilidad con una
amplia variedad de protocolos, medios, servicios y plataformas.
SOHO (Oficina pequeña/oficina hogareña). Oficina pequeña u hogareña que incluye pocos usuarios
que requieren una conexión que brinde conectividad más rápida y confiable que una conexión de
marcado analógico.
SONET. Es una tecnología óptima para el tráfico de voz TDM, pero no puede escalar para hacer
frente a las demandas exponenciales de ancho de banda ni puede entregar la flexibilidad multiservicio
que necesitan las.redes actuales.
Spanning Tree. Subconjunto sin bucles de una topología de red de capa 2 (conmutada).
SPID (Identificador del p erfil de servicio). Número que algunos proveedores de servicios usan para
definir los servicios a los cuales se suscribe un dispositivo RDSI. El dispositivo RDSI usa el SPID al
acccdcr al switch que inicializa la conexión a un proveedor de sel vicio.
Split Horizon. Función destinada a evitar que los routers tomen rutas erróneas. El horizonte dividido
evita que se produzcan bucles entre routers adyacentes y mantiene reducido el tamaño de los
mensajes de actualización.
Spoofing. 1. Esquema que usan los routers para hacer que un host trate a una interfaz como si
estuviera funcionando y soportando una sesión. El router hace spoofing de respuestas a mensajes de
actividad del host para convencer a ese host de que la sesión continúa. El spoofing resulta útil en
entornos de enrutamiento como DDR, en el cual un enlace de conmutación de circuito se desconecta
cuando no existe tráfico que se deba enviar a través del enlace, a fin de ahorrar gastos por llamadas
de pago. 2. La acción de un paquete que ilegalmente dice provenir de una dirección desde la cual en
realidad no se lo ha enviado. El spoofing está diseñado para contrarrestar los mecanismos de
seguridad de la red, tales como los filtros y las listas de acceso.
Spoofing de temporizador. Subconjunto de spoofing que se refiere específicamente al router que
actúa especialmente para un cliente NetWare enviando paquetes de temporizador a un servidor
NetWare para mantener activa la sesión entre el cliente y el servidor. Es de utilidad cuando el cliente
y el servidor están separados por un enlace de WAN DDR.
SPP (Protocolo de Paquete Secuenciado). Protocolo que brinda transmisión de paquetes con control
de flujo, basada en conexión a nombre de procesos del cliente. Parte del conjunto de protocolos XNS.

© R A -M A

A PÉN D IC E C. GLOSARIO

467

SPX (Intercambio de Paquete Secuenciado). Protocolo confiable, orientado a conexión, que
complementa el servicio de datagramas suministrado por los protocolos de capa de red. Novell derivó
este protocolo de transporte NetWare de uso común del SPP del conjunto de protocolos XNS.
SQE (Error de calidad de señal). En Ethernet, una transmisión enviada por un transceptor de vuelta
al controlador para hacer saber al controlador si el circuito de colisión es funcional. También
denominado heartbeat.
SS7 (Sistem a de Señalización Número 7). Sistema de canal de señalización común desarrollado por
Bellcore, utilizado en RDSI, que usa mensajes y señales de control telefónico entre los puntos de
transferencia en el camino al destino llamado.
SSAP (Punto de acceso al servicio origen). SAP del nodo de red designado en el campo Origen de un
paquete. Comparar con DSAP. Ver también SAP.
STP (Par trenzado blindado). Medio de cableado de dos pares que se usa en diversas
implementaciones de red. El cableado STP posee una capa de aislamiento blindada para reducir la
interferencia electromagnética. Comparar con UTP. Ver también par trenzado.
Subinterfaz. Una de una serie de interfaces virtuales en una sola interfaz física.
Subnetwork. Ver subred.
Subred. 1. Red segmentada en una serie de redes más pequeñas. 2. En redes IP, una red que .comparte
una dirección de subred individual. Las subredes son redes segmentadas de forma arbitraria por el
administrador de la red para suministrar una estructura de enrutamiento jerárquica, de varios niveles
mientras protege a la subred de la complejidad de direccionamiento de las redes conectadas. A veces
se denomina subnetwork. 3. En redes OSI, un conjunto de sistemas finales y sistemas intermedios
bajo el control de un dominio administrativo exclusivo y que utiliza un protocolo de acceso de red
.............. ..
---- ------- exclusivo.
SVC (Circuito virtual conmutado). Circuito virtual que se establece de forma dinámica a pedido y
que se desconecta cuando la transmisión se completa. Los SVC se usan en situaciones en las que la
transmisión de datos es esporádica. Comparar con PVC.
Switch. Dispositivo que conecta PC. El switch actúa de manera inteligente. Puede agregar ancho de
banda, acelerar el tráfico de paquetes y reducir el tiempo de espera. Los switches son más
“inteligentes” que los “hubs” y ofrecen un ancho de banda más dedicado para los usuarios o grupos
de usuarios. Un switch envía los paquetes de datos solamente a la PC correspondiente, con base en la
información que cada paquete contiene. Para aislar la transmisión de una PC a otra, los switches
establecen una conexión temporal entre la fuente y el destino, y la conexión termina una vez que la
conversación se termina.
Switch de LAN. Switch de alta velocidad que envía paquetes entre segmentos de enlace de datos. La
mayoría de los switches de LAN envían tráfico basándose en las direcciones MAC. Los switches de
LAN a menudo se clasifican según el método utilizado para enviar tráfico: conmutación de paquetes
por método de corte o conmutación de paquetes por almacenamiento y envío. Un ejemplo de switch
de LAN es el Cisco Catalyst 5000.

468

REDES CISCO: GUÍA DE ESTUDIO PARA LA CE R T IFIC A C IÓ N CC N A 640-802

© R A -M A

T:
T I. Servicio de portadora WAN digital que transmite datos formateados DS-1 a 1,544 Mbps a través

de la red de conmutación telefónica, usando la codificación AMI o B8ZS. Comparar con E1.
T3. Servicio de portadora WAN digital que transmite datos formateados DS-3 a 44,736 Mbps a través

de-la red de conmutación telefónica. Comparar con E3.
TA (Adaptador de term inal). Dispositivo usado para conectar conexiones BRI de RDSI a interfaces

existentes como EIA/TIA-232. Esencialmente es un módem RDSI.
Tabla de enrutam iento. Tabla almacenada en un router o en algún otro dispositivo de internetwork

que realiza un seguimiento de las rutas hacia destinos de red específicos y, en algunos casos, las
métricas asociadas con esas rutas.
TACACS {Sistema de C ontrol de Acceso a l Controlador de Acceso a la Terminal). Protocolo de

autenticación, desarrollado por la comunidad DDN, que suministra autenticación de acceso remoto y
servicios relacionados, como, por ejemplo, el registro de eventos. Las contraseñas de usuario se
administran en una base de datos central en lugar de administrarse en routers individuales,
suministrando una solución de seguridad de red fácilmente escalable.
Tamaño de ventana. Cantidad de mensajes que se pueden transmitir mientras se espera recibir un

acuse de recibo.
Tarjeta de interfaz de red. Ver NIC.
TCP {Protocolo d e C ontrol d e Transmisión). Protocolo de capa de transporte orientado a conexión

que provee una transmisión confiable de datos de dúplex completo. TCP es parte de la pila de
protocolo TCP/IP.
_
- . ----TCP/IP {Protocolo de C ontrol de Transmisión /Protocolo Internet). Nombre común para el conjunto

de protocolos desarrollados por el DoD de EE.UU. en los años 70 para promover el desarrollo de
internetwork de redes a nivel mundial. TCP e IP son los dos protocolos más conocidos del conjunto.
TDM {Multiplexado p o r división de tiempo). Señal de conmutación de circuito utilizada para

determinar la ruta de llamada, que es una ruta dedicada entre el emisor y el receptor.
TDM {Multiplexión p o r D ivisión de Tiempo). Técnica mediante la cual se puede asignar ancho de

banda a la información procedente de múltiples canales en un solo cable, con base en espacios de
tiempo asignados previamente. El ancho de banda se asigna a cada canal sin tomar en cuenta si la
estación tiene datos para transmitir.
TE1 (Equipo term inal tipo 1). Dispositivo compatible con la red RDSI. TE1 se conecta a una
terminación de red de Tipo 1 o Tipo 2.
TE2 {Equipo term inal tipo 2). Dispositivo no compatible con la red RDSI que requiere un adaptador

de terminal.
Telnet. Protocolo de emulación de terminal estándar de la pila de protocolo TCP/IP. Telnet se usa

para la conexión de terminales remotas, permitiendo que los usuarios se registren en sistemas remotos
y utilicen los recursos como si estuvieran conectados a un sistema local. Telnet se define en RFC 854.

© R A -M A

A PÉN DICE C. G L O SA R IO 469

Tem porizador maestro. 1. Mecanismo de hardware o software utilizado para disparar un evento o

un escape de un proceso a menos que el temporizador se reajuste periódicamente. 2. En NetWare, un
temporizador que indica el período máximo de tiempo durante el cual un servidor esperará que un
cliente responda a un paquete de temporizador. Si el temporizador expira, el servidor envía otro
paquete de temporizador (hasta una cantidad máxima establecida).
TFTP (Protocolo de Transferencia d e Archivos Trivial). Versión simplificada de FTP que permite la

transferencia de archivos de un PC a otro a través de una red.
T IA (Asociación de la Industria de las Telecomunicaciones). Organización que desarrolla estándares

relacionados con las tecnologías de telecomunicaciones. En conjunto, TIA y EIA han formalizado
estándares, como EIA/TIA-232, para las características eléctricas de la transmisión de datos.
Tictac. Retardo en un enlace de datos que utiliza tictacs de reloj de PC IBM (aproximadamente 55

milisegundos). Un tictac equivale a un segundo.
Tiem po de conexión de llamada. Tiempo requerido para establecer una llamada conmutada entre

dispositivos DTE.
Tiem po de existencia. Ver TTL.
Token. Trama que contiene información de control. La posesión del token permite que un dispositivo

de red transmita datos a la red.
Token Ring. LAN de transmisión de tokens desarrollada y soportada por IBM. Token Ring se ejecuta

a 4 o 16 Mbps a través de una topología de anillo. Similar a IEEE 802.5.
TokeuTalk. Producto de enlace de datos de Apple Computer que permite que una red AppleTalk se
conecte mediante cables Token Ring.
Topología. Disposición física de los nodos y medios de red en una estructura de networking a nivel

empresarial.
Topología de anillo. Topología de red compuesta por una serie de repetidores conectados entre sí por

enlaces de transmisión unidireccionales para formar un bucle cerrado único. Cada estación de la red
se conecta a la red a través de un repetidor. Aunque son anillos lógicos, las topologías de anillo a
menudo se organizan en una estrella de bucle cerrado. Comparar con topología de bus, topología en
estrella y topología en árbol.
Topología de bus. Topología de LAN en la que las transmisiones desde las estaciones de la red se
propagan a lo largo del medio y son recibidas por todas las demás estaciones. Comparar con topología
de anillo, topología en estrella y topología en árbol.
Topología de malla completa. Topología en la que todos los dispositivos Frame-Relay tienen un
PVC hacia todos los demás dispositivos en una WAN multipunto.
Topología de malla parcial. Topología en la cual no todos los dispositivos en la nube Frame-Relay
tienen un PVC hacia cada uno de los demás dispositivos.
Topología en árbol. Topología de LAN similar a una topología de bus, salvo que las redes en árbol
pueden tener ramas con varios nodos. Las transmisiones desde una estación se propagan a lo largo del

470

REDES CISCO: GUÍA DE ESTUDIO PA RA LA C ERTIFICA C IÓ N CCNA 640-802

© RA-MA

medio y todas las demás estaciones las reciben. Comparar con topología de bus, topología de anillo y
topología en estrella.
Topología en estrella. Topología de LAN en la que los puntos finales de una red se encuentran
conectados a un switch central común mediante enlaces punto a punto Una topología de anillo que se
organiza en forma de estrella implementa una estrella de bucle cerrado unidireccional, en lugar de
enlaces punto a punto. Comparar con topología de bus, topología de anillo y topología en árbol.
Torm enta de broadcast. Suceso de red no deseado, en el que se envían varios broadcasts

simultáneamente a todos los segmentos de red. Una tormenta de broadcast usa una parte considerable
del ancho de banda de la red y normalmente hace que se agoten los tiempos de espera de la red. Ver
también broadcast.
Traceroute. Programa disponible en varios sistemas que rastrea la ruta que recorre un paquete hacia

un destino. Se utiliza a menudo para depurar los problemas de enrutamiento entre hosts. Existe
también un protocolo traceroute definido en RFC 1393.
Tram a. Agrupamiento lógico de información enviada como unidad de capa de enlace de datos a

través de un medio de transmisión. A menudo se refiere al encabezado y a la información final,
utilizadas para la sincronización y control de errores, que rodean los datos del usuario contenidos en
la unidad. Los términos datagrama, mensaje, paquete y segmento también se usan para describir
agrupamientos de información lógica en las diversas capas del modelo de referencia OSI y en varios
círculos tecnológicos.
Transm isión de tokens. Método de acceso mediante el cual los dispositivos de red acceden al medio

físico de forma ordenada basándose en la posesión de una pequeña trama denominada token.
Comparar con switching y contención de circuitos.
Transm isión en paralelo. Método de transmisión de datos en el que los bits de un carácter de datos
se transmiten de forma simultánea a uavés de una serie de canales. Comparar con transmisión Serial.
Transm isión serial. Método de transmisión de datos en el cual los bits de un carácter de datos se

transmiten de forma secuencial a través de un solo canal. Comparar con transmisión en paralelo.
TTL ( Tiempo de Existencia). Campo en un encabezado IP que indica el tiempo durante el cual se
considera válido un paquete.
Tunneling. Arquitectura diseñada para suministrar los servicios necesarios para implementar

cualquier esquema de encapsulamiento punto a punto estándar.

U:
UDP (Protocolo de Datagrama de Usuario). Protocolo no orientado a conexión de la capa de
transporte de la pila de protocolo TCP/IP. UDP es un protocolo simple que intercambia datagramas
sin confirmación o garantía de entrega y que requiere que el procesamiento de errores y las
retransmisiones sean manejados por otros protocolos. UDP se define en la RFC 768.
UNI (Interfaz de R ed a Usuario). Especificación que define un estándar de interoperabilidad para la

interfaz entre productos (un router o un switch) ubicados en una red privada y los switches ubicados
dentro de las redes de carriers públicas. También utilizado para describir conexiones similares en
redes Frame-Relay.

O R A -M A

A PÉN D IC E C. GLOSARIO

471

Unicast. Mensaje que se envía a un solo destino de red.
Unidireccional. Capacidad de transmisión en una sola dirección entre una estación emisora y una

estación receptora. La televisión es un ejemplo de tecnología unidireccional. Comparar con full
dúplex y semidúplex.
URL (Localizador de recursos uniformé). Esquema de direccionamiento estandarizado para acceder a
documentos de hipertexto y otros servicios utilizando un explorador de Web.

UTP (Par tremado no blindado). Medio de cable de cuatro pares que se emplea en varias redes. UTP
no requiere el espacio fijo entre conexiones que es necesario para las conexiones de tipo coaxial. Hay
cinco tipos de cableado UTP de uso común: cableado de Categoría 1, cableado de Categoría 2,
cableado de Categoría 3, cableado de Categoría 4 y cableado de Categoría 5. Comparar con STP.

Y:
VCC (Interconexión vertical). Conexión utilizada para interconectar los diversos IDF al MDF central.
VDSL (very-high-data-rate digital subscriber line). Línea Digital del Subscriptor de altísima
velocidad. Una de las cuatro tecnologías DSL. VDSL entrega entre 13 y 52 Mbps hacia abajo (desde
la oficina central al lugar del cliente) y entre 1.5 y 2.3 hacia arriba (desde el lugar del cliente a la
oficina central) sobre un único par de cobre trenzado. El funcionamiento de VDSL está limitado a un
rango de entre 304,8 y 1.372 metros. Vea también DSL, ADSL, HDSL y SDSL.
V elocidad asegurada. Rendimiento de datos a largo plazo, en bits o celdas por segundo, que una red

ATM puede proporcionar bajo condiciones normales de la red. La velocidad asegurada se encuentra
asignada en un 100 por ciento. Se deduce en su totalidad del ancho de banda troncal a lo largo de la
ruta del circuito. Comparar con velocidad excesiva y velocidad máxima.
Velocidad de acceso local. Velocidad de reloj (velocidad de puerto) de la conexión (bucle local) a la

nube Frame-Relay. Es la velocidad a la que se desplazan los datos hacia o desde la red.
Velocidad excesiva. Tráfico que supera la velocidad asegurada de una conexión en particular.

Específicamente, la velocidad excesiva es igual a la velocidad máxima menos la velocidad asegurada.
El tráfico excesivo se entrega solamente si los recursos de red están disponibles y se pueden descartar
durante los períodos de congestión. Comparar con velocidad asegurada y velocidad máxima.
Velocidad máxima. Rendimiento total máximo de datos que se permite en un circuito virtual

determinado, que es igual a la suma del tráfico asegurado y del tráfico no asegurado desde el origen
del tráfico. Los datos del tráfico no asegurado pueden descartarse si la red se congestiona. La
velocidad máxima, que no puede superar la velocidad del medio, representa el rendimiento de datos
más elevado que el circuito virtual puede enviar, medida en bits o en celdas por segundo. Comparar
con velocidad excesiva y velocidad asegurada.
Ventana. Cantidad de octetos que el remitente desea aceptar.
Ventana deslizante. Ventana cuyo tamaño se negocia dinámicamente durante la sesión TCP.
VLAN (LAN virtual). Grupo de dispositivos de una LAN que están configurados (usando el software

de administración) de tal modo que se pueden comunicar como si estuvieran conectados al mismo
cable, cuando, en realidad, están ubicados en una serie de segmentos de LAN distintos. Debido a que

472

REDES CISCO: G U ÍA D E ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

© R A -M A

[as LAN virtuales están basadas en conexiones lógicas en lugar de físicas, son extremadamente
flexibles.
VLAN de puerto central. VLAN en la que todos los nodos en la misma VLAN se conectan al
mismo puerto de switch.
VLAN dinámica. VLAN basada en las direcciones MAC, las direcciones lógicas o el tipo de
protocolo de los paquetes de datos. Comparar con VLAN estática. Ver también LAN y VLAN.
VLAN estática. VLAN en la que los puertos de un switch se asignan estáticamente. Comparar con
VLAN dinámica. Ver también LAN y VLAN.
VoIP (Voice over IP). La habilidad para transportar voz telefónica normal sobre una red de datos
basada en el protocolo de Internet, con la misma funcionalidad, confiabilidad y calidad de voz que
ofrecen las empresas telefónicas tradicionales. La Voz sobre protocolo Internet le permite a un router
llevar tráfico de voz (por ejemplo llamadas telefónicas y faxes) sobre una red IP. En Voz sobre IP, la
parte de dominio específica (DSP) segmenta la señal de voz en tramas, las cuales son luego agrupadas
en parejas y guardadas en paquetes de voz. Estos paquetes de voz son transportados utilizando IP, de
acuerdo con la especificación ITU-T H.323.
VPN ( Virtual P rívate NetW ork). Una Red Privada Virtual, permite establecer una conexión segura a
través de una red pública o Internet. Una VPN permite que el tráfico IP viaje seguro a través de una
red pública TCP/IP al encriptar el tráfico desde una red hasta la otra. Una VPN usa tunneling para
encriptar toda la información en el nivel IP.

W:
WAN (R ed de área am plia). Red de comunicación de datos que sirve a usuarios dentro de un área
geográfica extensa y. a menudo usa dispositivos de transmisión suministrados por carriers comunes.
Frame-Relay, SMDS y X.25 son ejemplos de WAN. Comparar con LAN y MAN.
Wi-Fi ( Wíreless-Fidelity). Esta denominación, aplicada al protocolo inalámbrico IEEE 802.11b,
significa que, vía radio, mantiene con fidelidad las características de un enlace Ethernet cableado.
Wi Max (Worldwide Interoperability fo r Microwave Access). Es la marca que certifica que un
producto está conforme con los estándares de acceso inalámbrico “IEEE 802.16”. Estos estándares
permitirán conexiones de velocidades similares al ADSL o al cablemódem, sin cables, y hasta una
distancia de 50-60 km. Este nuevo estándar será compatible con otros anteriores, como el de Wi-Fi
(IEEE 802.11).

X:
X.25. Estándar UIT-T que define la manera en que las conexiones entre los DTE y DCE se mantienen
para el acceso a la terminal remota y las comunicaciones en PC en las redes de datos públicas. FrameRelay ha reemplazado en cierta medida a X.25.
XNS (Sistema de re d de X erox). Conjunto de protocolo originalmente diseñado por PARC. Muchas
empresas de networking para PC tales como 3Com, Banyan, Novell y UB Networks utilizaron o
actualmente utilizan una variante de XNS como protocolo de transporte primario.

INDICE ALFABETICO

S ÍM B O L O S
0x2102....................................................... 130
0x2142....................................................... 130
OxnnnO....................................................... 131
Oxnnnl....................................................... 132
0xnnn2....................................................... 132
OxnnnF...................................................... 132
10 Base T ....................................
,.,..25,
802.11a...............................
181
802.11b...................................................... 180
802.1 lg...................................................... 181
802.11 i ...................................................... 188
802.1 ln...................................................... 181
802.3............................................................43

A
Absorción.................................................. 185
ACL........................................................... 193
ACL con nombre....................................... 196
ACL en Line VTY.................................... 204
ACL entrantes........................................... 196
ACL estándar............................................ 195
ACL extendidas......................................... 196
ACL nombradas........................................ 207
ACL saliente............................................. 197
ACL, abreviatura any................................ 198
ACL, abreviatura host............................... 198
ACL, aplicación........................................ 196
ACL, asociación a una interfaz.................202

ACL, basada en tiempo............................. 209
ACL, condiciones......................................195
ACL, configuración.................................. 200
ACL, denegación implícita........................195
ACL, deny.................................................. 194
ACL, dinámicas........................................ 209
ACL, eliminación...................................... 207
ACL, permit............................................... 194
ACL, puertos T C P......................57,128, 209
ACL, puertos ÜDP..................................... 211
ACL, rangos.............................................. 200
ACL, reflexivas......................................... 209
ACL, remarle............................................. 208
ACL, verificación..................................... 213
Ad-hoc....................................................... 182
Agregación de ruta...................................... 81
AH..............................................................281
Algoritmo de Dijkstra................................. 98
Almacenamiento y envío.......................... 219
Ancho de banda..................................... 38, 94
AND, operación.......................................... 36
ANSI..........................................................270
A P .............................................................. 183
APPLE TALK............................................. 92
Área 0...........................................................98
Área de Backbone....................................... 98
Áreas................................................... 98, 174
ARIN........................................................... 91
ARP..............................................................58
ARP inverso...............................................269
ARP Proxy...................................................59
A S ......................................................... 91, 98

474

RED ES CISCO: GUÍA DE ESTU D IO PARA LA C ERTIFICA C IÓ N CCNA 640-802

A SIC ...................................................32,227
Asincrona.......................................
257
ATM...............................................
255

B
Bandwidth................................................ 120
Banners...................................................... 122
B D R .................................................. 169, 170
BECN........................................................269
BPDU........................................................ 222
Broadcast..................................................... 67
Bucle de capa 2 .........................................221
Bucle de puente.........................................221
Bucle local.................................................252
Bucles de enrutamiento...............................95
Buses......................................................... 104

c
Cable consola.............................................. 28
Cable crossover...........................................28
Cable cruzado.................. ............................. 28
Cable directo............................................... 27
Cable rollover..............................................28
Cálculo de wildcard................................... 199
C A M ............................................... ..32,220
Capa de acceso............................................52
Capa deaplicación .......
22
Capá de distribución,
i
52
Capa de enlace de datos........................23, 30
Capa de enlace de datos, dispositivos
31
Capa de presentación...................................22
Capa de red..................................................23
Capa de red, dispositivos.............................37
Capa de red, funciones..................
33
Capa de sesión.............................................22
Capa de transporte.........................
22, 40
Capa del núcleo.............................
53
Capa física...................................................23
Capa física, dispositivos................
24
Capa física, estándares................................24
Capa física, funciones.................................24
Capa física, medios.......................
....26
Capa física, medios inalámbricos............... 29
Capa física, MTU..........................
24
Carga........................................................... 95
CDP...............................................
136
CDP, verificación...................................... 137
Celdas conmutadas........................
252
CHAP............................................
259
CTDR...........................................................81

© R A -M A

CIR............................................................ 268
Circuitos conmutados................................ 251
Circuitos virtuales..................................... 220
Cisco Discovery Protocol...........................136
Cisco IOS...................................................129
Classfull...................................................... 93
Classless...................................................... 93
Clock rate...................................................120
CO............................................................. 252
Comando copy.......................................... 124
Comando ip classless.................................. 93
Comando ip route........................................ 89
Comando router.........................................150
Comandos ayuda............................... 108, 110
Comandos boot system..............................135
Comandos Cisco IOS................................ 421
Comandos show.........................................120
Conectores..................................................24
Confreg........................................ , ............ 134
Conmutación...............................................32
Conmutación de capa 2 ............................. 217
Conmutar...................................................103
Convergencia.................................... 100, 156
Coste........................................................... 94
CPE........................................................... 252
CPU............................................................104
CSMA./CA.................................................180
CSMA/CD..................................................45
CSU/DSU......................................... 106,270

D
DCE.................................................. 106, 120
DDR...........................................................194
Dead...........................................................171
Debug ip eigrp............................................167
Debug ip ospf events..................................177
Debug ip ospf packet.................................177
Decibeles......................................
186
Decimal punteado....................................... 34
Demarcación.............................................252
Descubrir rutas............................................ 88
Desencapsulación........................................ 49
DH............................................................. 281
DHCP, configuración del cliente.............. 140
DHCP, configuración del servidor
139
DHCP, funcionamiento..............................138
DHCP, proceso..........................................138
Difracción................................................. 185
Dijkstra................................................ 98, 168
Dirección de capa 3..................................... 34
Dirección de destino................................... 88

O R A -M A

ÌN D IC E ALFABÉTICO 475

Dirección de red.......................................... 38
Dirección del proximo salto........................89
Dirección jerárquica....................................65
Direccionamiento IPv4................................65
Dispersión................................................. 185
Distancia...................................................... 90
Distancia administrativa..............................91
DLCI......................................................... 268
DoD............................................................. 54
Dominio de colisión....................................43
Dominio de difusión....................................43
Dotl q......................................................... 227
DR............................................................. 170
DSSS..........................................................180
DTE................................................... 106, 120
DUAL........................................................160

E
EGP.............................................................93
EIA/TIA-232.............................................254
EIA/TIA-449.............................................254
EIA-530.....................................................254
EIE/TIA 568................................................26
EIGRP.................................................93, 159
EIGRP, ancho de banda............................ 161
EIGRP, autenticación................................ 165
EIGRP, carga.............................................161
EIGRP, configuración............................... 162
EIGRP, constantes K..................................161
EIGRP, equilibrado de carga..................... 163
EIGRP, fiabilidad...................................... 161
EIGRP, filtrado de rutas............................ 164
EIGRP, helio............................................. 160
EIGRP, MTU............................................ 161
EIGRP, redistribución estática.................. 164
EIGRP, retraso.......................................... 161
EIGRP, tablas............................................160
EIGRP, temporizadores............................. 163
EIGRP, verificación.................................. 167
Elección del switch raíz ............................223
Encapsulación.............................................48
Encapsulación, secuencia............................50
Enlace troncal............................................ 226
Enrutamiento dinámico............................. 149
Enrutamiento j erárquico............................ 174
Enrutar....................................................... 103
Envenenamiento de ruta..............................97
ESP............................................................281
Establisehed..............................................203
Estado de enlace..........................................93
Ethernet.................................................43, 47

Ethernet, trama............................................47
Etiquetado de tram a................................. 227

F
FECN........................................................269
Fiabilidad....................................................95
Filtrado........................................................32
Flash.......................................................... 104
Frame-Relay......................................255, 268
Frame-Relay DCE.................................... 268
Frame-Relay DTE.................................... 268
Frame-Relay, configuración..................... 271
Frame-Relay, DLCI local......................... 270
Frame-Relay, funcionamiento.................. 270
Frame-Relay, multipunto......................... 272
Frame-Relay, punto a punto..................... 272
Frame-Relay, sub interfaces...................... 272
Frame-Relay, terminología...................... 268
Frame-Relay, topologías.......................... 269
Frame-Relay, verificación........................ 278
Fuente de alimentación.............................105
Fuentes de información.............................. 88
Full-duplex...........................................
43

G
Gateway......................................................89
GRE.................... .................
............219

H
Half-duplex.................................................43
HDLC........................................................ 254
Hello, dead................................................ 169
Hello, intervalo......................................... 171
Híbrido........................................................93
Horizonte dividido..................................... 96
Hubs............................................................24
HyperTerminal.......................................... 107

I
IANA..........................................................91
ICMP...........................................................59
IEEE 802.11.............................................. 179
IEEE 802.1Q.............................................227
IEEE 802.3..................................................47
IETF..........................................................271
IGP..............................................................93
IGRP......................................................... 155

476

REDES CISCO : GUÍA DE ESTUDIO PARA LA CERTIFICA C IÓ N CCNA 640-802

IKE............................................................ 281
Interfaces................................................... 105
Interfaces LAN.......................................... 118
Interfaces W AN........................................ 120
Interfaz........................................................38
Interred........................................................59
Inundación...................................................32
IO S............................................................ 129
IP ................................................................ 58
Ip default-network.......................
148
Ip subnet-zero..............................
78
IPSec.................................................280, 450
IPSec, modos de operación.......................281
IPv4.............................................................34
67
IPv4, clases..................................
IPv4, tipos...................................
66
IPv6, características.....................
83
IPv6, comparación.......................
35
35, 84
IPv6, formato..............................
IPv6, introducción.......................
82
IPv6, tipos...................................
85
IPv6, VLSM................................................36
IPv6,CIDR...................................
36
IPX ..............................................
92
ISAKMP......................................
281
ISL.............................................................227

L
Lan Virtuales.............................................225
LAPB........................................................255
Latencia.....................................................219
LCP...........................................................257
Libre de fragmentos..................................219
Líneas alquiladas...................................... 251
Listas de acceso.........................................193
LLC.............................................................23
LLC, subcapa............................................. 30
LM I...................................................269, 270
LMI Cisco.................................................270
L og............................................................203
Logical Link Control...................................30
LSA........................................................... 168

M
M A C ...........................................................23
MAC, dirección.......................................... 32
MAC, subcapa............................................ 30
Mantenimiento de las tablas....................... 88
Máscara comodín......................................198
Método de corte........................................ 219

© RA-MA

Métrica........................................................ 38
Métrica máxima.......................................... 96
Métricas...................................................... 94
Microsegmentación................................... 217
Modelo jerárquico....................................... 51
Modelo OSI................................................. 20
M TU ................................................... 95,280

N
NAT.......................................................... 263
NAT dinámico.......................................... 263
NAT estático............................................. 263
NAT sobrecargado.................................... 263
NAT, terminología.................................... 263
NAT, verificación..................................... 267
NAT-T......................................................282
NCP........................................................... 257
N etBEUI.................................................... 92
N IC ............................................................. 32
No orientado a conexión.............................40
Notación decimal de punto.........................34
Números binarios........................................ 60
Números binarios, conversión.....................62
Números de puerto................................40, 57
Números hexadécimales.............................63
Números hexadécimales, conversión
64
NVRAM............................................ 104, 125

O
Operación booliana..................................... 36
Orden de registro........................................132
Orientado a conexión.................................. 40
OSI.............................................................. 20
OSI, capas................................................... 21
OSPF, área única........................................172
OSPF, áreas multiples................................174
OSPF, autenticación...................................173
OSPF, coste....................................... 169, 173
OSPF, DR y BDR......................................170
OSPF, helio................................................169
OSPF, información de enrutamiento
172
OSPF, introducción....................................168
OSPF, loopback.........................................173
OSPF, multiacceso.....................................169
OSPF, NBMA............................................171
OSPF, prioridad.........................................172
OSPF, punto a punto..................................171
OSPF, verificación.....................................177
OSPF, VLSM.............................................168
OUI............................................................. 32

© R A -M A

ÍNDICE ALFA BÉTICO 477

P
PA P...........................................................258
Paquetes conmutados................................252
Passive-interface....................................... 152
PAT........................................................... 263
PDU.............................................................48
Permanent....................................................90
POST..........................................................108
PPP....................................................254, 257
PPP, autenticación..................................... 258
PPP, autenticación CHAP.........................259
PPP, autenticación PA P............................258
PPP, establecimiento del enlace................258
PPP, protocolo de capa de red...................258
PPP, verificación....................................... 262
PPTP
:................................................279
Primero la ruta libre más corta....................97
Protocolo con clase.....................................93
Protocolo de Árbol de Extensión............. 222
Protocolo de enrutamiento..........................92
Protocolo de enrutamiento, clases...............93
Protocolo de gateway exterior.....................93
Protocolo de gateway interior.....................93
Protocolo enrutado......................................92
Protocolo estado de enlace..........................93
Protocolo sin clase.......................................93
Protocolo vector distancia.....................93, 94
Protocolos de estado....................................97
Puentes
............................,r."...;:.'....:..3'l
Puerta de enlace...........................................89
Puerto de acceso........................................227
Puerto troncal............................................227
Punto de acceso......................................... 183
Punto de acceso, configuración................. 189
PVC........................................................... 268
PVST+.......................................................223

Q
Q933a........................................................270

R
Radiofrecuencia, medición........................ 186
RAM ................................................ 104,125
RARP..........................................................58
Recuperación de contraseñas.................... 132
Red de pago...............................................253
Red de último recurso............................... 149
Reflexión.........................................
184

~

Refracción..................................................184
Reload........................................................133
Repetidores........................................
24
R eset..........................................................134
Retraso.................................................38, 95
RIP.............................................................. 94
RIP, características.................................... 151
RIP, configuración.................................... 151
RIP, intoducción....................................... 150
RIP, redistribución.................................... 152
RIPE............................................................ 91
R IP vl.........................................................150
RIPv2.........................................................150
Roaming.................................................... 183
ROM..........................................................105
Rommon.....................................................134
Router, componentes................................. 104
Router, configuración............................... 108
Router, contraseñas................................... 112
Router, copia de IOS................................. 126
Router, funcionamiento............................. 103
Router, guardar y copiar............................ 124
Router, modo global.................................. 110
Router, modo interfaz............................... 110
Router, modo privilegiado........................ 109
Router, modo usuario................................ 109
Router, Setup............................................ 109
Routers.......................................................37
RSTP......................................................... 225
Ruta estática por defecto.....................
90Rutas dinámicas .....................................88
Rutas estáticas............................... 87, 89,145
Rutas estáticas por defecto................. 89, 148
Rutas IP......................................................87

s
Saltos..................................................... 38, 94
SDM, configuración.................................. 117
SDM, interfaz............................................ 116
Selección de rutas..................................... 88
Show interface trunk................................247
Show spanning-tree vían..........................247
Show vlanbrief........................................247
Show vtp status........................................247
Show arp................................................... 121
Show cdp neighbors.................................. 136
Show clock................................................ 121
Show flash........................................121,127
Show history............................................. 121
Show hosts................................................ 121
Show interfaces...................................... 121

478

RED ES CISCO: GUÍA DE ESTU D IO PARA LA CERTIFICA C IÓ N CCNA 640-802

Show ip eigrp neighbors............................ 167
Show ip eigrp topology............................. 167
Show ip ospf neighbors............................. 177
Show ip protocols...................................... 155
Show ip route....................................153, 167
Show protocols.......................................... 121
Show running-config..................................121
show startup-config................................... 125
Show startup-config.................................. 121
Show users................................................ 121
show versión............................................. 129
Show versión............................................. 121
Show vían..................................................247
show vtp status..........................................229
Síncrona....................................................257
Sistema autónomo.......................................91
SLIP.......................................................... 255
SPF..............................................................97
Split horizon................................................96
SSID...........................................................183
STP............................................................222
STP, configuración....................................247
STP, estado de los puertos.........................224
STP, prioridad...........................................223
STP, proceso.............................................223
STP, puerto aprendiendo........................... 224
STP, puerto bloqueando............................224
STP, puerto desactivado............................224
STP, puerto enviando................................224
STP, puerto raíz..............
223
STP, puerto scuchando.............................. 224
STP, puertos designados........................... 223
STP, switch no raíz...................................223
STP, switch raíz........................................223
Subredes......................................................69
Subredes, proceso........................................71
Sucesor...................................................... 160
Sucesor factible......................................... 160
SVC...........................................................268
Switch CO.................................................252
Switch, configuración............................... 235
Switch, configuración de puertos..............238
Switch, contraseñas...................................236
Switch, copiar configuración.............237, 249
Switch, dirección IP .................................. 236
Switch, recuperación de contraseñas
238
Switches......................................................31

T
Tabla de enrutamiento................................. 38
Tablas de host............................................ 123

© R A -M A

TCP............................................................. 40
TCP/IP........................................................ 92
TCP/IP, capas.............................................. 54
TCP/IP, modelo........................................... 54
TCP/IP, protocolos......................................55
T emporizadores........................................... 97
Tic tac
.. ................................................. 94
Tormenta de Broadcast...............................44
Tracert......................................................... 58
Transceivers................................................ 24
Troncales, configuración........................... 243
Trunking.................................................... 226
Túnel......................................................... 279

u
U D P............................................................40

V
V.35 ..........................................................254
Vector distancia..........................................93
Ventana deslizante................................
40
Ventanas...................................................... 40
VLAN....................................................... 225
VLAN, configuración............................... 241
VLAN, eliminación................................... 242
VLAN, enrutamiento................................ 243
VLAN,. tipo de puerto............................... 227
VLAN, verificación.................................. 247
VLSM......................................... 78, 100, 156
VLSM, proceso........................................... 78
VPN, funcionamiento............................... 279
VPN, introducción....................................279
VTP........................................................... 229
VTP, cliente.............................................. 231
VTP, configuración................................... 248
VTP, modos de operación.........................229
VTP, pruning............................................ 232
VTP, recorte.............................................. 232
VTP, servidor............................................ 230
VTP, transparente.....................................231

w
WAN, conectividad................................... 251
WAN, encapsulación................................ 254
WAN, estándares.............................. 106, 253
WAN, interfaces....................................... 255
WAN, introducción................................... 251
WAN, terminología................................... 252

© R A -M A

ÍNDICE ALFABÉTICO

479

WEP...........................................................187
W iF i..........................................................182

X

W ild c a rd ................................................................198

X .2 1 .......................................................................254

Wireless..................................................... 179
WLAN........................................................179
WLAN, asociación.................................... 187
WLAN, autenticación............................... 187
WLAN, estándares.................................... 180
WPA...........................................................188

X.25 .......................................................... 255

z
Zonas de Fresnel....................................... 185